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Abstract

Background: The cellular mesenchymal-epithelial transition (c-Met) receptor, a member of the receptor tyrosine kinase
family, is a novel therapeutic target for treating many cancers, including stomach cancer. Overexpression of c-Met and/or high
levels of hepatocyte growth factor (HGF) correlate with poor prognosis. Statins, as LDL-lowering agents, are exploited to obtain
anti-cancer effects via a wide range of pleiotropic effects.

Objectives: The present study aimed to discover the most effective statin as a c-Met signaling inhibitor through
computational and experimental approaches.

Methods: Two main computational approaches, i.e., machine learning (ML) model and molecular dynamics (MDs) simulation,
were followed by cytotoxicity, flow cytometric analysis, and western blot assay on AGS and MKN-45 gastric cancer cells.

Results: The machine learning section was founded on developing tree-based classification algorithms to predict the
biological activities of the proposed statin structures as c-Met receptor inhibitors. In the second step, molecular docking and
MD simulation were utilized to estimate the biomolecular interactions. The proposed classification models reveal that all
structures have more than 200 nM biological activities. Machine learning led the experiment to find fluvastatin and pitavastatin
as the two compounds with the highest inhibitory effects. In cell-based assays, both tested statins exhibited cytotoxicity and
induced apoptosis, accompanied by sub-G1 accumulation in gastric cancer cells. However, no significant reduction in c-Met
phosphorylation was observed by western blot.

Conclusions: No relation between the statins’ inhibitory effect and the c-Met pathway on cancerous cells could be reported.

Keywords: Boosting Machine Learning Algorithms, Molecular Docking Simulation, Molecular Dynamics Simulation, Stomach
Neoplasms, Proto-oncogene Proteins c-Met, Hydroxymethylglutaryl-CoA Reductase Inhibitors
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1. Background development, including gastrointestinal cancers (1).
Triggered by HGF, this signaling pathway is engaged in

The cellular mesenchymal-epithelial transition (c- essential cellular processes such as growth,

Met) factor, also known as the hepatocyte growth factor differentiation, metabolism, and apoptosis. However, its
(HGF) receptor, plays a crucial role in tumor  deregulation and the ensuing activity of downstream
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signaling cascades, including RAS-MAPK, PI3K-Akt, NF-kB,
and Wnt/GSK-3B/B-catenin, contribute to cancerous
progression, metastasis, and drug resistance (2, 3).
Targeting the HGF/c-Met axis through small-molecule
inhibitors is considered a promising therapeutic
approach to hinder cancer progression (4, 5).

Gastric cancer is one of the most common cancer
types globally (6). Standard treatment options include
surgery, chemotherapy, and targeted therapy (7).
Despite these multimodal therapies, the prognosis
remains poor, leading to high mortality rates.
Overexpression of the c-Met receptor has been
attributed to poor prognosis in 22 - 82% of gastric
cancers (8). Therefore, targeting the c-Met signaling
pathway presents a potential strategy to improve gastric
cancer treatment (9).

Statins, as HMG-CoA (HMGCR) agents, obtain anti-
cancer effects possibly due to a wide range of
pleiotropic effects contributing to treating neurological
pathological conditions, inflammation, and even
tumors (2). From a mechanistic perspective, HMGCR
inhibition prevents mevalonate production, resulting in
the blockage of isoprenoids such as geranylgeranyl
pyrophosphate (GGPP1) and farnesyl pyrophosphate
(FPP), which are responsible for post-translational
modifications (prenylation) of G-protein subunits of
RAS, RHO, RAB, RAC, and RAP. The aforementioned
subunits are involved in cell membrane integrity,
apoptosis, phagocytosis, vascular trafficking, and
protein  synthesis (10). Additionally, increased
cholesterol synthesis and fatty acid metabolism have
been attributed to tumor progression, and statin
therapy may counteract this by inhibiting aberrant cell
division (11). Besides, the purine-mimicking structure of
small molecules, including statins, may directly block
the ATP-binding site of the c-Met receptor (3, 4).
Lipophilic statins have previously demonstrated higher
cellular permeability and, therefore, greater onco-
suppressive capacity compared to hydrophilic statins.
However, recent studies suggest that the tumor-
suppressive effects of statins depend on various factors,
including the molecular and histopathological
characteristics of tumor cells. Notably, the
administration of statins before cancer diagnosis has
been associated with the improvement of therapeutic
outcomes (11).

Drug discovery is a massively time-consuming, high-
risk, and high-priced process (12, 13). Thus, drug
repositioning was proposed to reuse existing drugs for a

