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Abstract

Context: This review explores the antifungal potential of Allium species, emphasizing pure compounds identified through phytochemical
studies. It also analyzes the mechanisms and efficacy of Allium-derived antifungal agents within pharmaceutical, agricultural, and food science
applications.

Objectives: To assess the antifungal properties of major Allium species and their bioactive compounds, and to evaluate their mechanisms of
action and effectiveness across pharmaceutical treatments, agricultural pathogen control, and food preservation.

Data Sources: A comprehensive literature search was conducted using major scientific databases, including Web of Science, PubMed,
ScienceDirect, Scopus, and Google Scholar.

Study Selection: Studies reporting antifungal activities of major Allium species and their isolated compounds were selected based on PRISMA
guidelines.

Data Extraction: Data were extracted from recent research focusing on the antifungal effects, mechanisms of action, and minimum inhibitory
concentrations of sulfur compounds and saponins derived from Allium species.

Results: Sulfur-containing compounds such as allicin and ajoene were found to disrupt fungal cell metabolism, destabilize cellular structures,
and induce oxidative stress. These compounds showed strong activity against pathogens including Candida albicans and Aspergillus fumigatus.
Saponins were also identified as key antifungal agents, with spirostane and spirostanol saponins from species like A. ampeloprasum and A. porrum
demonstrating activity against C. albicans, A. niger, and Fusarium culmorum. Additional saponins — such as Fistoloside C, Minutoside B, and
Ceposide variants — exhibited promising antifungal potential, particularly in combination therapies. Reported minimum inhibitory
concentrations ranged from 0.15 µg/mL for sulfur compounds to 3.1–800+ µg/mL for saponins.

Conclusions: Saponins from Allium species represent promising adjuncts for overcoming antifungal drug resistance and may expand treatment
options beyond traditional sulfur-derived compounds. These bioactive molecules also show potential for agricultural use against soil-borne
pathogens like F. oxysporum, as well as food preservation applications against spoilage fungi such as Penicillium italicum and A. niger. Overall, Allium
species constitute a valuable natural source of antifungal agents with broad pharmaceutical and agricultural relevance.

Keywords: Allium, Antifungal Agents, Sulfur Compounds, Steroidal Saponins, Fungal Drug Resistance, Agriculture

Application, Food Preservation

1. Context

Fungi are a diverse group of eukaryotic organisms

estimated to have over two million species. They impact

global health, ecosystems, agriculture, and biomedical

investigations. Additionally, fungi sometimes assemble

with bacteria, which is recognized in animal research

but usually disregarded in human research (1, 2). Fungi

can play an indispensable role in the environment by

breaking down dead organic matter and returning

nutrients to the soil, which are essential for herbal

growth and photosynthesis. Moreover, they have a

crucial role in food production, especially in the

fermentation process for making bread and cheese (3,

4).

While fungi play a positive role in ecosystems and

food production, some environmental fungi can possess

adaptive mechanisms, such as enzymatic abilities, that

can make them opportunistic pathogens. Some of them

can be harmful to plants by causing infection of the

herbage and crops. Fungal spot, leaf blight, and

fusarium wilt are major plant diseases (5, 6). Fusarium

oxysporum is a widespread soil-borne fungus that causes

fusarium wilt, which attacks the plant’s roots by

spreading through their vascular systems and affects

many crops, including potatoes, tomatoes, and beans. It
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disrupts the uptake of essential elements, resulting in

wilting, stunted growth, and economic losses for

farmers (7). Zoophilic fungi are transmitted between

animals and can infect animals with their toxins, while

zoonotic fungi pose risks due to close human-pet

contact. This is significant because many people have

pets in their homes today. Mycotoxins are secondary

metabolites produced by many fungi, such as Aspergillus

species, that contaminate animal feeds and pose public

health risks. Fungi can adapt to changing environments,

leading to new strains that affect both humans and

animals (8-10).

There are five classes of antifungal drugs: Polyenes,

echinocandins, allylamines, pyrimidine analogs, and

azole derivatives (11). The widespread use of antifungal

drugs leads to fungal resistance, which is a global

challenge. However, the recent developments in

pharmaceuticals show a hopeful outlook for the future.

For example, Allium-derived compounds like allicin,

ajoene, and other sulfur compounds have demonstrated

potent antifungal activity in preclinical studies by

disrupting the fungal cell membrane (12, 13).

