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Abstract

The rhizome of Anemarrhena asphodeloides is used as food and traditional Chinese 
medicine for its hypoglycemic effect. The aim of this study was to investigate the isolation, 
purification and hypoglycemic activity of Anemaran as the active component. The influence 
factors (isolation duration, ratio of residuals to water and extracting times) during the isolation 
process were evaluated. The optimal conditions for NA and AA were extraction temperature 
90ºC and 100ºC, duration 1h and 1.5 h, extraction time 3 and 3, and the solid–liquor ratio 
1:20 and 1:15, respectively. Neutral and acid Anemaran (NA and AA) were isolated from 
the rhizome of Anemarrhena asphodeloides. Five fractions of NA-1, NA-2, NA-3, AA-1 
and AA-2 were obtained after crude neutral and acid Anemaran purified through DEAE-
52 cellulose anion-exchange column. The characterizations of Anemaran and its different 
fractions were both analyzed by Fourier transform infrared spectroscopy (FT-IR) and scanning 
electron micrographs (SEM). Structural properties of different fractions were examined by 
FT-IR. Strong characteristic absorption peaks were observed at around 1744 cm−1and 1650 
cm−1 caused by the C=O group of uronic acids, and the band between 1440 cm−1 and 1395 
cm−1 associated with the stretching vibration of C–O of galacturonic acid. Neither the crude 
neutral, nor the acid anemaran significantly inhibited the growth of HepG2 cells in-vitro, which 
indicated the low cytotoxicity of the anemaran. Furthermore, both neutral and acid anemaran 
showed hypoglycemic effect. The hypoglycemic effect of neutral anemaran was much higher 
than that of acid anemaran. 
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Introduction

The rhizome of Anemarrhena asphodeloides 
Bunge (Liliaceae) has been widely used as a 
traditional Chinese medicine. Its biochemical 

composition mainly consists of proteins, 
carbohydrates, steroidal saponins, flavonoids, 
xanthenes and norlignans. It has been reported 
that Rhizome Anemarrhenae has the activities 
of anti-diabetes (1, 2) and diureses (3). The 
steroidal saponins (4, 5), xanthenes (6) and 
norlignans (7) were major small molecular 
constituents of Rhizome Anemarrhena. However, 
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composition of polysaccharides (17). 
In this study, we isolated purified 

polysaccharides from Rhizome Anemarrhena 
by hot water and cellulose DEAE 52 anion-
exchange column in order to purify fractions. 
Anemarans was analyzed the morphology 
characterization, IR characters of different 
anemaran fractions, and evaluated cell growth 
inhibition and hypoglycemic effect upon HepG2 
cells in-vitro.

Experimental

Rhizome Anemarrhena herbs were collected 
in April 2009 from its natural habitat in Anguo 
(Hebei, China) and authenticated by Professor 
Wen-Yuan Gao. A voucher specimen has been 
deposited in School of Pharmaceutical Science 
and Technology, Tianjin University (Tianjin, 
China) 

All the chemical reagents used were analytical 
grade and obtained from Guangfu Chemical 
Company (Tianjin, China). DEAE cellulose 
52 anion-exchange column was obtained from 
Guoyao Company (China). 

The human hepatoma cell line, HepG2, was 
purchased from Cell Resource Center, Shanghai 
Institutes for Biological Sciences, Chinese 
Academy of Sciences.

Extraction of neutral anemaran (NA) and 
acid anemaran (AA)

100 g of the Rhizome Anemarrhena was 
washed, dried and comminuted to powders 
with a plant micro-muller and sieved with 160 
mesh sifter. The dried powder (1:10, w/v) was 
extracted with 80% ethanol three times. Then the 
residuals were dried in baking oven and extracted 
with water for the desired duration (0.5 to 2.5 h) 
at the temperature of 60 ºC to 100 ºC. The ratio 
of residuals:water varied from 1: 5 to 1: 30. This 
procedure was repeated 1-5 times. The water-
extracts were combined and centrifuged. The 
supernatant obtained was concentrated in a rotary 
evaporator, and then, precipitated with 95% 
ethanol (1:3, v/v) at 4 °C for overnight (17). The 
precipitation was deproteinated with absolute 
alcohol, acetone and ethyl ether successively 
washing, and then lyophilized to obtain about 20 
g of crude neutral anemaran (NA). 

polysaccharide of Anemarrhena asphodeloides 
Bunge (Anemarans) has not been received 
enough attention. It was reported that some 
extracts of Rhizoma Anemarrhenae markedly 
inhibited growth of cancer cells directly, showed 
the activities of anti-diabetes, diureses and 
hypoglycemic effect (1-3, 8-9).