never-considered therapeutic indication. In a crisis like
the COVID-19 pandemic, drug repositioning provided a
considerable service by using existing drugs for new
purposes. For instance, hydroxychloroquine, remdesivir,
and ritonavir have been used in different therapeutic
indications as antiviral agents (14-15). Besides, in vitro
experiments of clinical studies contributed to successful
results in the COVID-19 pandemic (15). As Dulak and
Jozkowicz suggested, statin drugs play a remarkable
role in preventing cancer progression by targeting the
blood vessel formation of solid tumors. Even though
statins are largely cholesterol-lowering medicines, they
are proven anti-cancer agents (16). Hence, this study
investigated these proposed statin structures via
computational approaches, i.e., machine learning (ML)
classification and molecular dynamics (MD) simulation.
Primarily, the models establish a quantitative
relationship between the chemical structure features of
a series of molecules and their biological activities
observed in wet laboratory experiments. Recently,
several manuscripts utilizing ML modeling have been
published. For example, Rajan et al. attempted to
develop an ML-powered method that identifies tumor
microenvironment (TME) features as predictors of c-Met
overexpression status (17). Cruz-Cortes et al. also utilized
ML as a general platform for identifying off-target
interactions. The applicability of this approach extends
to drug discovery, studying statins as inhibitors of the
calcium pump SERCA (18). Torabi et al. employed tree-
based models to classify and identify potential
inhibitors targeting EGF receptors, integrating feature
selection, molecular docking, and experimental
validation to enhance predictive accuracy and expedite
drug discovery (19). Similarly, Arabi et al. utilized tree-
based models to identify inhibitors of VEGF receptors,
implementing advanced classification techniques,
molecular docking, and validation experiments to
improve precision and accelerate the discovery process
(20).

2. Objectives

This study applies ML to simulate c-Met receptor
inhibitors, with a particular assessment of the
propensity of statin groups to inhibit. LightGBM was
used for its effectiveness in handling big data, quick
training rate, and high classification accuracy,
surpassing other tree-based models by minimizing
overfitting and enhancing prediction performance.

3. Methods
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Table 1. The Number of Inhibitor/Weak Inhibitor/Neutral Molecules Used in the Classification Model

Dataset Standard Value Number Compound Number of Inhibitor Molecules Number of W/N Molecules
Foretinib 0.019 549 306 243
Crizotinib 0.0137 306 m 195
Cabozantinib 0.037 124 44 80
Total 979 461 518

Abbreviation: W/N, weak inhibitors/neutral.

3.1. Machine Learning Step

3.1.1. Molecular Data Preprocessing

During the literature review of c-Met inhibitors, we
identified three approved drugs, namely cabozantinib,
crizotinib, and foretinib, which exhibit inhibitory
effects on the HGF receptor. These drugs were
considered crucial compounds and served as positive
control groups in our laboratory tests. To develop our
ML model, we obtained all tested molecules from
PubChem, including those directly associated with the
mentioned drugs as positive control groups. Since most
of the proposed inhibitors were evaluated using various
concentrations of the positive control group in wet-
laboratory experiments, the IC;, values were
standardized by aligning them with the maximum
value reported in multiple articles. Due to the large
number of reported values across multiple articles, the
detailed data has been moved to the Appendices 1and 2
in the Supplementary File. The IC;, values of other
related compounds were scaled using the same ratio
(Equation1).

Equation 1.

Normalized ICsy compound
max(IC5y standard drug) > )

= ICyy compound X
IC50 standard, article

Accordingly, normalized IC;, compound indicated
the adjusted IC;, value of the compound after

normalization to ensure consistency across different
sources. IC;q compound refers to the original IC;, value

of the compound before normalization. Moreover, max
(IC5q standard drug) refers to the maximum IC;, value

of the standard drug, as reported in Table 1, which is
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used as a reference for normalization. IC;, standard,
article expresses the IC;, value of the standard drug
reported in each specific article, used to scale the IC5,
values of all compounds within that study.

Subsequently, the activity of the molecules was
normalized, and they were categorized into two distinct
groups based on predefined cutoffs: Inhibitors (IC5q <

200 nM) and weak inhibitors/neutral (W/N) compounds
(ICsp > 200 nM). The resulting processed dataset

consisted of 980 unique compounds, as outlined in
Table 1.

In the subsequent steps, two distinct sets of
molecular descriptors were generated using open-
source packages, namely Mordred and RDKit. These
packages were utilized to compute structural
descriptors such as MORGAN and MACCS fingerprints
and physicochemical descriptors. Mordred is a
molecular descriptor calculator that generates 2D and
3D descriptors, while RDKit is an open-source
cheminformatics toolkit for molecular processing and
fingerprint generation. MORGAN, an ECFP-like circular
fingerprinting method in RDKit, is used for similarity-
based screening, whereas MACCS employs structural
key-based fingerprints to encode predefined
substructures for molecular similarity assessment. The
total number of calculated descriptors can be found in
Table 2, along with references to the respective sources
(https:|/github.com/mordred-descriptor/mordred,
https://[www.rdkit.org/; version 2020.03.1).

As it is well known, the inclusion of redundant
variables in ML models can lead to the problem of
overfitting and result in a decrease in overall classifier
accuracy. Therefore, selecting an appropriate feature
selection method in data science is crucial. Additionally,
many variables in a model can significantly increase its
complexity. Consequently, implementing a variance
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Table 2. The Number of Molecular Descriptors

Types

Number

Physicochemical
Mordred
Rdkit

Structural
MORGAN

MACCS

threshold is an essential baseline approach for feature
selection. By removing features that fail to meet a
specified threshold of variance, it is assumed that
features with higher variance contain valuable
information, thus ensuring the utilization of a more
practical feature set for the model.

