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Abstract

Background: Opioid abuse is a global crisis, with diamorphine being one of the most dangerous substances of abuse. Diamorphine is a major contributor to

addiction and social issues.

Objectives: This study aimed to investigate the impact of different doses of diamorphine on spatial learning and memory by examining its effects on brain

mitochondria function.

Methods: Four groups of nine rats were selected to receive diamorphine at doses of 1, 5, and 10 mg/kg, while one group received diamorphine solvent at a dose

of 1 mL/kg. All treatments were given twice a day at 12-hour intervals for 10 days. The animals' memory performance was assessed using the Morris Water Maze

test. Additionally, tests were conducted to measure ADP/ATP levels, mitochondrial reactive oxygen species (ROS) levels, mitochondrial membrane potential

(MMP), lipid peroxidation (LPO), and antioxidant function, including total thiol groups measurement (TTM), and ferric reducing antioxidant power (FRAP).

Results: The results indicated that diamorphine at doses of 5 and 10 mg/kg significantly disrupted learning and spatial memory, as evidenced by changes in

latency (P < 0.0001), distance (P < 0.0001), and time spent in the target quadrant (P < 0.0001). Diamorphine also negatively impacted mitochondrial function

parameters, such as ROS levels (P < 0.0001), MMP (P < 0.0001), mitochondrial swelling (P < 0.0001), and ADP/ATP ratio (P < 0.0001). Furthermore, brain

antioxidant capacity was compromised (P < 0.0001).

Conclusions: This study on the mechanisms of brain damage induced by diamorphine showed that the harm arises from the impairment of mitochondrial

function. This impairment leads to the generation of ROS, reduced antioxidant capacity, decreased MMP, and an elevated ADP/ATP ratio.

Keywords: Diamorphine, Mitochondrial Impairment, Spatial Learning and Memory, Oxidative Stress, Reactive Oxygen

Species, Lipid Peroxidation

1. Background

Opioid use disorder is a pressing global concern. As

individuals develop tolerance and dependence on
opioids, they experience a myriad of problems and

crises throughout their lives (1). Among opioids,

diamorphine (heroin) has emerged as one of the main
causes of addiction, social problems, and costs. People

who suffer from diamorphine abuse and dependence

constitute an important population of substance abuse

patients (2). Diamorphine is the most widely used

opioid in the world and, compared to morphine, it acts
more potently in creating euphoria and relieving pain

(3). About 2.1 million Americans are suffering from

opioid use disorder, with approximately 1 million of

them abusing diamorphine, and 4.8 million people have
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used diamorphine at some point in their lives (4). In a

national study in Iran in 1993, the total number of drug

users was 7500 per 100,000 population. Numerous
studies from 1991 - 1998 have shown that drug addiction

is one of the most important problems in society, with a
prevalence of 16.5% in Iran (5). Diamorphine (also known

as 3 and 6 diacetylmorphine) is a semi-synthetic drug

obtained by acetylating two hydroxyl groups in
morphine (6). According to a study, diamorphine plays

an important role in deaths caused by opioid use,
accounting for about 32% of deaths caused by drug

abuse referred to the Legal Medicine Organization

(LMO) in Iran in 2015 (7). Diamorphine is a common

substance of abuse that causes deficits in attention and

weaker performance in memory tasks (5). Chronic use of
opioids such as diamorphine and morphine has been

shown to impair cognitive function (8, 9). Studies have
also shown that compared to morphine, diamorphine

has the potential for more neurotoxic effects, increasing

the activity of caspase 3 and inducing DNA damage,
protein, and lipid oxidation (10). By inhibiting

mitochondrial complex 1 through the activation of
mitochondrial permeable pores in neurons, morphine

causes excessive production of reactive oxygen species

(ROS). This oxidative damage can affect different parts of
the brain, including the cerebral cortex and

hippocampus, which are involved in memory and
learning (11).

2. Objectives

The aim of the present study is to examine the effects

of different doses of diamorphine on spatial memory

and learning through its effects on brain mitochondria

function.