Medicinal plants have been utilized to treat diseases

for many years, and phytochemicals play a role in drug

discovery and the development of bioactive

compounds. Also, combining them with conventional

drugs presents a viable alternative to standard therapies

and can help enhance patient tolerance to antifungal

agents (14). This review examines antifungal compounds

derived from Allium species, focusing on biomolecular

studies.

2. Methodology

This study follows the preferred reporting items for

systematic reviews and meta-analyses (PRISMA)

procedures, version (15), to secure a well-organized

evaluation of existing research on the chemical

composition and antifungal properties of Allium species.

A thorough exploration of databases, including Web of

Science, PubMed, ScienceDirect, and Google Scholar, was

performed, and the literature search included Embase

and CAB Abstracts to ensure comprehensive coverage of

biomedical and agricultural studies related to Allium-

derived pure compounds with antifungal effects. This

search covered publications from the earliest

phytochemical study on Allium species, 1944 (16) to 2024,

using keywords such as "Allium"[MeSH Terms] OR

garlic[Title/Abstract] OR onion[Title/Abstract]) AND

(antifungal[Title/Abstract] OR

fungistatic[Title/Abstract]”.

This review included investigations with specific

criteria to ensure quality, focusing on Allium species

such as garlic and onion and their antifungal pure

compounds: Sulfur, steroidal saponins, and phenolic

compounds (Figure 1).

Only original English-language research papers

featuring in vitro experiments and isolated compounds

were chosen, excluding reviews, non-English studies,

and those lacking a clear antifungal or chemical

description. The methodological quality of the included

studies was assessed using an adjusted version of the

Newcastle-Ottawa Scale tailored for in vitro research.

The evaluation criteria included clarity of experimental

design, reproducibility, control use, and reporting of

compound purity. To minimize bias and ensure

consistency, two reviewers independently screened

studies and extracted data. Articles from the initial

search were imported into reference management

software (e.g., EndNote), where duplicate entries were

removed.

3. Pathophysiology of Fungal Infections and
Mechanism of Action

Fungi significantly impact human health, infecting

billions and causing over 1.5 million deaths each year

(17). They affect many human organs, such as the lungs,

urinary tract, brain, and skin (18). The rise in immune

system disorders, such as HIV/AIDS and autoimmune

diseases, along with more organ transplants, has made

many individuals more vulnerable to fungal infections

(19). Another way is the pulmonary tract; fungi primarily

invade the body through inhalation of spores or yeast.

They often employ a "Trojan horse" mechanism, where

they are carried by immune cells known as phagocytes.

Additionally, fungi can enter the body through breaches

in barriers or by moving through cells (transcellular)

and between cells (paracellular). Initial infections

typically start in the lungs; however, complications can

arise, such as meningoencephalitis, when fungi cross

the blood-brain barrier (e.g., Cryptococcus neoformans

meningitis) (20).

Fungi display diverse morphological forms, which

are critical to their ability to cause infection. A

significant virulence factor essential for pathogenicity is

morphological switching, which allows Candida albicans

to transition from its yeast form to hyphal form. This
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Figure 1. Flow diagram of study screening and selection process

transition is regulated by key genes such as EFG1, which

plays a central role in hyphal development and

virulence. Some proteins and factors enhance the

adhesion of C. albicans to breach the skin and lead to

infections (21, 22). Common fungal infections include

nail and skin issues such as ringworm, caused by

dermatophytes like Trichophyton rubrum, with symptoms

including peeling, cracking, redness, blistering, and

itching (23, 24).

To evade immune response, fungi use a variety of

strategies to survive. These include altering their outer

layer, utilizing structures like glycoproteins or

protective capsules, and forming biofilms. In C. albicans,

the formation of biofilm is regulated by quorum-

sensing molecules, such as farnesol. Farnesol modulates

cell signaling, suppresses filamentation, and influences

both virulence and immune evasion. Additionally, the

ability to switch between filamentous and yeast forms is

another survival tactic employed by these fungi (11).