3.1.2. Tree-based Classification

In this study, we propose using a tree-based classifier
algorithm. Tree-based algorithms are a prevalent family
of supervised learning algorithms renowned for their
versatility in addressing classification and regression
tasks. These algorithms leverage the inherent tree
structure and its various combinations to tackle specific
problem domains effectively; notably, XGBoost,
CatBoost, LightGBM, Extra Trees, and Random Forest
have emerged (21). The performance evaluation of
classification algorithms commonly involves using the
Stratified K-Fold validation method. This technique is
particularly valuable when there is a need to balance the
percentage of each class in both the training and testing
datasets. Compared to regular K-Fold validation, the
critical advantage of Stratified K-Fold is its ability to
ensure that each batch of data used for training and
testing maintains an equivalent proportion of
observations concerning a specific label. Once we
identify the best-performing classification model and
acquire reliable datasets, we evaluate the potential of
statin compounds as inhibitors of the c-Met receptor. By
inputting all the statin compounds into the model, we
aim to predict their ability to inhibit the c-Met receptor
(22).

3.2. Molecular Docking

Molecular docking was performed to demonstrate
the molecular interactions and prepare input files for

1436

174

921

121

further processing. Three-dimensional structural data
of c-Met was obtained from the Protein Data Bank (PDB)
as a 4XMO PDB file. Removing water and ligands
attached to the PDB file and adding hydrogen atoms
were done using PyMol 2.3.3 (PyMOL Molecular Graphics
System, Version 2.0, Schrodinger, LLC). The 3D
conformers of fluvastatin and pitavastatin ligands were
downloaded from the www.pubchem.ncbi.nlm.nih.gov
website. Ligands were geometry optimized via Gaussian
03 (23). Output PDB files were hydrogenated with the
Chimera 1.14 software to be utilized as Autodock 4.2.6
inputs (24, 25). The residues, including M1160, Mi211,
D1222, M1229, Y1230, V1092, and Y1159, were selected as
flexible residues in the active site of the c-Met protein.
The protein’s active site was defined as a grid box with
126 X126 x 126 points and 0.179 A spacing. The resulting
GPF and DPF files generated 500 dock conformation
numbers using the Lamarckian genetic algorithm. The
conformation with the lowest binding energy of each
ligand was selected as the input file for MD simulation.

3.3. Molecular Dynamics Simulation

The most stable conformation of each protein-ligand
complex was simulated using GROMACS 5.1.2 for 25 ns by
GAFF and AMBERO3 force fields for protein and ligand
molecules, respectively (26, 27). The system was centered
in a cubic box solvated with TIP3P water molecules, and
the distance between the solute and the box was set to 1
nm (28). The steepest descent algorithm was applied for
energy minimization (29). The maximum gradient was
set to 1000 kJ/mol/nm to avoid defective geometry and
remove incorrect contacts. Two equilibration phases
were considered in NVT and NPT ensembles for 300 ps.
The Berendsen thermostat was used for temperature
coupling at 300 K (30). Pressure coupling was
accomplished by the Parrinello-Rahman barostat at 1 bar
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pressure (31). Long-range electrostatic interactions were
computed by the particle mesh Ewald algorithm (32).
The production MD run was performed for 25 ns. The
integration time step was two fs, and the coordinate
trajectories were recorded every 20 ps. VMD 19.2
visualizer was used to assay the trajectory files (33).
Finally, structural analysis of secondary structure,
radius of gyration, hydrogen bond, root-mean-square
fluctuation, root-mean-square deviations, and solvent-
accessible surface area was performed.

3.4. Chemicals and Reagents

Fluvastatin and pitavastatin were obtained from
Sigma-Aldrich (St. Louis, MO, USA). Dimethyl sulfoxide
(DMSO) was from Merck (Darmstadt, Germany). RPMI
1640, penicillin-streptomycin, and trypsin EDTA were
provided by Biosera (East Sussex, UK). Fetal bovine
serum (FBS) was bought from Biowest (Nuaille, France).
MTT [3<(4,5-dimethylthiazol-2-yl)-2,5-diphenyl
tetrazolium bromide] was obtained from Carl-Roth
(Germany). Antibodies against Met, p-Met, ERK, and p-
ERK were purchased from Cell Signaling Technology, Inc.
(Danvers, MA, USA). Akt and p-Akt antibodies were from
BioLegend (USA).

3.5. Cell Cytotoxicity Evaluation

Human gastric cancer cell lines, AGS and MKN-45,
which exhibit c-Met expression, were purchased from
the Pasteur Institute (Tehran, Iran) and IBRC Cell Bank
(Tehran, Iran), respectively. AGS cells were maintained in
RPMI medium supplemented with 10% heat-inactivated
FBS and 1% penicillin-streptomycin at 37°C under a 5%
CO, atmosphere. Regarding MKN-45, cells were cultured

in RPMI medium with 20% heat-inactivated FBS and 1%

penicillin-streptomycin solution. Cells (6 x 10%) were
seeded in 96-well plates and incubated overnight.
Thereafter, the cells were treated with specific
concentrations of fluvastatin (0, 3.125, 6.25, 12.5, 25, 50,
100, 200, and 400 pM) and pitavastatin (0, 1.56, 3.125,
6.25,12.5, 25, 50,100, and 200 uM) for 48 h. To ensure the
inclusion of non-adherent cells in the case of semi-
adherent MKN-45 cells, the 96-well plate was centrifuged
before treatment and absorbance measurement.
Subsequently, the medium was replaced with a 20 pL
MTT solution [5 mg/mL in phosphate-buffered saline
(PBS)]. Three hours after incubation, formazan crystals
were dissolved in 100 uL DMSO, and then optical density
at 570/690 nm was measured by an ELISA reader