3. Methods

3.1. Animals

Adult male Wistar rats (200 - 250 g) were provided by

the Faculty of Pharmacy of Tehran University of Medical

Sciences (TUMS). We kept the rats in cages during the

experiment with a 12-hour day/night cycle, with free

access to food and water. Body weight was monitored

throughout the experiment. The animals were

randomly divided into three groups of 9 rats each:

Group A for mitochondrial tests [ROS, mitochondrial

membrane potential (MMP), Swelling], group B for

assessing the antioxidant state of the rat brain [total

thiol groups measurement (TTM), ferric reducing

antioxidant power (FRAP), lipid peroxidation (LPO)], and

group C for the ADP/ATP ratio test.

3.2. Materials

Diamorphine was synthesized from morphine
sulfate using the method described by Barton et al. (12),

and the resulting diamorphine structure was confirmed
using nuclear magnetic resonance (NMR) spectroscopy.

The chemicals used included 4-(2-Hydroxyethyl)-1-

piperazine ethanesulfonic acid (HEPES), Trizma–HCl,
sodium succinate, 2',7'-dichlorodihydrofluorescein

diacetate (DCFH-DA), thiobarbituric acid (TBA), dimethyl
sulfoxide (DMSO), rotenone, Coomassie Brilliant Blue G

250, ferrous chloride (FeCl2), ethylene glycol-bis[beta-

aminoethyl ether (EGTA)-N,N,N',N'-tetraacetic acid],

potassium chloride, 3-(4,5-dimethylthiazol-2-yl)-2,5-
diphenyl tetrazolium bromide (MTT), sucrose, MgCl2,

rhodamine123 (Rh123), Na2HPO4, 2,4,6-tri(2-pyridyl)-s-

triazine (TPTZ), dithiobis nitro benzoic acid (DTNB),

xylazine (Royan Darou, Tehran, Iran), and ketamine

(Rotexmedica, Bunsenstr. 4. 22946 Trittau, Germany).

3.3. Experiments

In order to create a model of addiction and memory

destruction caused by opioids, male rats were

subcutaneously injected with diamorphine twice a day

with a 12-hour interval for ten consecutive days. All

animal studies were conducted in accordance with

international and national guidelines, including the

U.K. Animals (Scientific Procedures) Act, 1986, and EU

Directive 2010/63/EU for animal experiments.

Additionally, experiments were reported according to

the Animal Research: Reporting of In Vivo Experiments

(ARRIVE) guidelines. All procedures were carried out

under the supervision of the Ethics Committee of TUMS

with approval code IR.TUMS.VCR.REC.1398.049.

For this study, 36 male Wistar rats weighing between
200 - 250 grams, with free access to water and standard

food, were included. The animals were randomly

assigned to one of four groups, each consisting of 9

male rats. The diamorphine dose and injection timing

were based on previous studies (13, 14). Diamorphine
was dissolved in normal saline in three doses of 1, 5, and

10 mg/kg (injection volume up to 1 mL/kg) and

immediately injected subcutaneously twice a day at 12-

hour intervals.

The groups received the following treatments:

1. Control group: Received diamorphine solvent

(normal saline) at a dose of 1 mL/kg via subcutaneous

injection for 10 days (twice a day, 12-hour intervals).

2. Group receiving diamorphine at a dose of 1 mg/kg:

Administered via subcutaneous injection for 10 days
(twice a day, 12-hour intervals).
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3. Group receiving diamorphine at a dose of 5 mg/kg:

Administered via subcutaneous injection for 10 days

(twice a day, 12-hour intervals).

4. Group receiving diamorphine at a dose of 10

mg/kg: Administered via subcutaneous injection for 10

days (twice a day, 12-hour intervals).

Six hours after the last injection, the memory status

of the animals was evaluated using the Morris Water

Maze. The maze used in this study had a pond with a

diameter of 180 cm and a depth of 70 cm, filled halfway

with water at a temperature of 22 - 26 degrees Celsius.
The pond was hypothetically divided into four

quadrants: North-east (NE), north-west (NW), south-east

(SE), and south-west (SW). Four starting points were

designated as north (N), east (E), south (S), and west (W).