Diabetes is a health endangering 
chronic metabolic hereditary disease with 
hyperglycaemia. It is characterized by metabolic 
disorders accompanied with hyperphagia, a 
selective loss of pancreatic islet β cell mass 
that results in absolute or relative deficiency of 
insulin secretion. Impaired insulin action threats 
human health. The advanced treatments mainly 
focus on injecting insulin, oral hypoglycemic 
drugs and so on. However, these drugs may cause 
side effects to varying degrees. Therefore, more 
and more researches were to make drugs with 
high efficiency and low toxicity, particularly 
the drug extracted from natural resources with 
hypoglycemic activity and little side effects (10-
12). Therefore, much attention should be paid on 
component from plants.

Anemarans (AM) are the components in 
Rhizome Anemarrhena and comprise up to 20% 
of the rhizome. There are various reports about 
immunological activity of the polysaccharide 
from Dioscorea opposita Thunb. roots, 
antitumor activity of sulfated polysaccharide 
from Gynostemma pentaphyllum Makino, 
hypoglycemic effect of crude exopolysaccharides 
of Phellinus baumii, in-vitro antitumor and 
antioxidant activities of polysaccharide from 
Sargassum pallidum (13-15). It was also 
reported that neutral anemarans A, B, C and D 
showed hypoglycemic effect in-vivo (1, 16). 
Due to its various activities mentioned  above, 
polysaccharide has attracted great attention. In 
order to obtain these functional components, 
numerous studies were carried out further to 
isolate and characterize polysaccharides from 
plant and microbial sources with emergence of 
separation technologies, for example, DEAE-
cellulose anion-exchange chromatography 
(DEAE 52-cellulose) for fractionating 
the extracts, high performance liquid 
chromatography for determining the molecular 
weight of each sub-fraction, and gas-liquid 
chromatography for analyzing neutral sugar 
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The dried residuals (47 g) after extracted 
with water, were extracted with 0.1 mol/L 
NaOH aqueous solution for the extraction 
desired duration (0.5 to 2.5 h) at the 
temperature of 60ºC to 100ºC. The ratio of 
residuals: water varied from 1: 5 to 1: 30. 
This procedure was repeated 1-5 times. The 
water-extracts were combined and centrifuged. 
The supernatant obtained was concentrated 
in a rotary evaporator, and then, precipitated 
with 95% ethanol for overnight (1: 3, v/v) at 
4 °C. The supernatant was deproteinated with 
absolute alcohol, acetone and ethyl ether. The 
supernatant was lyophilized to give about 1.25 
g of crude acid anemaran (AA). (18-20).

Purification of polysaccharide 
500 mg of the dried powders of crude 

polysaccharides (NA and AA) were redissolved 
in deionized water and forced through a filter 
(0.45 μm), then applied to a column (2.6 × 50 
cm) of DEAE-Cellulose A52. After loading with 
sample, the fractions was eluted with gradient 
NaCl aqueous solution (0, 0.1, 0.3 and 0.5 
mol/L) at a flow rate of 9 mL/h. Fractions of 5 
mL were collected and monitored by the phenol-
sulfuric acid method at 490 nm, using glucose as 
standard (22, 23). Five different polysaccharide 
fractions, coded NA-1, NA-2, NA-3, AA-1 and 
AA-2 were obtained.

Fourier transform infrared (FT-IR) 
spectroscopy

FT-IR spectra of the samples were recorded 
with an IR spectrometer (Bruker Tensor 27) 
using potassium bromide (KBr) disks prepared 
from powdered samples mixed with dry KBr in 
a ratio of 1:100 in the frequency range 4000~400 
cm−1.

Scanning electron microscope (SEM)
The anemarans and their purified fractions 

were detected by a scanning electron microscope 
(ESEM Philips XL-30) for morphological 
features. The dried samples that passed 200 
meshes sieve, were fixed on a glass plate then 
gold powder was spread uniformly to make the 
sample conductive for the determination. An 
accelerating potential of 20kV was used during 
micrography.