Iran ] Pharm Res. 2025; 24(1): 158845

(Anthos, UK) (34). The cell viability was calculated using
the following Equation 2 (35).
Equation 2.
Mean OD sample

% Cell viabillity = Hoor OD blank x 100 @)

3.6. Cell Cycle Analysis

AGS and MKN-45 cells were seeded in 6-well plates
and treated with fluvastatin (200 and 400 pM) and
pitavastatin (100 and 200 uM) for 48 h. After
trypsinization, cells were washed with cold PBS. Fixation
of the cells was performed by suspending cells in cold
ethanol (70%) at 4°C for two hours. After centrifugation,
500 pL of propidium iodide (PI) solution (36) was added
to the sample pellet and incubated in a dark
environment at room temperature for 30 minutes. The
FACSCalibur flow cytometer (BD Biosciences, San Jose,
CA, USA) quantified the DNA content, and the result was
analyzed with FlowJo 7.6.1 software (Tree Star, Inc.,
Ashland, OR, USA).

3.7. Cell Apoptosis Assay

AGS and MKN-45 cells were treated with fluvastatin
(200 and 400 uM) and pitavastatin (100 and 200 uM) for
48 h to detect the degree of induced apoptosis. After the
incubation time, cells were harvested, washed twice
with pre-cooled PBS, and stained with 5 pL of Annexin V-
fluorescein isothiocyanate (FITC; Invitrogen, USA) and PI
(2 pg/mL; Sigma) for 15 min at room temperature in the
dark. Subsequently, the apoptosis of the cells was
examined using a FACSCalibur flow cytometer (34).

3.8. Western Blot Analysis

MKN-45 (12 x 10%jwell) and AGS cells (15 x 10%/well)
were seeded and incubated for 72 h. Then, cells were
treated with increasing concentrations of fluvastatin
and pitavastatin for 16 h. After exposure, the cells were
lysed with lysis buffer (37), resolved on 10% SDS-PAGE,
and transferred to the PVDF membrane (Roche,
Mannheim, Germany) using a wet transfer system. In
the next step, membranes were blocked with 5% skim
milk (%w|v) in TBST (1X) buffer for 1.5 h on a shaker at
room temperature. Primary antibodies were prepared
in 5% bovine serum albumin (BSA), added to the
membrane, and incubated overnight at 4°C on a shaker.
After washing the membrane with TBST, membranes
were incubated with horseradish peroxidase-
conjugated secondary antibody (Roche) for one hour.


https://brieflands.com/articles/ijpr-158845

Ahmad Alizadeh E et al.

Brieflands

Catboost_macss_ =
Catboost_morgan_
Catboost_RdKit_
Catboost_mordred_
Extra tree_macss_

Extra tree_morgan_
Extra tree_RdKit_

Extra tree_mordred_
Lightgbm_macss_
Lightgbm_morgan_
Lightgbm_RdKit_
Lightgbm_mordred_
Random forest_macss_
Random forest_morgan_
Random forest_RdKit_
Random forest_mordred_
Xgboost_macss_
Xgboost_ morgan_
Xgboost_RdKit_
Xgboost_mordred_

Catboost_morgan.
Catboost_RdKit.
Extra tree_macss_
Extra tree_morgan.
Extra tree_RdKit.

Catboost_macss_
Catboost_mordred.

- 08

0.4

0.2

Extra tree_mordred
Lightgbm_macss.
Lightgbm_morgan.
Lightgbm_RdKit.
Lightgbm_mordred.

Random forest_macss_
Random forest_morgan,
Random forest_RdKit.
Random forest_mordred.
Xgboost_macss.
Xgboost_morgan.
Xgboost_RdKit.
Xgboost_mordred.

Figure 1. Statistical analysis of the results via the t-test method
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Figure 2. Akaike coefficient values for different tree-based models according to the different molecular fingerprint categories as an input machine learning (ML) model

Finally, the membranes were developed with a
chemiluminescence detection system. The quantitative
evaluation of the protein bands was accomplished via
Image] software and normalized to the corresponding
total protein band intensity.

3.9. Statistical Analysis

The data obtained were represented as the mean *
standard deviation (SD). Tukey post-hoc test was applied
to compare various treatment groups using GraphPad
Prism version 5.01 (San Diego, CA). P-values < 0.05 were
defined as statistically significant values.

4. Results and Discussion
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different molecular fingerprints. As displayed,

4.1. Machine Learning Step

4.1.1. Model Evaluation

The calculated molecular descriptors and their
corresponding activity statuses were divided into ten
batches to determine the optimal classification model
for evaluating statin compounds. Each iteration
involved using one batch as the test data, while the
remaining batches were utilized for training and
validating the model using the Stratified K-Fold
technique. This approach ensured a comprehensive
assessment of the model's performance. Two statistical
methods were employed to ensure reliable
comparisons: The t-test and Akaike's Information
Criterion. The ttest assumes that the standard
deviations of the two populations being compared are
identical. On the other hand, Akaike’s information
criterion involves comparing the likelihoods of variable
models to detect a better fit to the empirical data.

4.1.2. Investigating Proposed Classification Performance

The t-test method (Figure 1) was utilized to perform
statistical analysis on the results, with the color
indicating the significance value. Based on the t-test
results, the CatBoost classification algorithm exhibited
significantly lower performance than similar
algorithms.