Ten millimeters below the water level, in the center of
the southeast quadrant, a transparent plexiglass

platform with a diameter of one hundred millimeters

was placed. The platform remained hidden and in the

same position throughout the training days. Visual cues

were present in the room for the animals during the

experiment.

The training phase consisted of four trials on the first

day. If an animal found the platform within 90 seconds,

it would stay on it for 30 seconds before the next trial.

Animals that did not find the platform within 90

seconds were gently guided to it and placed on it for 30
seconds. Training was conducted for four days with four

trials each day at the same time. On the fifth day, a single

trial (probe test) was conducted without the platform.

The animal was allowed to swim in the pool for 90

seconds, and the time spent in the quadrant where the

platform used to be was recorded (15, 16). The animal's

movements in the maze were recorded by a camera

placed above the maze and analyzed using Ethovision

software, version 11.5 (Noldus, Wageningen, Gelderland,

The Netherlands).

3.3.1. Mitochondria Isolation Technique from Brain

Following the completion of the probe test, nine rats

were promptly selected from each experimental group

and equally divided into three subgroups (n = 3 per

subgroup). One subgroup was designated for the

ADP/ATP assay, another was utilized to assess

mitochondrial functional parameters, and the third

subgroup was assigned to LPO and antioxidant function

tests, including TTM and FRAP. The rats were

anesthetized with ketamine (100 mg/kg) and xylazine

(10 mg/kg), then sacrificed to collect brain tissues. Brain

mitochondria were isolated using the differential

centrifugation technique after homogenizing the

whole-brain tissue with a manual glass homogenizer

(17). During the first centrifugation step (at 1500 g for 10

min, 4°C), cell debris and nuclei were removed. The

supernatant obtained was then subjected to a second

centrifugation step at 10,000 g for 10 min, 4°C. The

resulting supernatant was discarded, and isolation
medium was added to the mitochondrial pellets. This

was followed by another 10,000 g centrifugation step

for 10 min, at 4°C. The isolated mitochondria pellets

were then suspended in Tris buffer (0.25 M sucrose, 0.05

M Trizma HCl, 2.0 mM magnesium chloride, 20 mM
potassium chloride, and 1.0 mM disodium hydrogen

phosphate, pH 7.4) at 4°C.

For the measurement of ROS levels, the mitochondria

samples were suspended in a respiration buffer

containing 320 μM sucrose, 10 mM Tris, 20 mM Mops, 50

μM EGTA, 0.5 mM MgCl2, 0.1 mM KH2PO4, and 5 mM

sodium succinate. For MMP, the samples were

suspended in a buffer containing 220 mM sucrose, 5 mM

monobasic potassium phosphate, 10 mM potassium

chloride, 68 mM D-mannitol, 0.002 M magnesium
chloride, 10 mM HEPES, 0.005 M succinate, 0.05 mM

EGTA, and 2 μM Rotenone. The samples isolated for the
assessment of mitochondrial swelling were suspended

in a swelling buffer containing 0.07 M sucrose, 3 mM

HEPES, 230 mM mannitol, 0.002 M Tris-phosphate, 5 mM
succinate, and 0.001 mM rotenone. The Bradford

method (Bradford, 1976) was then used to measure
protein concentration and determine the amount of

brain mitochondrial protein. Samples with a protein

concentration of 500 μg/mL were used in all
experiments (18).

3.3.2. Measurement of Brain Mitochondrial Reactive Oxygen
Species Level

This test is based on the reaction between oxidizing

agents in the mitochondria and DCFH-DA, which is

measured using a fluorescence spectrophotometer.

Incubation and quantification were carried out

following the methods previously published (17-20),

using a Synergy 4 multi-mode microplate reader

(Biotek, Winooski, Vermont, USA) with an excitation

wavelength of 498 nm and an emission wavelength of

522 nm.