4. Botany and Chemistry of Allium Species with
Antifungal Components

4.1. Botany

In 1753, Carl Linnaeus described the Allium species for

the first time. The name Allium is derived from the Greek

word "allion", meaning "garlic", which reflects its long-

standing use. The Allium genus has more than 900

species, making it one of the largest plant genera. In the

kingdom of Plantae, they belong to the Amaryllidaceae

family, which is a subgroup of Allioideae (25-27).

https://brieflands.com/journals/ijpr/articles/162031
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Figure 2. Chemical structures of sulfur compounds. (1) Allicin: Diallyl thiosulfinate; (2) ajoene: (E, Z)-4,5,9-trithiadodeca-1,6,11-triene 9-oxide; (3) diallyl sulfide: 3-(Prop-2-en-1-yl)
sulfanylprop-1-ene; (4) diallyl disulfide: 3-[(Prop-2-en-1-yl) disulfanyl] prop-1-ene; (5) marasmin: (S)-2-amino-3-[(S)-2-propenylsulfinyl] propanoic acid; (6) methyl
methanethiosulfinate: Methanesulfinothioic acid S-methyl ester.

This genus is characterized by bulbs covered in

membranous or fibrous tunics and ranges in height

from 5 to 150 cm, with flowers forming an umbrella-like

structure atop a leafless stem. In floral displays, tepals

vary in color and are classified into six categories: Blue,

purple, pink, red, white, and yellow. Their petals are

mostly free, and they enhance the diverse vegetation in

steppes, mountains, and semi-deserts (28-30).

Allium ascalonicum, A. ampeloprasum, A.

schoenoprasum, A. tuberosum, A. sativum, and A. cepa are

all categorized as Allium vegetables. These plants are

believed to have originated in the Turanian-Iranian

region (e.g., the center of diversity in Central Asia). These

vegetables are integrated into people’s diets. For

centuries, the Allium genus has been valued not only for

its distinctive flavors and aromas but also for its

medicinal properties, including its benefits against

fungal infections (31-33). This genus is a source of several

chemical groups, including organosulfur compounds,

polyphenols and flavonoids, proteins and amino acids,

saponins, alkaloids, cardenolides, vitamins, fatty acids,

carbohydrates, minerals, and dietary fibers, which have

medicinal benefits (34-39).

4.2. Chemical Classification and Biosynthetic Pathway

Secondary metabolites are small organic compounds

derived from primary metabolites. Their use as

medicinal or toxic agents dates back to approximately

2600 BC. Their chemical composition varies by species,

making them notable for their structural diversity and

potential as medicine (40).

4.2.1. Sulfur Compounds

The biosynthesis of organosulfur compounds begins

with L-cysteine, which reacts with L-glutamic acid. The

new molecule reacts with 2-propenyl carboxylic acid.

This process involves several steps: Decarboxylation,

oxidation, and isomerization, which result in the

formation of alliin. Alliin then undergoes enzymatic

catalysis by the alliinase, producing a sulfenic acid

intermediate. This intermediate reacts with water to

create allicin. Allicin is unstable and decomposes to

produce a variety of sulfur compounds, including

ajoene, methyl allyl sulfide, methyl allyl disulfide

(MADS), and other sulfur compounds (41, 42). Figure 2

shows the structure of the antifungal compounds (1 - 6)

that they extracted and elucidated from phytochemical

studies.

In 1893, Louis Pasteur documented garlic’s

antimicrobial properties when he added garlic extract

to a culture container and noticed that all the bacteria

were destroyed (43). In 1944, allicin (compound 1) was

identified by Cavallito and Bailey, who named it allicin,

as the first sulfur compound in garlic (44). The increased

sensitivity of medical yeast to compound 1 highlights its

potential in treating fungal infections. Pure allicin from

garlic has anti-candidal effects and inhibits the growth

of various fungal spores and filaments development.
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Table 1. Antifungal Activities of Key Sulfur Compounds in Allium Species

Compounds Sources Parts of Plants Fungi Fungi Strain Assay MIC (µg/mL) Ref

(1) Allicin

Allium sativum Bulbs
Aspergillus niger ATCC 16404 SB 30.9

(46)
Candida albicans ATCC 10231 SB 17.3

A. sativum Bulbs

C. parapsilosis Clinical strain BM 0.15

(45)

C. albicans Clinical strain BM 0.3

Cryptococcus neoformans Clinical strain BM 0.3

C. tropicalis Clinical strain BM 0.3

C. krusei Clinical strain BM 0.3

Torulopsis glabrata Clinical strain BM 0.3

C. albicans Clinical strain BM 0.8

T. glabrata Clinical strain BM 1.9

A. sativum for. pekinense, A. cepa, and A. fistulosum Bulbs, bulbs, and whole plant, respectively

Trichophyton erinacei KCCM 60411 BM 16

(50)T. soudanense KCCM 60448 BM 16

T. rubrum ATCC 6345 BM 32

A. ursinum Flowers

A. niger Field isolated AD 100

(53)