Besides, the absolute Akaike coefficient was
considered to investigate model performance precisely
(Figure 2). As displayed, the LightGBM algorithm
demonstrated superior performance compared to other
models.

In the final step, Figure 3 presents the accuracy of all
proposed tree-based algorithms based on the four

Iran ] Pharm Res. 2025; 24(1): 158845

LightGBM performs the best compared to other
methods.

CatBoost and LightGBM are both gradient boosting
models, but they differ in how they handle categorical
variables and training efficiency. CatBoost focuses on
encoding categorical features to prevent overfitting,
while LightGBM, on the other hand, uses a histogram-
based approach and leaf-wise growth strategy, making it
significantly faster and more efficient in large datasets.
LightGBM outperformed CatBoost in this research,
owing to its capacity for high-dimensional molecular
descriptors, reduced training time, and better
generalization, resulting in enhanced classification
efficacy.

As shown in Figure 4, to further improve model
interpretability, we analyzed feature importance using a
SHAP summary plot for the LightGBM model using
RDKit descriptors. The top five most influential features
were SlogP-VSA8 (lipophilicity), fr-bicyclic (bicyclic
structure presence), PEOE-VSA7 (electronic property),
maximum E-State Index (max E-State Index), and fr-
pyridine (pyridine ring presence). These molecular
descriptors were key to distinguishing inhibitors and
W|N compounds, showing their importance in active
compound discrimination in drug discovery.

Considering both statistical methods, LightGBM
emerged as the final algorithm of choice for classifying
the physicochemical descriptors of the statin
compounds.

4.1.3. Investigating the Proposed Statin Structures by the
Proposed Model

Upon completion of the ML phase, we can
confidently assert that the model’s performance was
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Figure 4. SHAP summary plot highlighting key molecular descriptors influencing LightGBM’s classification of inhibitors and W/N compounds

Table 3. Statin Compound Results

Statins Number of Weak Inhibitors Predicted Probability Class Inhibitor Probability Class Weak Inhibitor
Pravastatin 50 0.2878 0.7122
Pitavastatin 50 03068 0.6932
Fluvastatin 50 0.3378 0.6622
Lovastatin 50 0.2674 0.7326
Cerivastatin 50 0.2698 0.7302
Simvastatin 50 0.2612 0.7388
Atorvastatin 50 0.2612 0.7388

reliable in determining the structural viability of statin
compounds as potential c-Met inhibitors. The modeling
process was repeated 50 times to ensure the reliability
of the accuracy of our findings. These repeated
iterations enhanced the precision of the model's
predictions on statin compounds and mitigated any
biases that could impact the results.

During each modeling iteration, we meticulously
examined the model’s probability estimation regarding
the inhibitory characteristics of a given compound. By

assessing the inhibitory probabilities of the compounds
across multiple repetitions, we obtained a
comprehensive overview of their potential for
inhibition. To effectively present these results, we
calculated the average inhibition rate for each
compound based on its performance in consecutive
repetitions. This average inhibition rate is a valuable
metric for assessing the compound's overall probability
of exhibiting inhibitory activity.

[ran ] Pharm Res. 2025; 24(1): e158845
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We compiled all relevant information in Table 3 to
consolidate our conclusions and provide a clear
overview of the predicted inhibition probabilities. This
table showcases the compounds’ average inhibition
rates, offering valuable insights into their potential as
novel c-Met inhibitors. The thorough repetition of the
modeling process and subsequent analysis of average
inhibition rates have bolstered the reliability of our
model's predictions in this context.

4.2. Molecular Docking

Based on the ML results, two statin compounds,
pitavastatin and fluvastatin, were selected for the
molecular docking study. Due to the hydrophilicity of
pravastatin and research around the anti-cancer
property of pravastatin, fractional growth-inhibitory of
this ligand has been reported, which led us to choose
fluvastatin over pravastatin (38). The most stable
position of each molecular docking was selected as an
input file for MD simulation. The aforementioned
binding energies are -5.3 and -4.9 k]/mol for pitavastatin
and fluvastatin, respectively.

4.2.1. Molecular Dynamics Simulation

The MD simulation was utilized to exhibit the
molecular interactions at the protein-ligand complexes
and evaluate the binding mode (Appendix 1 in
Supplementary File). The backbone root mean square
deviation (RMSD) analysis investigates the stability of a
system and its conformational behavior. The RMSD value
of fluvastatin leveled off at 0.2 nm from nearly 20 ns
until the end of the simulation, whereas the RMSD value
of pitavastatin stood at about 0.2 nm from 8 ns to 25 ns
of simulation (Figure 5A).

The RMSF analysis represents the average fluctuation
of protein residues compared to its RMSF over MD
simulation time. The RMSF value of the fluvastatin
complex showed that residues 5 to 15, 185 to 195, and 295
to 300 had the highest fluctuations (0.3 £ 0.2 nm), while
the majority of residues fluctuated at about 0.6 nm. In
addition, the preponderance of pitavastatin complex
residues fluctuated at about 0.6 nm, while residues
from 295 to 300 had the highest fluctuations at 0.34 nm
(Figure 5B).