3.3.3. Measurement of Brain Mitochondrial Membrane
Potential

Brain MMP was measured by the mitochondrial

uptake of Rh123. Briefly, Rh123 was added to brain

mitochondrial fractions at a concentration of 10 μM in

the MMP assay buffer described previously. The

fluorescence was then measured using a fluorescence

spectrophotometer (Shimadzu RF5000U, Shimadzu,
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Kyoto, Japan), with excitation and emission wavelengths

of 490 nm and 535 nm, respectively (21).

3.3.4. Determination of Brain ADP/ATP Ratio

To measure the ADP/ATP ratio, high-performance

liquid chromatography (HPLC) was performed. Brain

tissue was homogenized in a 1 mL 6% TCA solution, then

centrifuged for 10 minutes at 12,000 g at 4°C. After

neutralizing the supernatant with potassium

hydroxide, the HPLC experiment was conducted as

described previously (22).

3.3.5. Measurement of Brain Mitochondrial Swelling

This test was conducted using a spectrophotometer

set to a wavelength of 540 nm, and the temperature of

the suspension containing mitochondria was 30°C. A
decrease in light absorption indicated an increase in the

swelling of the mitochondria (17).

3.3.6. Brain Antioxidant Function Test

2.3.6.1. Measurement of Total Thiol Groups in the Brain

The Tietze method was used to measure the total
thiol groups (23). Briefly, after centrifuging the

homogenized whole brain tissue at 15,000 g and 4°C for

10 minutes, 100 µL of the supernatant was transferred to
a 96-well microplate. After that, 200 µL of Ellman’s

reagent (4 mg DTNB in 10 mL of 10% sodium citrate) was
added to each well, and the absorbance was measured at

412 nm using an ELISA plate reader (BioTek, Winooski, VT,

USA).

3.3.6.2. Measurement of Ferric Reducing Antioxidant Power

This test is used to assess the brain's ability to reduce

Fe3+ to Fe2+ (24). Freshly prepared buffers were used,

including 300 mM acetate buffer (Ph = 3.6), 20 mM FeCl3,

and 10 mM TPTZ containing 0.031 g of TPTZ in 10 mL of

40 mM HCl. At a temperature of 37 degrees Celsius, the

diluted sample was mixed with a freshly prepared

reagent in a volume of 10 mL. The absorbance was

measured at 593 nm using a spectrophotometer.

3.3.7. Measurement of Malondialdehyde Content

Malondialdehyde (MDA), the primary indicator of

LPO in biological membranes, reacts with TBA to

produce a red-colored product that can be evaluated

either colorimetrically or fluorometrically. In this study,

MDA content was measured according to the method

described by Buege and Aust (25).

3.4. Statistical Analysis

Data is presented as Mean ± SD for the report of four

training trials per day. Data from escape latency,

swimming speed, and travel distance tests were

analyzed using a 4 × 4 two-way analysis of variance

(ANOVA), with the training day and diamorphine doses

considered as within-group and between-group factors,

respectively. The data from time spent in the target

quadrant in the probe test and parameters of

mitochondria, including ROS, MMP, swelling, ADP/ATP

ratio, and LPO, as well as antioxidant tests, were

analyzed using one-way ANOVA. Tukey’s post-hoc

analysis was conducted for multiple comparisons. A

significance level of P < 0.05 was considered significant.

4. Results

4.1. Function of Spatial Learning and Memory in MWM

The results of the statistical analysis using a two-way

ANOVA test showed that the dose of diamorphine and
the number of days of training had a significant effect

on the time taken and distance traveled to reach the

platform. Further analysis through multiple

comparisons revealed a significant decrease in both

distance traveled and time taken over a span of 4 days in
both the control group and the groups that received

diamorphine, except for the 10 mg/kg group.

Additionally, the 10 mg/kg dose diamorphine group

consistently traveled a longer distance and took more

time to reach the platform compared to the control
group on all training days (Figure 1A). Latency (dose: F(3,

28) = 666.5, P < 0.0001, η2
p = 0.98), latency (training

days: F(3, 84) = 90.39, P < 0.0001, η2
p = 0.72) (Figure 1B).