Botrytis cinerea Field isolated AD 60

B. paeoniae Field isolated AD 70

Fusarium oxysporum f.sp. tulipae Field isolated AD 140

Penicillium gladioli Field isolated AD 90

Sclerotinia sclerotiorum Field isolated AD 60

A. ursinum Leaves

A. niger Field isolated AD 120

(53)

B. cinerae Field isolated AD 80

B. paeoniae Field isolated AD 100

F. oxysporum f.sp. tulipae Field isolated AD 160

P. gladioli Field isolated AD 120

S. sclerotiorum Field isolated AD 80

(2) Ajoene

A. sativum Bulbs
C. albicans ATCC 10231 SB 7.6

(46)
A. niger ATCC 16404 SB 16.6

A. sativum Bulbs

F. oxysporum Field isolated SG 25

(47)

F. incarnatum Field isolated SG 25

F. udum Field isolated SG 25

Colletotrichum sp. Field isolated SG 25

F. lini Field isolated SG 100

Alternaria triticina Field isolated SG 100

A. sativum Cloves Scedosporium prolificans Clinical strain BM > 8 (49)

Commercial - Paracoccidioides brasiliensis Pb 18 BM > 50 (51)

(3) Dially sulfide Commercial -

T. erinacei KCCM 60411 BM 128

(50)T. soudanense KCCM 60448 BM 128

T. rubrum ATCC 6345 BM > 128

(4) Dially disulfide Commercial -

T. erinacei KCCM 60411 BM 8

(50)T. soudanense KCCM 60448 BM 16

T. rubrum ATCC 6345 BM 16

(6) Methyl methanethiosulfinate A. roseum Bulbs C. albicans ATCC 10231 BM 19 (54)

Abbreviations: MIC, minimum inhibitory concentration; SB, sabouraud broth; BM, broth microdilution; AD, agar dilution; SG, spore germination.

Allicin disrupts yeast metabolism by targeting

thioredoxin reductase, impairing oxidative stress

response, and stimulating cell death (45).

In 1987, ajoene (compound 2), extracted from garlic,

effectively inhibits both Colletotrichum species and

Fusarium species. Additionally, compound 2 is a more

potent antifungal agent than compound 1 in the culture

of Aspergillus niger and C. albicans. Also, ajoene exhibits

antifungal activity against Scedosporium prolificans (46-

49). Compound 1 in A. sativum for. pekinense bulbs,

extracted and showed more activity against Trichophyton

species than A. cepa and Allium fistulosum oils (50).

Compound 2 increases the efficacy of

sulfamethoxazole/trimethoprim in mice that are

infected with Paracoccidioides brasiliensis. It promotes

Th1 cytokines that increase IFN-γ and IL-12. This process

stimulates a proinflammatory response (51).

Allium suworowii has marasmin (compound 5) as the

marasmicin precursor. Marasmicin is known in South

Africa due to its antifungal properties. Allium stipitatum

and A. altissimum also have marasmin (52). The

antifungal activity of A. usrinum flower extract, which

contains compound 1, shows its ability to inhibit the

growth of Botrytis cinerea, A. niger, and other various

fungal species (53). Compound 6 was characterized by

using GC/MS as a major compound in the essential oil of

the fresh bulbs of A. roseum var. grandiflorum. It has

highly effective antifungal activities (54).

Many phytochemical studies have shown that other

members of the Allium genus contain organosulfur

compounds. Six new organosulfur compounds and

dithiosulfinate with antifungal properties were isolated

from A. sativum var Voghiera from Italy (13). In Serbia,

diallyl trisulfide, compound 4, and allylmethyltrisulfide

were identified in garlic oil (55). In A. sativum ethanolic

extracts, 1-propenyl methyl disulfide and allyl trisulfide

with anticandidal activities were extracted (56). The

Allium hooshidaryae essential oil was analyzed, and

methyl disulfide and bis-methyl disulfide with

moderate potency against C. albicans were reported (57).
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Figure 3. Chemical structures of polyphenol compounds

Diallyl trisulfide, compounds 3, and 4 are the main

compounds found in garlic oil, which have shown

antifungal activities against two wood-rotting fungi,

Trametes hirsuta and Laetiporus sulphureus. Diallyl

trisulfide was the most effective. Additionally,

compound 3, isolated from garlic essential oil, shows

antifungal properties against Phytophthora nicotianae

(58, 59).