Growth inhibition of HepG2 cells
The inhibition effects of anemarans on the 

growth of HepG2 cells were evaluated in-
vitro by the 3-(4, 5-dimethylthiazol-2-yl)-2, 
5-diphenyltetrazolium bromide (MTT) dye 
reduction assay (M8180, Solarbio, China). 
Briefly, the HepG2 cells were seeded at a density 
of 1.0×105 cells/ml into 96-well plates in a culture 
RPMI 1640 medium containing 10% FBS and 
in standard incubator conditions (37ºC, 5% 
CO2). After 24 h, the cultures were washed and 
treated with the absence or presence of 100 μL 
of anemarans (1 mg/mL, 0.5 mg/mL, 0.1 mg/mL 
and 0.05 mg/mL) for 24 h. And then, 10 μL of 
MTT solution (5 mg/mL) was added to each well 
and incubated for 4 h. 100 μL/well of DMSO 
were added to stop the reaction. The absorbance 
at 490 nm was measured using ELISA reader 
(Bio-Tek EL 800, USA) after culture medium 
was removed (21).

Growth inhibition rate (%) = (1−Absorbance 
of experimental group/Absorbance of blank 
control group) × 100%.

Glucose consumption assay
Glucose consumption assay was used for 

determining hypoglycemic effect. HepG2 cells, 
the human hepatocarcinoma cell line were 
seeded in 96-well microplate with density of 
105 cells per well and maintained in RPMI 1640 
medium containing 10% fetal calf serum with 
5% CO2 at 37 ºC overnight before treatment. 
Subsequently, HepG2 cells were incubated 
with or without insulin (2×10-6 mol/L) for 16 
h, washed once with serum-free medium for 20 
min, and then treated with the polysaccharide 
fractions at different concentrations (1, 0.5, 
0.1 and 0.05 mg/mL) in the presence of 2×10-

6 mol/L insulin for 24 h (15, 16). The glucose 
concentrations in cell culture supernatant of each 
group were determined by Glucose assay kit at 
505 nm (Rongsheng, Shanghai) following the 
manufacturer’s instruction. Hypoglycemic effect 
was expressed as glucose consumption.

Statistical analysis 
All assays were carried out in triplicates 

and the results were expressed as mean ± SD. 
Statistical analysis was performed using one-
way ANOVA followed by Duncan multiple 
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comparison test according to the SPSS 17.0 
system. A probability of p < 0.05 was considered 
significant. 

Results and Discussion

Optimization for extraction of neutral and 
acid anemaran

The effect of variation of four parameters, 
isolation duration, temperature, the ratio of 
residuals to water and extracting times on neutral 
and acid polysaccharide yields were investigated 
in this study (Figure 1, 2). 

The effects of different temperatures of 60, 
70, 80, 90 and 100ºC on polysaccharides (NA 

and AA) yields are shown in Figure 1a and 
Figure 2a. With temperature increasing, the yield 
of crude polysaccharides increased until 90ºC for 
NA (Figure 1a). Therefore, 90ºC was selected 
as the centre point of extracting temperature in 
this experiment as higher temperature would 
cause energy waste and decrease the yield. This 
could be due to the fact that higher temperature 
might cause degradation of anemaran (24, 
25). However, it is observed that the yield 
of AA increased from 9.2% to 32% with the 
temperature increasing from 60 to 100 ºC. The 
yield of polysaccharides obtained at 90 ºC was 
significantly higher than that obtained at 60, 70 
and 80ºC, but not significantly different from 
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Figure 1. Effects of temperature, time of extraction, ratio of residual water and reaction durations on NA yield. Results 
were presented as means ± SD (n = 3).
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Figure 2. Effects of temperature, time of extraction, ratio of residual water and reaction durations on AA yield. Results were presented 
as means ± SD (n = 3).
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elution profile (Figure 3). All the fractions of 
NA and AA appeared as white powders. They 
had no absorption at 280 or 260 nm in the UV 
spectrum, indicating the absence of protein and 
nucleic acid. After NA fractionation on DEAE–
cellulose 52 anion-exchange column, NA-1 
(166.9 mg), NA-2 (100 mg) and NA-3 (16.8 
mg) were obtained from 0 mg/L, 0.1 mg/L and 
0.3 mg/L NaCl elution, respectively (Figure 3a). 
In a similar manner, a lyophilized fraction of 
polysaccharides AA was chromatographed on 
a DEAE Cellulose-52 anion-exchange column 

to yield two peaks, AA-1 (98.2 mg) and AA-2 
(180 mg) (Figure 3b). However, there were no 
absorbance for 0.1 mol/L NaCl elution of NA, 
and 0.1 and 0.5 mol/L NaCl elution of AA, 
respectively. It is reported that the concentration 
of sample, elution rate and exchange capacity of 
the chromatography column was closely related 
to separation effect (14, 18).