Distance (dose: F(3, 28) = 137.7, P < 0.0001, η2
p = 0.81),

distance (training days: F(3, 84) = 90.75, P < 0.0001, η2
p =

0.66) (Figure 1B). Furthermore, the interaction effect of

diamorphine dose and training days significantly

impacted arrival time and distance traveled to the

platform. Latency (F(9, 84) = 4.56, P < 0.0001, η2
p = 0.31),

distance (F(9, 84) = 4.8, P < 0.0001, η2
p = 0.33) (Figure 1B).

For the speed of reaching the platform, neither

diamorphine doses nor training days had a significant

effect on this variable. Additionally, the interaction

effect of diamorphine dose and training days was not

statistically significant. Velocity (dose: F(3, 28) = 0.38, P =

0.65, η2
p = 0.273), Velocity (training days: F(3, 84) = 0.37, P

https://brieflands.com/articles/ijpr-162320
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Figure 1. Alterations in the Morris Water Maze test (MWM) results over four training days in groups receiving doses of 1, 5, and 10 mg/kg of diamorphine: A, distance traveled; B,
latency; and C, swimming speed (** P < 0.01, and **** P < 0.0001 compared to the control group on the same day; ++++ P < 0.0001 compared to day 1 in the same group).

= 0.69, η2
p = 0.49), Velocity (interaction: F(9, 84) = 0.71, P

= 0.58, η2
p = 0.138) (Figure 1C). The dose of diamorphine

significantly affected the time spent in the target area

during the probe test on the day of the test in the MWM

test (F(3, 31) = 199.24, P < 0.0001, η2
p = 0.81). Additionally,

in terms of time spent in the target area, the doses of 5

and 10 mg of diamorphine spent less time compared to

the control group and the dose of 1 mg/kg. The dose of 10

mg/kg also spent less time compared to 5 mg/kg (Figure

2).

4.2. Results of Brain Mitochondria Functional Tests

4.2.1. Reactive Oxygen Species Level of Brain Mitochondria

The results have shown a direct relationship between

the dose of diamorphine and the level of mitochondrial

oxidative stress in the brain. The level of oxidative stress

significantly increases with the dose (F(3, 19) = 848555, P

< 0.0001, η2
p = 0.93), as represented in Figure 3A.

Multiple comparisons indicate significantly higher

brain mitochondrial oxidative stress in dose groups 5

mg/kg (P < 0.01) and 10 mg/kg (P < 0.0001) compared to

the control group, as well as in the 10 mg/kg group

compared to the 1 mg/kg and 5 mg/kg groups (P <

0.0001, P < 0.01). However, there were no significant

differences between the 1 mg/kg group and the control

group in brain mitochondrial ROS levels (P = 0.191).

4.2.2. Measuring the Mitochondrial Membrane Potential

The results indicate that diamorphine significantly

decreases MMP, with higher doses likely causing a

greater decrease (F(3, 19) = 180686, P < 0.0001, η2
p =

0.93). Multiple comparisons have shown that the level of

https://brieflands.com/articles/ijpr-162320
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Figure 2. The effect of various doses of Diamorphine on the time spent in the target quadrant in probe test of the Morris Water Maze test (MWM) (**** P < 0.0001 compared to the
control group; #### P < 0.0001 compared to the Diamorphine 1 mg/kg group).

Figure 3. The effect of different doses of Diamorphine on mitochondrial and cellular parameters: A, reactive oxygen species (ROS) formation; B, mitochondrial membrane
potential (MMP); C, mitochondrial swelling; D, brain ADP/ATP ratio (* P < 0.05, *** P < 0.001, **** P < 0.0001 compared with the control group; ## P < 0.01, ### P < 0.001, and ####
P < 0.0001 compared with the diamorphine 1 mg/kg group; $$ P < 0.01 and $$$$ P < 0.0001 compared with the diamorphine 5 mg/kg group).