Onion extract reveals antifungal activity and inhibits

the growth of various fungal pathogens due to its

bioactive compounds. The major components include

compound 3 and diallyl trisulfide. Allicin is also effective

against zygomycete fungi, which are major contributors

to mycoses. Its effectiveness varies based on spore

concentration, highlighting its potential for infections

in the nasopharynx through inhalation (60, 61). In Table

1, the minimum inhibitory concentration of sulfur

compounds is shown.

4.2.2. Polyphenols and Flavonoids

Phenolic compounds are synthesized through the

phenylpropanoid pathway using phenylalanine and

tyrosine amino acids, followed by the Shikimate

pathway (62-64). Allium vegetables are notable for their

high content of phenolic compounds, particularly

polyphenols, flavonoids, and anthocyanins (65). Allium’s

polyphenol derivatives extracted and elucidated with

antifungal activities are shown in Figure 3.

Three new dibenzofurans, compounds 10, 11, and 12,

have been identified from Allium porrum. Additionally,

compounds 13 and 14 extracted from A. porrum and A.

sativum demonstrated antifungal efficacy against F.

culmorum with a minimum inhibitory concentration of

22 µg/mL (66, 67). Compounds 7 and 8 have been used to

treat fungal infections. Recent studies have increasingly

focused on their properties against infectious diseases

(68, 69). Compounds 14, 15, and 16 were isolated from

Persian leek and evaluated for their antifungal activities.

They were inhibited by Penicillium italicum, A. niger, and

B. cinerea, highlighting their potential role in plants’

defense against pathogens. Similar compounds have

also been identified in A. tripedale (70, 71).

Persian shallot contains compound 9, which exhibits

fungistatic and fungicidal effects on a wide range of

fungi, including T. rubrum, C. albicans, F. oxysporum,

Saccharomyces cerevisiae, and A. niger (72, 73).

Compounds 17 and 18, extracted from A. fistulosum, have

been shown to possess antibacterial and cytotoxic

properties (74). Additionally, flavonols derived from A.

cepa have been tested as bio-fungicides against

Ceracospora arachidicola and Cercosporidium personatum

(75).
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4.2.3. Saponins and Steroids

Saponins’ backbones are established on three types:

Furostane, spirostane, and cholestane. Their

biosynthesis can be separated into three main steps.

First, involves the production of 2,3-oxidosqualene via

the mevalonate and then 2C-methyl erythritol 4-

phosphate pathways. In the second step, β-sitosterol and

cholesterol were made from catalytic reactions. The last

step involves the formation of steroidal saponins at

different side chain positions, C-16, C-26, and C-26 (41,

76). The structures of isolated saponins with antifungal

activities are shown in Figure 4.

Several Allium species have been found to contain

saponins with antifungal properties. Research on A.

ampeloprasum bulbs led to the discovery of compounds

19, 20, and 25, which demonstrated activity against fungi

such as C. albicans and A. niger (77). In A. porrum, 21 and 22

were identified and found to be active against the

fungus F. culmorum, with some showing additional

antiproliferative effects (78).

Many saponins with varied structures, including

furostane, spirostane, cholestane, and oleane types,

were identified and exhibited antifungal activity against

F. culmorum and C. albicans with effective concentrations

ranging between 25 and 100 μg/mL (79, 80). Allium

fistulosum (Welsh onion) contains saponins such as

Fistuloside A, B, and compound 24, with compound 24

showing the highest antifungal activity (81). Minutoside

A, B, and C were identified in A. minutiflorum, with

minutoside B being the most potent against fungal

pathogens (82).

The antifungal effects of compounds Voghieroside A

to E and compound “Saponin 6” from A. sativum var.

Voghiera were tested against various fungal pathogens.

The “Saponin 6” emerged as the most effective among

them (83). In A. cepa, compounds ceposide A-C showed

enhanced antifungal effects, especially when used

together against pathogens like B. cinerea and

Trichoderma atroviride (84).

Through an antifungal study, compounds 21, 22, and

23 inhibited C. albicans (85). Additionally, the compound

23 from A. nigrum also exhibited activity against various

multiple soil and airborne fungal pathogens (86). Seeds

of Persian leek (A. porrum) yielded persicosides A to E.