FT-IR analysis
FT-IR spectrum of NA, AA and their purified 

fractions are shown in Figure 4-1, 2. The FT-IR 
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Figure 3. Elution curve of polysaccharide fractions in DEAE–cellulose 52 anion-exchange column purified by different concentrations 
of NaCl aq. A: NA (1, 2 and 3); B: AA (1 and 2) (-●- Absorbance at 490 nm .... NaCl gradient). 
NA: Neutral Anemaran; AA: Acid Anemaran. 
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spectra of NA and AA were found to be similar. 
The band between 3600 and 3300 cm−1 (NA: 
3419 cm−1, and AA: 3444 cm−1) represented 
the stretching vibration of polysaccharide 
glycoside hydroxyl. The small band at around 
2933 cm−1 was associated with stretching 
vibration of C–H in the sugar ring (26). The 
peak at around 1745 cm-1 and the weak one at 
near 1377 cm-1 of NA were different from that 
of AA. The two peaks above were indicative 
of the presence of carboxyl groups, which 
indicated the characteristic FT-IR absorption 
of uronic acids (27, 28). The bands at 1649 

cm−1 (Figure 4-1d) and 1652 cm−1 (Figure 4-2c) 
displayed the –CHO stretching vibration or 
N–H deviational vibration of protein; peak at 
1423 cm-1 displayed C–O stretching vibration 
of galacturonic acid. The absorption peak 
at about 1627 cm−1 was due C=O stretch of 
carboxylic anions (salt) of galacturonic acid. 
A hydration peak of polysaccharide at 873 
cm-1 indicated that NA-1 and NA-3 contained 
the β-glycosidic linkage (25, 29). Therefore, 
β-galactan was mainly observed in NA-1 and 
NA-3. However, there is no absorption at 4000 
cm−1 and 400 cm−1 in NA eluting with 0.3 mol/L 
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(d): AA-1(1000×); (e): AA-2 mol/L (500×); (f): AA-2 (1000×). 
AA: Acid Anemaran.

NaCl aqueous solution and AA eluting with 0.3 
mol/L NaCl aqueous solution. 

SEM analysis
The SEM photographs of NA, AA and their 

different fractions are shown in Figure 5-1, 2. 
Crude NA anemaran exhibited large irregular 
non-homogeneous lumps with cracks and 
particle on the surface of the granules. 
However, the crude AA displayed polygonal 

2
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or irregular shape with no cracks. NA-1, 
NA-2 and NA-3 fractions compared with 
crude NA showed significant variation in size 
and shape when viewed by SEM. The size 
became smaller and fewer particles adhered 
to the granules with concentrations of NaCl 
aqueous solution increasing from 0-0.5 mol/L 
for NA. The similar phenomenon occurred in 
AA. 

In-vitro growth inhibition of HepG2 cells 
The cytotoxicity (growth inhibition) of 

NA and AA was evaluated in HepG2 cells 
after treatment of the cells with increasing 
concentrations (0.05, 0.1, 0.5 and 1 μg/mL) 
of samples using MTT assay against blank 
control groups (Table 1). With concentration 
ranging from 0.05 to 0.5 μg/mL, NA did not 
significantly inhibit the growth of HepG2 
cells. Furthermore, the effect of NA at 
concentration of 1μg/mL was not detected. 
AA did not significantly exhibit inhibition 
ratios when the concentrations varied from 
0.05 to 0.1 μg/mL with inhibition ratio 
of 0.0027%~0.0192%, which was higher 
than that of NA. Anemaran and steroidal 
saponins of Rhizome Anemarrhena have 

been identified as the active components 
responsible for hypoglycemic action and anti-
tumor effects (5-9). However, most studies 
merely focused on the cytotoxicity of the 
Rhizome Anemarrhena extracts and little 
information regarding the cytotoxicity. We 
have successfully identified that the fractions 
of NA and AA did not significantly inhibit the 
growth of HepG2 cells.