The radius of gyration is a rough measure of the
compactness of a protein structure. A low radius
represents a stable and folded system. According to the
data, both complexes exhibited slight compactness,
which illustrates the stabilization of the system
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(detailed data is not displayed here, but the average Rg
value is available in Table 4).

4.2.2. Hydrogen Bond

Hydrogen bond analysis determines the number of
hydrogen bonds and their duration in the simulated
systems. According to Table 4, intermolecular H-bonds
between fluvastatin and the c-Met protein are greater in
number and duration compared to pitavastatin. Based
on this analysis, both complexes are qualified to
maintain a stable system. The hydrogen bond
occupancy percentage determines the certainty of
hydrogen bond formation between the ligand and the
receptor during the simulation time. According to the
average of hydrogen bond occupancies in fluvastatin
and pitavastatin complexes, hydrogen bonds with >30%
occupancy were evaluated (39, 40). Furthermore,
fluvastatin has formed more H-bonds compared to
pitavastatin. Based on hydrogen bond occupancy and
hydrophobic interaction analysis, pitavastatin makes
hydrogen bonds with R1086 and V1083 residues.

According to Peach et al.’s study on agents targeting
the c-Met tyrosine kinase domain, there are four main
interactions at the ATP-binding site of the c-Met protein:
(1) Hydrogen bond with hinge region residues (M1160
and P1158); (2) aromatic or hydrophobic interaction in
the hydrophobic pocket; (3) hydrophobic interaction in
the hydrophobic sub-pockets; (4) hydrogen bond with
Y1230 backbone in the activation loop or n-stacking
interaction of an aromatic group with the Y1230 ring.

Almost all ATP-competitive small molecule inhibitors
for the kinase domain form hydrogen bonds with P1158
and M1160 at the hinge region (where the N-terminal of
the P region meets the C-terminal, forming a
hydrophobic pocket) (41). Peach et al. also declare that
the high binding affinity of a compound to the c-Met
ATP-binding site is due to hydrogen bond formation
with the Y1230 residue (Appendix 2 in Supplementary
File). Triazolotriazine has shown activity as a c-Met
inhibitor. An aryl group attached to the triazine ring
and an acceptable hydrogen bond acceptor linked to the
pendant benzyl ring are necessary features of the c-Met
inhibitor. However, phenol acts as a hinge binder (with
M1160), and the triazine interacts with Y1230. Salt bridge
interaction is an eminent force notable for its strength
and stability. Using the BIOVIA Discovery Studio
Visualizer (42), the salt bridge formation is depicted
(Figure 6). Accordingly, fluvastatin possessed a salt
bridge with the c-Met receptor (A1086), whereas neither
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Figure 5. The root mean square deviation (RMSD) and the root mean square fluctuation (RMSF) analyses of molecular dynamics (MD) simulation; both fluvastatin and

pitavastatin formed stable complexes at the cellular mesenchymal-epithelial transition
alpha carbon atoms of pitavastatin-c-Met complex and fluvastatin-c-Met complex.

(c-Met) ATP-binding site at about 20 ns of simulation: A, the RMSD, and B, RMSF results of

Table 4. Comparison of Hydrogen Bond Occupancy Percentages >30 and Gyration Radius

Ligand; Intermolecular H-Bond H-Bond Occupancy (%) Rg(nm)
Fluvastatin 2.00
K1110: NZ::0, 32.68
Y1230: OH::0 99.44
D1222:0;:0D, 36.17
Pitavastatin
R1086: NE::O, 30.03 2.01

pi-sulfur nor salt bridge is reported in pitavastatin.
Besides, a mm interaction is reported between
pitavastatin and the Y1230 residue (activation loop).

4.2.3. Hydrophobic Interactions

Hydrophobic interactions and hydrogen bonds are
proposed to determine the folding of proteins and their
stability in complexes with ligands. The BIOVIA
Discovery Studio Visualizer (42) was utilized to
represent meaningful electrostatic and non-
electrostatic interactions of pitavastatin and fluvastatin
with the c-Met receptor ATP-binding site from 20 ns to 25
ns of stimulation. As illustrated in Figure 6, the ligand
makes hydrogen bonds with D1222, Y1230, and Ri227 in
the fluvastatin-c-Met complex. Furthermore,
interactions with 11084, K1110 (hydrophobic sub-pocket),
Mi211 (central hydrophobic pocket), and Y1230 residues
(activation loop) were reported. Pitavastatin makes
hydrogen bonds with V1083 and A1086 residues.
Additionally, the presence of fluorine halogen was
reported. Figure 6 depicts N1209, Mi211 (central
hydrophobic pocket), D1222, D1231, and Y1234 residues
forming hydrophobic interactions with pitavastatin.
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Moreover, a n-rt interaction was seen between Y1230
(activation loop) and pitavastatin.

As Damghani et al. have reported, c-Met possesses an
ATP-binding site and an allosteric site that is contiguous
to the ATP site. Type I inhibitors occupy the ATP site,
while type II inhibitors occupy both the ATP and
allosteric sites. The amino acid residues around the
bound type I ligands are generally D1164, 11084, G1085,
H1162, G1163, K1161, Y1159, M1160, A1108, P1158, M1211, K1110,
V1092, L1157, A1221, L1140, A1226, D1222, N1209, R1208, and
Y1230. Therefore, our ligands’ hydrophobic interactions,
hydrogen bonds, and m-rt interactions can be accounted
for (43).