MMP is significantly lower in dose groups of 5 mg/kg (P
< 0.0001) and 10 mg/kg (P < 0.0001) compared to the

control group. Additionally, the 10 mg/kg group showed

significantly lower levels compared to the groups that
received 1 mg/kg and 5 mg/kg of diamorphine (P <

0.0001, P < 0.01). This significant difference is reflected
in the intensity of fluorescence absorption in the graph.

Conversely, diamorphine at 1 mg/kg did not have a

significant effect on MMP compared to the control
group (P = 0.191) (Figure 3B).

https://brieflands.com/articles/ijpr-162320
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Figure 4. Plot of the effects of various doses of diamorphine on antioxidant tests in the rat brain: A, total thiol groups measurement (TTM); B, ferric reducing antioxidant power
(FRAP); C, lipid peroxidation (LPO) (** P < 0.001 and **** P < 0.0001 compared with the control group; ## P < 0.01, ### P < 0.001, and #### P < 0.0001 compared with the
diamorphine 1 mg/kg group; $ P < 0.05 and $$ P < 0.01 compared with the diamorphine 5 mg/kg group).

4.2.3. Measuring the Amount of Mitochondrial Swelling

The results indicated that the impact of diamorphine

dosage on brain mitochondrial swelling was significant

(F(3, 19) = 2799, P < 0.0001, η2
p = 0.94). Multiple

comparisons revealed that the level of swelling was

notably higher in the groups receiving 5 mg/kg (P <

0.05) and 10 mg/kg (P < 0.0001) compared to the control

group, and in the 10 mg/kg group compared to the 1 and

5 mg/kg groups (P < 0.0001). Conversely, diamorphine at

1 mg/kg did not have a significant effect on brain

mitochondrial swelling compared to the control group

(P = 0.188) (Figure 3C).

4.2.4. Brain ADP/ATP Ratio

The results indicated that the dose of diamorphine

has a significant effect on the ADP/ATP level (F(3, 19) =

64.1, P < 0.0001, η2
p = 0.98). Multiple comparisons

revealed that the ADP/ATP levels were significantly

higher in the 5 mg/kg dose group (P < 0.001) and 10

mg/kg dose group (P < 0.0001) compared to the control

group. Additionally, the 10 mg/kg dose group had

significantly higher ADP/ATP levels compared to the 1

and 5 mg/kg groups (P < 0.0001). Conversely, the 1 mg/kg

dose of diamorphine did not have a significant effect on

ADP/ATP levels compared to the control group (P = 0.182)

(Figure 3D).

4.3. The Results of Brain Antioxidant Tests

4.3.1. Total Thiol Groups Measurement

The results showed significant differences in the

reduction of the total thiol groups in brain tissue based

on the dose of diamorphine administered (F(3, 19) =

82.11, P < 0.0001, η2
p = 0.89). Multiple comparisons

revealed that the levels of TTM significantly decreased in

the 5 mg/kg (P < 0.001) and 10 mg/kg (P < 0.0001) dose

groups compared to the control group. Additionally, the

10 mg/kg group showed a significant decrease

compared to the 1 mg/kg and 5 mg/kg groups (P <

0.0001, P < 0.05). However, the administration of

diamorphine at 1 mg/kg did not have a significant effect

on TTM compared to the control group (P = 0.287)

(Figure 4A).

4.3.2. Ferric Reducing Antioxidant Power

The results indicated a significant difference in

reducing the antioxidant power of ferric in brain tissue

between diamorphine doses (F(3 ,19) = 333.13, P < 0.0001,

η2
p = 0.91). Multiple comparisons revealed that this

reduction was significantly greater in the 5 mg/kg (P <

0.01) and 10 mg/kg (P < 0.0001) dose groups compared

to the control group, and in the 10 mg/kg group

compared to the 1 mg/kg and 5 mg/kg groups (P <

0.0001, P < 0.01). However, diamorphine at 1 mg/kg did

not have a significant effect on reducing the antioxidant

power of ferric in brain tissue compared to the control

group (P = 0.149) (Figure 4B).