Glucose consumption assay
Complicated metabolic disorders cause 

diabetes with high blood glucose level. The 
secretion of insulin may decrease with a 
decrease in pancreatic β cell mass or function 
disturbances of β cells (30). The liver cells are 
more resistant than the muscle tissue and the 
fats. Insulin resistance in liver cells results in 
impaired glycogen synthesis and a failure to 
suppress glucose production (31). So, we used 
HepG2, a human hepatoma cell line, with 
high concentration of insulin (2×10-6 M) to 
establish an insulin-resistant cell model, which 
expressed an insensitive response to normal-
concentration insulin (10-9 M). Table 2 showed 
high-concentration insulin-treated HepG2 
cells suffered an obvious glucose consumption 

Treatment Concentration 
(μg/mL)

Growth inhibition 
rate (%)

Normal Control − 0

NA

1 nd

0.5 0.0092 ± 0.0004

0.1 0.0162 ± 0.0024

0.05 0.017 ± 0.0018

AA

1 nd

0.5 nd

0.1 0.0192 ± 0.0016

0.05 0.0027 ± 0.0032

Table 1. Growth inhibition and hypoglycemic effect of two 
anemarans fractions against HepG2 cells in-vitro. 

nd: not detected 
Values are mean ± SD of three replicates. Control cells were 
incubated with medium alone. 
The result was expressed as glucose consumption. ap < 0.01: 
normal control (without insulin and anemaran treatment); *p < 
0.05: Diabetic control (without anemaran treatment). 

Treatment Concentration 
(μg/mL)

Glucose consumption 
(mmol/L)

Normal Control 0 6.82±0.24

Diabetic Control 0 4.35±0.05

NA 1 6.43±0.98*a

0.5 6.03±0.29*a

0.1 5.66±1.01*a

0.05 5.38±0.84

AA 1 5.33±0.87

0.5 4.73±0.12

0.1 4.47±0.18

0.05 4.39±0.13

Table 2. Hypoglycemic effects of anemarans were evaluated 
by sensitivity assay of NA and AA to exogenous insulin in 
insulin-resistant HepG2 cells.

 ap < 0.01: normal control (without insulin and anemaran 
treatment); *p < 0.05: Diabetic control (without anemaran 
treatment).  
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decrease compared with the normal cells (ap < 
0.01), indicating the insulin-resistant model 
was simulated successfully in-vitro. After 
the liver cells were treated with NA and AA 
for 24 h, the glucose consumption increased 
at the concentrations from 0.05 to 1 μg/mL. 
The results suggest that NA can increase the 
glucose consumption significantly of insulin-
resistant cells compared with the model 
control cells (*p < 0.05). Insulin-resistant 
cells were more sensitive to NA than to the 
AA. However, the purified fractions of NA 
and AA have no hypoglycemic activity in-
vitro. It has been reported that anemarans A, 
B, C and D and many other polysaccharides 
could decrease of blood glucose in-vivo (1). 
However, the total neutral anemarans showed 
significant hypoglycemic activity, which is 
different from the results reported above (1). 

Conclusions

Previous studies have indicated that 
anemarans A, B, C and D show hypoglycemic 
effect. In this study, the isolation process of 
anemarans was investigated and the optimum 
isolation condition of extracting anemarans 
from Rhizome Anemarrhena was obtained. 
Neutral and acid anemarans nearly did not 
inhibit growth inhibition of HepG2 cells. It 
was demonstrated that neutral anemarans 
(NA) exhibited higher hypoglycemic effect 
than acid anemarans (AA). According to 
our purification experiment, five different 
polysaccharide fractions, NA-1, NA-2, NA-3, 
AA-1 and AA-2, were obtained. SEM result 
showed that neutral fractions, NA-1 and AA-1 
have smaller particles adhered to the granule 
surface than acid fractions. According to 
FT-IR, the peaks at about 873 cm-1 revealed 
β-galactan mainly observed in NA-1 and NA-
3. Further investigations need to be carried 
out to check the activity of each fraction of 
purified anemaran. 
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