4.3. In Vitro Results

4.3.1. Cytotoxicity Effect of Fluvastatin and Pitavastatin on
Gastric Cancer Cells

The MTT assay determined that fluvastatin abolished
AGS cell growth with an IC; value of 230 + 25 uM after

48 h of treatment; however, this inhibitory activity
could not be observed in the case of MKN-45 cells at 400
nM (Figure 7). After administering variable

Iran ] Pharm Res. 2025; 24(1): 158845
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Figure 6. Hydrogen and hydrophobic interactions between A, fluvastatin and B, pitavastatin at the cellular mesenchymal-epithelial transition (c-Met) receptor ATP-binding site

concentrations of pitavastatin on both cell lines for 48 h,
a maximum cytotoxicity effect of 40% was obtained at
200 pM. Although no apparent toxic effects (less than
IC5,) were noted in AGS and MKN-45 cells following

pitavastatin treatment, Wang et al. have reported the
cytotoxic effects of pitavastatin on cancer cell lines. They
revealed that following treatment of 4Ti12 and 4T1
mouse mammary tumor cells and MDA-MB-231 human
breast cancer cells with pitavastatin, proliferation and
migration of tumor cells were inhibited through down-
regulation of signaling pathways mediated via
mevalonate and PPAR-y. Consequently, inhibiting Snail
and MMP-9 leads to the reversal of epithelial-
mesenchymal transition (EMT) (44).

4.3.2. Effect of Fluvastatin and Pitavastatin on Cell Cycle
Distribution

MKN-45 and AGS cells were treated with fluvastatin
(200 and 400 pM) and pitavastatin (100 and 200 uM) for
48 h. Cell cycle arrest could not be observed during the
process in MKN-45 cells. According to Figure 8A-C, a
slight increase in the sub-G1 phase and a trivial decrease
in the S phase are observed in the MKN-45 cell line
treated with fluvastatin and pitavastatin. Alternatively, a
perceptible decrease in S phase progression is observed
due to concentration increases in AGS cell lines. Cells at

the sub-G1 phase were reported following the
concentration increase in both cell lines, which
registers cell apoptosis. AGS cells treated with

fluvastatin at 200 uM demonstrated a slight increase (P
< 0.05) in GO/GI1 phase cells (60.5%) in comparison with
the control group (55.18%; Figures 8B-D). The increase in
the sub-Gl1 phase is associated with enhanced apoptosis
in AGS cells treated with fluvastatin 200 pM (45).
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Fluvastatin 400 pM administration resulted in a
significant decrease in G1, S, and G2 phase percentages
in AGS cells. Notably, 61.49% of cells confront apoptotic
cell death in comparison to the control group (2.68%),
which is statistically significant (P < 0.01). It has also
been revealed that AGS treatment by pitavastatin 100 pM
displayed a remarkable decrease in the Gi, S, and G2
phases. Comparison of the sub-G1 frequency value of
pitavastatin 100 uM (60.86%) with the control group
(2.68%) highlights the increased apoptosis in AGS cells.
However, pitavastatin 200 pM exhibited higher
apoptotic cell death (71.79%) than pitavastatin 100 uM. In
another study, Nagayama et al. revealed that
pitavastatin treatment leads to cell cycle arrest and
apoptosis due to the cell cycle regulator p21
upregulation and NFxB inhibition in different cancer
cells (46).

These data suggest that fluvastatin 400 pM and
pitavastatin 200 pM suppressed the AGS cell cycle
progression remarkably and increased cell apoptosis
explicitly. In contrast, both tested drugs displayed trivial
changes in the cell cycle distribution of MKN-45 cells
(Figures 8A-C).

4.3.3. Apoptotic Effect of Fluvastatin and Pitavastatin on
Gastric Cancer Cells

Figure 9A-D depicts fluvastatin-induced total
apoptosis at 400 uM concentrations (32.70%, P < 0.01) on
the MKN-45 cells. This programmed cell death aligns
with previous reports of breast cancer (47). However,
Jiang et al. found that fluvastatin caused no apoptosis
induction towards gastric cancerous cells (48). MKN-45
cells underwent 27.3% total apoptosis at 200 pM of
pitavastatin (P < 0.01). In the case of AGS cells, total
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Figure 8. The percentage of cells in different cell cycle phases: Two-dimensional graph of cell cycle analysis resulted from flow cytometry for A and C, MKN-45 and B and D, AGS
cells, treated with fluvastatin and pitavastatin concentrations after 48 hours in comparison with untreated cells (control group; * P < 0.05, ** P < 0.01, and *** P < 0.001 relative to

controls).

apoptosis at pitavastatin 100 and 200 pM is about 38.85%
and 35.25% (P < 0.001), respectively. A significant increase
in the number of cells undergoing apoptosis can be
registered at fluvastatin 200 and 400 pM (47.45% and
44.70%, respectively; P < 0.0001) compared to the
control group. Previous studies have revealed that
pitavastatin activates caspases in vitro and inhibits
tumor growth in xenograft models in OSCC and ESCC,
breast, glioblastoma, liver, colon, ovarian, and
pancreatic cancers (46). Sahebkar et al. confirmed that
pitavastatin also increased cancer cell apoptosis by
increasing the cleavage of apoptosis-related proteins,
including caspase-9 and caspase-3 (49).