4.4. Lipid Peroxidation

The results indicated that diamorphine increased the

amount of LPO in brain tissue in a dose-dependent

manner (F(3, 19) = 1304.2, P < 0.0001, η2
p = 0.82).

Multiple comparisons showed significantly higher

levels of LPO in the 5 mg/kg (P < 0.01) and 10 mg/kg (P <

0.0001) dose groups compared to the control group,

and in the 10 mg/kg group compared to the 1 mg/kg and

5 mg/kg groups (P < 0.0001, P < 0.01). However,

diamorphine at 1 mg/kg did not have a significant effect

on LPO compared to the control group (P = 0.221) (Figure

4C).
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5. Discussion

The major finding of this study showed that

diamorphine significantly disrupts the process of

spatial learning and memory. In the Morris Water Maze

test, diamorphine increased latency, decreased distance

traveled day by day, and reduced time spent in the target

quadrant. These results are consistent with a recent

study that showed reduced performance of rats exposed

to diamorphine in utero during the MWM test (26).

Another study showed no difference in the rats exposed

to diamorphine vapor in spatial memory and learning

MWM test (27), which could be due to the lower

bioavailability of diamorphine in the burning and

vaporization method (28).

One explanation for these effects is that diamorphine

causes mitochondrial dysfunction, as evidenced by

increased ROS levels, mitochondrial swelling, altered

ADP/ATP ratio, and decreased MMP. Elevated ROS levels

can lead to oxidative stress, disrupting the balance

between free radical production and the body's

antioxidant defenses. This imbalance can damage lipids,

proteins, and DNA (29). This study demonstrated spatial

memory and learning impairment resulting from 10-

day injections of diamorphine twice a day, a close opioid

derivative to morphine (30). One possible reason for this

impairment may be the negative impact of

diamorphine on neuronal mitochondria in brain

regions associated with spatial memory, including the

hippocampus, prefrontal cortex, posterior parietal

cortex, and other areas of the cerebral cortex (31).

The first mechanism that can be proposed for the

cognitive problems of diamorphine may be caused by

the dysfunction of mitochondria, the results of which

are shown below. The results of mitochondrial function

tests showed that diamorphine causes a large number

of mitochondrial dysfunctions, including increased ROS

levels causing oxidative stress that led to LPO, protein

damage, reduced antioxidant capacity, decreased MMP,

altered ADP/ATP ratio, and mitochondrial swelling.

These findings are consistent with other studies on

opioids (32).

In this study, it was demonstrated that diamorphine

doses of 5 and 10 mg increased the amount of ROS

produced by mitochondria, which aligns with the

literature. Diamorphine addiction, through activation

of μ-opioid receptors, may result in the generation of

ROS similar to morphine. This process can trigger

downstream effects such as activation of mitochondrial

ROS pathways, ultimately leading to the initiation of

apoptosis and the caspase-3 cascade (6, 33, 34).

Although our findings indicate increased ROS and

mitochondrial dysfunction, key antioxidant enzymes

such as SOD, GPx, and catalase were not assessed. This

limits our understanding of oxidative stress

mechanisms (35, 36). Moreover, although mitochondrial

impairment suggests apoptosis or necrosis, no direct

tests such as caspase-3 assay, TUNEL, or histology were

performed (37, 38). These are important areas for future

studies.

Additionally, diamorphine can be metabolized into

free radicals (39). Repeated doses of morphine have

been shown to cause an increase in dopamine turnover

and xanthine oxidation in the striatum. This increase in

dopamine oxidative metabolism contributes to an

increase in ROS formation (9, 40).