Persicoside A and B, which were particularly effective

against P. italicum and A. niger, indicating that the

spirostane structure contributes to antifungal efficacy

(87). In Table 2, the minimum inhibitory concentrations

of saponins are shown.

4.2.4. Miscellaneous Compounds

Miscellaneous terpenoids and amino acids were

isolated from Allium species (67). When comparing the

level of terpene compound production of A. sativum

infected with the white rot disease pathogen to those of

healthy samples cultivated in vitro, it was observed that

antifungal terpene synthesis increased in the infected

samples. Among various terpenes, nerolidol and

terpinolene (Figure 5) inhibited the growth of Sclerotium

cepivorum, while α-pinene had the opposite effect (88).

Compound 29, derived from A. fistulosum roots, has

shown strong antifungal action on F. oxysporum by

inhibiting the process of protein synthesis (89). An

antifungal protein from A. tuberosum shows similarities

to chitinase, demonstrating inhibitory activities on

several fungi, such as B. cinerea (90).

Allivin, a new protein from garlic bulbs, ascalin from

shallot bulbs, and allicepin from onion inhibited the

growth of B. cinerea (91-93). Another antifungal peptide,

named NpRS, with the same antifungal activity, and a

protein named alliumin, which displayed antifungal

activity on Mycosphaerella arachidicola, were isolated

from garlic (94, 95). Allium sativum agglutinin, a lectin

(~14kDa) from garlic bulbs, has demonstrated

considerable therapeutic potential, including

anticancer, antimicrobial, antifungal (especially against

Candida species), and other biological effects (96).

Fatty acids are chemical groups isolated from Allium

species. For example, a monoacylglyceride containing

an unsaturated fatty acid with a Δ9 double bond, and

compound 30, both isolated from A. fistulosum seeds,

exhibited growth inhibition effects on Phytophthora

capsica, a known plant pathogen (97). Compound 31 is

the major component in A. roseum essence. This

essential oil inhibited Fusarium solani and B. cinerea

(98)). In A. cepa, quercetin and kaempferol have shown

antibacterial effects against Bacillus cereus, Escherichia

coli, Pseudomonas aeruginosa, and Staphylococcus aureus

(68, 69).

5. Antifungal Mechanisms and Structure-Activity
Relationship Studies

Briefly, organosulfur compounds inhibit enzymes

crucial for metabolism, disrupting cellular function by

compromising the structural integrity and functionality
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Figure 4. Chemical structure of saponins

Table 2. Antifungal Activities of Saponins

Compounds Sources Parts of Plants Fungi Fungi Strain Assay MIC (µg/mL) Ref

(19) Ampeloside Bs1 Allium ampeloprasum Bulbs
Candida albicans ATCC 10231 SB 100

(77)
Aspergillus niger ATCC 16404 SB 400

(20) Prosapogenin of aginoside A. ampeloprasum Bulbs
C. albicans ATCC 10231 SB 100

(77)
A. niger ATCC 16404 SB > 400

(21) Spirostanol 3 of leek A. porrum Bulbs C. albicans DAY 185 IFG 5.8 (85)

(22) Spirostanol 4 of leek A. porrum Bulbs C. albicans DAY 185 IFG 13.3 (85)

(23) Aginoside NR NR C. albicans DAY 185 IFG 47 (85)

(24) Fistulosides C A. fistulosum Edible parts
Saccharomyces cerevisiae IFO 0233 SB 3.1

(81)
C. albicans ATCC 10231 SB 6.1

(25) Ampeloside Bf1 A. ampeloprasum Bulbs
C. albicans ATCC 10231 SB > 800

(77)
A. niger ATCC 16404 SB > 800

Abbreviations: NR, not reported; SB, sabouraud broth; IFG, inhibition of fungal growth.

of fungal cells, affecting membrane permeability, or

disrupting cellular processes. They induce oxidative

stress, damaging amino acids and DNA. Moreover, they

exhibit quorum-sensing inhibitory effects, which

prevent bacterial communication that coordinates

biofilm formation and virulence, making them more

susceptible to antimicrobials and the immune response

(99-101). Organosulfur compounds have thiol reactivity

by targeting thiol groups in proteins and enzymes (102).