4.3.4. Western Blot
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The c-Met activation occurs through its constitutive
phosphorylation, which results in the modification of
several signaling pathways. These signaling pathways
are engaged in cell proliferation, growth, and survival
(50-52). This study explored whether fluvastatin and
pitavastatin inhibit c-Met phosphorylation in MKN-45 (c-
Met amplified) and AGS cell lines.

MKN-45 and AGS cell lines were treated with
pitavastatin (50, 100, and 200 pM) and fluvastatin (100,
200, and 400 uM). As illustrated in Figure 10,
capmatinib, a selective c-Met inhibitor (Cayman
Chemical; USA), decreased c-Met phosphorylation, and
fluvastatin exhibited a negligible decrease in Met
phosphorylation in MKN-45 cells. Also, a slight p-Met
increase can be observed in cells treated with

[ran ] Pharm Res. 2025; 24(1): e158845


https://brieflands.com/articles/ijpr-158845

Ahmad Alizadeh E et al.

Brieflands

Control ! 200 M)

Pitavastatin (100 M)

Pitavastatin (200 yM)

& propidium lodide

Apoptotic cells (%)

s &
& &
&

&

o

& &
¢
& &

e
&

S

&
o

Figure 9. The percentage of apoptotic cells for A and C, MKN-45 cells and B and D, AGS cells was treated with various concentrations of fluvastatin and pitavastatin for 48 hours
using Annexin V-fluorescein isothiocyanate (FITC)/propidium iodide (PI) double staining [** P < 0.01, *** P < 0.001, and **** P < 0.0001 as compared to untreated cells (control

group)|.

-
&
S
3

-

=
o 9
g

S

oozd

072 0.81 091 1.

e
3

B

o
8
El

054

00zd
oovd
0Sd

o
&
s °
032 096 056 051 0.

© 00zd

&

3

pMet

tMet

053 098 075 091 0.94 0.68 077 020

p-Akt |

p-Met

tMet

p-Akt

—————

051 0.85 077 075 136 052 042 048

- - 145KDa

et

————

- 60KDa

Akt

| 4 4 4 -y

Akt

——

EEETTE

- 60KDa

152 162 130 097 096 093 0.95 0.94

041 068 082 128 157 069 0.63 048

i S ==

Q}ERK|

e EemEs RS | R

el Ao A B & 1 B

ERK

‘--.- e | D86
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(Cap; 2 nM) for 48 hours. Subsequently, cells were lysed and resolved on SDS-PAGE, and target proteins were detected by the western blotting technique, as mentioned in the

method section.

pitavastatin in a dose-dependent manner (Figure 10A).
In AGS cells, c-Met phosphorylation was only
dramatically enhanced in 100 uM fluvastatin but not in
other doses. However, pitavastatin decreased its
phosphorylation compared with the control group
(Figure 10B). The c-Met that has undergone processing
forms dimers on the cell membrane and binds to HGF
via its sema domain. Subsequently, the stimulation of
Met by HGF triggers the activation of the PI3K/Akt, RAS,
and ERK signaling pathways, which facilitate cell growth
and migration (53).
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Fluvastatin and pitavastatin enhanced Akt and
reduced ERK phosphorylation in MKN-45 cells,
respectively.  Fluvastatin  also  increased Akt
phosphorylation, especially at the highest dose (400
uM), but in pitavastatin-treated cells, we cannot see a
significant change relative to the control group. Our
data displayed that fluvastatin, but not pitavastatin,
increased ERK phosphorylation dose-dependently.

Accordingly, Xu et al. discovered that pitavastatin
suppressed tumor development by reducing the activity
of Akt and ERK signaling pathways via the disruption of
immature Met induced by malfunctioning of the Golgi
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apparatus. Additionally, they found that the expression
of GGPS1 played a crucial role in determining the
susceptibility to cell growth suppression by pitavastatin
and other statins. Furthermore, their research
demonstrated that the combination of pitavastatin and
capmatinib resulted in a more pronounced reduction of
oral and esophageal tumor development than
pitavastatin alone due to complete Met signaling
inhibition (54).

4.4. Conclusions

The present study sought to investigate the c-Met
effect on poor-prognosis cancers by statin therapy.
Statins affect cell proliferation, survival, and mobility via
different mechanisms of action. The findings of the ML
step illustrated that the statin family structures had a
low probability of inhibiting the c-Met receptor due to
their inactivity at the binding site. Since the ML step,
accompanied by the MD method, provides more subtle
results in recent searches, fluvastatin and pitavastatin
with higher inhibiting probability (probability class
inhibitor > 0.3) were selected for the MD process and in
vitro analysis to evaluate the ML data theoretically and
experimentally. Both fluvastatin and pitavastatin
exhibited cytotoxicity, apoptosis induction, and sub-G1
phase accumulation in AGS and MKN-45 cells. The
protein expression analysis indicated that the tested
statin compounds have limited potential as c-Met
inhibitors, consistent with ML results. While our
findings did not confirm that statins directly inhibit the
c-Met pathway, they uncovered cellular responses and
computational predictions suggesting a possible
interaction. Further studies on statin treatment in
cancerous cells are needed to elucidate the precise
mechanism of inhibition.

Supplementary Material

Supplementary material(s) is available here [To read
supplementary materials, please refer to the journal
website and open PDF/HTML)|.
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