A study on chronic intravenous diamorphine users

showed that diamorphine can impair the redox status

of erythrocytes (41). Another study demonstrated that

diamorphine can induce DNA damage in C57BL/6J mice

in the prefrontal cortex and nucleus accumbens by

increasing ROS levels (42). An increase in ROS formation

was reported in mice in a study that administered

intraperitoneal injections of diamorphine for 40 days

(3). Another study reported a significant increase in all

oxidative damage indices, such as 8-hydroxy-2′-
deoxyguanosine (8-OHdG), protein carbonyl groups,

and MDA contents in the brains of diamorphine-treated

mice (43). A study on human platelets found a strong

association between diamorphine addiction and

significant levels of oxidative damage (44). Another

study also reported an increase in ROS formation in the

hepatic mitochondria of Wistar rats and oxidative

damage to the liver caused by diamorphine-based

substances (45).

The second mechanism could be that brain

antioxidant capacity is impaired by diamorphine.

Studies have shown that opioids can decrease the brain's

GSH content, leading to a reduction in the enzymatic

activities of superoxide dismutase, glutathione

peroxidase, and glutathione reductase in the

hippocampus. This could be a contributing factor to

memory impairment (46).

The results of the present study showed a significant

decrease in MMP by diamorphine, especially with higher

doses. Previous studies have shown that diamorphine

causes a decrease in MMP and induces the

mitochondrial pathway of apoptosis in cortical neurons

in an in vitro study (47). Another study on PC12 cells

reported a significant decrease in MMP after treatment

with diamorphine (48). The present study is the first to

investigate the effects of diamorphine on MMP in vivo

and shows its decreasing effect on MMP, which is in

https://brieflands.com/articles/ijpr-162320
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agreement with previous in vitro studies that found

similar results.

The present study found significant mitochondrial

swelling in rats treated with diamorphine. Another

study also reported mitochondrial swelling in rats with

prolonged diamorphine addiction (49). Additionally,

there is a report of mitochondrial swelling in the brain

autopsies of human patients with diamorphine

addiction (50). This finding has also been reported to be

induced by other opioids such as tramadol in rat liver

cells, and fentanyl and remifentanil in rat brains (51, 52).

One possible reason for the decrease in MMP and

mitochondrial swelling could be the disruption of the

electron transfer chain and the opening of the

mitochondrial permeability transition (MPT) pores,

which have been examined in previous studies with

other opioids like tramadol (50).

Our study showed that diamorphine causes an
increase in the ADP/ATP ratio, which is a result of lower

ATP production than its consumption and could inhibit

further ATP consumption (53). The present study also
showed that diamorphine decreases brain antioxidant

capacity in the tests TTM, FRAP, and LPO. This defect
leads to damage in the brain, which is prone to oxidative

damage (54). A decrease in total thiol and FRAP was also

evident in the groups of rats that received 5 mg/kg or 10
mg/kg of diamorphine, indicating a reduction in brain

antioxidant capacity. Studies have shown that overall
antioxidant capacity has decreased in a rat model of

diamorphine addiction, observed in the activity of

enzymatic and non-enzymatic antioxidants such as
superoxide dismutase, catalase, and the concentrations

of vitamins A, C, and E (55). Our study is the first to
examine TTM and FRAP in relation to diamorphine.

The findings of our study showed that MDA

significantly increased as an indicator of LPO in the

groups of rats that received 5 mg/kg or 10 mg/kg of

diamorphine. This could exacerbate oxidative damage

to neurons whose antioxidant capacity has already

decreased. The MDA accumulation itself damages the

mitochondria as an oxidative agent (56). A study showed

an increase in LPO among chronic abusers of

diamorphine (57).

5.1. Conclusions

The findings of this study showed that diamorphine

can cause impairment of spatial learning and memory

through the impairment of mitochondrial function,

including increased ROS production, which causes

oxidative stress, leading to LPO, protein damage, and

reduced antioxidant capacity. Additionally,

mitochondrial dysfunction, characterized by MMP

disorder and mitochondrial swelling, along with

disruption of the ATP:ADP ratio, results in neuronal

damage and changes in memory and learning. This

impairment was more prominent with higher doses of

diamorphine, especially at the dose of 10 mg/kg. Further

studies are needed to elucidate the effects of

diamorphine on superoxide dismutase and cytochrome

C, as well as to evaluate the effects of antioxidants in

preventing these damages.
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