The presence of free thiol and disulfide bonds in these

compounds enhances their potency. For example,

allicin, which is a thiosulfinate containing a reactive

sulfur group, exhibits a minimum inhibitory

concentration of 0.05 µg/mL against C. albicans. In

contrast, its oxidized sulfoxide analogs require

concentrations greater than 100 µg/mL to achieve a

similar level of inhibition (103, 104).

Phenolic compounds and flavonoids inhibit fungal

growth by a variety of mechanisms. They penetrate cells

and disrupt key metabolic processes, including the

synthesis of ergosterol, chitin, glucan, RNA, proteins,
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Figure 5. Chemical structures of miscellaneous compounds

and glucosamine. Also, they can change the function of

mitochondria, efflux pumps, and inhibit the fungal

biofilms (14, 66, 105, 106). These effects increase with the

double bonds between C2 and C3, enhancing the

binding to fungal enzymes (e.g., flavone is stronger than

flavanone) (107). Increasing the number of hydroxyl

(OH) groups can improve the antifungal effect

(quercetin, with a 3 OH group on its C-ring, is more

potent than kaempferol, which features a 4 oxo group).

Additionally, aglycone compounds penetrate cell

membranes more effectively than glycosides. However,

methylation (O-CH3) at C3 reduces the antifungal effect

(108-110).

Steroidal saponins’ antifungal activities are

performed through several mechanisms that induce

damage to the plasma membrane, disrupt cell

membrane functions, and enhance membrane

permeability (111, 112). They bind to sterols in

membranes, disrupt the membrane structure, and lead

to cell collapse (113). Steroidal saponins with a

spirostanol backbone are more potent than furostanol;

for example, persicoside A (spirostanol) in Persian leek

is more effective than persicoside C (furostanol) (87).

Aglycone form and OH groups in C3 and C6 increase the

effects, whereas C-5 oxygenation and excess sugar

potency reduce them. Sugar chain length affects water

solubility; monosaccharides reduce water solubility,

while trisaccharides increase it, but reduce the

compound’s ability to cross cell membranes (41, 87, 114).

Terpenoids act by damaging the cell membrane of

pathogens and impairing mitochondrial processes,

leading to disruption of electron transport and

inhibition of ATPase activity, resulting in cell death (115,

116). Terpenoids’ antifungal activities increase in the

presence of carbonyl (C=O) groups (117), and OH groups

(as demonstrated by the lower minimum inhibitory

concentration of terpinen-4-ol compared to α pinene

against C. albicans, indicating enhanced potency due to

the OH group) (118, 119). The bicyclic backbone is more

effective than those with a monocyclic structure (120).

While the glycoside structure decreases the effects

rather than the aglycone (121).

6. Discussion

The antifungal characteristics of Allium species have

become a focal point of research due to their potential

as natural therapeutic agents. Various bioactive

constituents, including organosulfur compounds
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(allicin and ajoene) (46, 47), polyphenols and flavonoids

(quercetin and cinnamic acid derivatives) (68, 70),

steroidal saponins (spirostane and furostane type) (87),

and miscellaneous compounds (proteins and terpenes),

play a significant role in their antifungal activities (88,

91). They exhibit various mechanisms, including

disrupting the cell membrane, penetrating cells,

inducing oxidative stress, inhibiting enzymatic and

metabolic processes, changing the functions of essential

organelles (e.g., efflux pumps), binding to membrane

constituents and collapsing cells, and disrupting

electron transport and inhibiting ATPase activities in

mitochondria (14, 101, 116). These mechanisms are

especially effective in combating clinical pathogens

such as Candida and Aspergillus species (122).

The potential applications of Allium’s antifungal

properties are extensive, spanning human health,

agriculture, and food preservation. In healthcare, Allium

extracts, especially garlic, have been studied as

treatments for both superficial and systemic fungal

infections. An important advantage of using Allium-

based treatments is the reduced likelihood of inducing

drug resistance. The complex array of bioactive

compounds in Allium may target multiple pathways in

fungal cells, making it more challenging for fungi to

develop resistance. Allicin and ajoene affect fungi by

targeting enzymes, damaging membranes, and

disrupting stress responses. Additionally, allicin

enhances fungal sensitivity to treatments by inhibiting

biofilm growth and decreasing ergosterol levels, which

is vital for resistant strains. Allium-derived compounds

may be beneficial as adjunct therapies for systemic

infections, particularly in individuals at risk for

developing antifungal resistance. This characteristic is

particularly relevant given the rise of resistant strains

such as Candida auris (first identified in 2009 during an

outbreak in Japan), which pose significant challenges in

clinical settings. Additionally, Allium compounds,

particularly sulfur compounds and flavonoids, may

work together or with other natural products to

enhance antifungal effectiveness, especially against

resistant strains (47, 106, 122-124).

In agricultural and food processing contexts, Allium

extracts can serve as biopesticides to combat fungal

diseases affecting crops. Utilizing these natural

fungicides presents an environmentally friendly

alternative to synthetic counterparts. For example,

garlic oil emulsions demonstrated a significant

reduction of up to 50% in B. cinerea lesions on

strawberry flowers, with treated plants yielding 27%

more fruit compared to untreated, which demonstrates

garlic’s role as a biopesticide in fruit crops (31, 32, 125,

126). Compounds from Allium species represent

promising natural agents for food preservation, as they

effectively prevent fungal contamination in fruits,

vegetables, and processed products. This antifungal

activity can prevent the growth of foodborne fungi such

as Aspergillus flavus, which produces harmful aflatoxins.

This application could improve the safety and longevity

of processed foods without resorting to synthetic

chemical preservatives (31, 32, 125).

A key limitation is the compositional variability

among Allium extracts, with plant variety, cultivation

environment, extraction methodology, and storage

conditions all influencing the levels of active

compounds such as allicin. This inconsistency presents

challenges in standardizing dosages for therapeutic or

agricultural applications, complicating the ability to

achieve reliable results. Additionally, the stability of

Allium compounds raises concerns. For instance, allicin

is unstable and can degrade quickly when exposed to

heat, light, or oxygen in biological environments due to

the presence of a thiosulfinate group (R-S(=O)-S-R'). It

makes it more electrophilic and highly reactive. It can

also interact with thiol groups in proteins, leading to

the formation of mixed disulfides or sulfenic acids. This

instability limits its shelf life and effectiveness

compared to more stable synthetic antifungal agents.

While in vitro studies exhibited the antifungal efficacy

of Allium extracts against a range of fungi, there is a

notable lack of comprehensive in vivo clinical trials

confirming their effectiveness in human populations.

Therefore, research is needed for further investigation

into formulation strategies and delivery systems

(nanoencapsulation or prodrug) that can stabilize

allicin and enhance its therapeutic potential (42, 127,

128).

Synergistic investigations combining Allium extracts

with conventional antifungal agents may provide novel

approaches to overcome resistant fungal infections,

while reducing drug dosage and associated side effects.

When Allium compounds are combined with synthetic

antifungal drugs like amphotericin B, they can sensitize

resistant strains like Candida species to treatment by

increasing drug uptake, inhibiting efflux pumps, and

decreasing ergosterol levels in the membrane (129).
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6.1. Conclusions

This review synthesizes biomolecular data on Allium-

derived antifungals, spotlighting underutilized

saponins and the need for improved allicin

formulations. Allium species such as garlic, onions, and

leeks have a long-standing history in human culture and

are rich in bioactive components, including steroidal

saponins, organosulfur compounds, phenolics, and

peptides. These substances exhibit a wide array of

biological activities, particularly antifungal activity.

With the growing challenge of drug resistance in fungal

infections, there is an urgent demand for new

treatments that are effective and have lower toxicity.

Alliums offer a promising opportunity for the discovery

and isolation of new antifungal compounds. This

process involves discovering new molecules, modifying

existing structures, and examining their structure-

activity relationships, mechanisms of action, and

potential synergistic effects. Further clinical trials are

required to confirm the antifungal efficacy of Allium

species in humans. Such studies should address both

topical and systemic applications, with careful

evaluation of safety, therapeutic effectiveness, and long-

term outcomes. Integrating traditional knowledge with

modern scientific approaches underscores the

importance of Allium not only as a dietary component

but also as a valuable resource for promoting health and

preventing disease. Continued research into chemical

constituents and therapeutic potential remains

essential for developing innovative strategies to combat

fungal infections and improve overall well-being. By

emphasizing the roles of active compounds, we can fully

leverage the health benefits of Allium, facilitating

advancements in functional foods and natural

medicinal treatments. We recommend standardized

extract characterization and rigorous clinical studies to

translate these insights into effective antifungal

therapies.
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