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Abstract

Background: Epilepsy is a condition characterized by frequent bursts of neuro-electrical impulse activity in the brain,

involving the expression of transient receptor potential vanilloid receptor 1 (TRPV1). Zingerone (ZO) is known to possess a

multitude of regulatory mechanisms for TRP channels. However, clear evidence of ZO in the regulation of TRPV1 expression has

not yet been reported.

Objectives: The present study was designed to evaluate the therapeutic role of ZO against pentylenetetrazole (PTZ)-induced

kindled seizures (KS) in mice.

Methods: The KS were induced by intraperitoneal (i.p.) administration of three doses of PTZ (35 mg/kg/day) in mice on every

alternate day (day 1, 3, and 5). Additionally, the PTZ challenge test was performed on day 20. The ZO doses of 25 and 50 mg/kg;

TRPV1 antagonist, i.e., selective TRPV1 antagonist (SB-366791, 10 mg/kg); and a combination of ZO and SB-366791 were

administered orally (p.o.). The seizure score was assessed using Racine's scoring system on day 20. Changes in KS-associated

spatial cognition were assessed by the water Y-maze and water T-maze tests. The hippocampal tissue biomarkers, i.e.,

thiobarbituric acid reactive substances (TBARS), reduced glutathione (GSH), tumor necrosis factor-alpha (TNF-α), and TRPV1

expression were estimated.

Results: The ZO attenuates the PTZ-induced changes in Racine's scores and spatial cognition effects in Y-maze and water T-

maze tests. Furthermore, ZO also ameliorates the PTZ-induced biomarker changes.

Conclusions: Hence, ZO possesses therapeutic potential against KS conditions in mice via regulation of TRPV1 channel

functions. However, more extensive studies are required to prove this therapeutic potency in different seizure conditions across

various animal species.

Keywords: Cognition Deficits, Reduced Glutathione, Thiobarbituric Acid Reactive Substances, Tumor Necrosis Factor, Water T-

maze, Water Y-maze

1. Background

Epilepsy is a condition characterized by frequent

bursts of neuro-electrical impulse activity in the brain.
The risk factors for epilepsy include brain trauma,

autoimmune disease, and metabolic abnormalities,

including chemicals like pentylenetetrazole (PTZ) (1).

Transient receptor potential vanilloid receptor 1 (TRPV1)

is a calcium-permeable channel that is highly expressed
in the cornu ammonis area of the epileptic brain (2).

Calcium channels are responsible for regulating

neuronal impulses and promoting neuronal firing

(excitation) in the brain (3). Medications for the

management of seizures primarily regulate the

neuronal membrane potential by blocking sodium

channels and excitatory neurotransmitter functions (4).
Neuronal calcium channel blockers possess a weak

effect on reducing seizure frequency and can cause

withdrawal side effects (5). However, the identification

and exploration of newer neuronal receptor functions

with molecular aspects of calcium channels are
important for managing patients with severe epileptic

attacks.
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The activation of TRPV1 is involved in the progression

of epilepsy. The TRPV1 is known to open the cation

channel, which leads to epilepsy via the enhancement of
neuronal excitability and neuroinflammation (6). From

a pharmacological perspective, TRPV1 is a widely
accepted target for epilepsy management. Moreover,

endocannabinoids like anandamide activate TRPV1,

contributing to the enhancement of pro-convulsant
action (2). Furthermore, the administration of TRPV1

antagonists, such as capsazepine, attenuates the
progression of epilepsy (7).

The calcium-permeable TRPV1 channels also

contribute to neuronal firing and cause epilepsy (6).

Zingerone (ZO) is a non-toxic methoxyphenolic

compound with multiple biological and

pharmacological effects (8). Some studies have revealed

that ZO activates the TRPV1 channel via direct

interaction with the TRPV1 channel pore (9). However,

repeated administration of ZO is known to cause the

desensitization of TRPV1 proteins. The ZO modulates

neuronal TRP channels by sensitization and

desensitization in dose- and duration-dependent

manners (10). Nevertheless, there is currently no

conclusive proof linking ZO to the control of TRPV1

expression in epileptic disorders.

2. Objectives

With a correlation to TRPV1 channel modulatory

effects, the current work aims to assess the therapeutic

role of ZO against PTZ-induced kindling seizures in

mice.

3. Methods

3.1. Animals Used

In this investigation, male Swiss albino mice (12

months, 20 - 30 g) were employed. The animals were fed

a conventional laboratory meal and had free access to

water. The animals were kept in a central animal home

with a 12-hour day/night cycle. The institutional animal
ethics committee (IAEC permission no.: 20240119)

approved this experimental design. The experiments

followed the IAEC criteria.

3.2. Experimental Design

The experimental design included five groups, each

consisting of eight mice. Group I animals acted as the
naive control. Group II animals acted as negative

controls. This group of rats was subjected to recurrent

intraperitoneal (i.p.) treatment with a 35 mg/kg dose of
PTZ to induce kindled seizures (KS) over three alternate

days, i.e., day 1, 3, and 5. In KS-induced mice, groups III

and IV received oral ZO (25 and 50 mg/kg, respectively)

for 15 days after the third dose of PTZ (from day 6).
Group V mice received the selective TRPV1 antagonist

(SB-366791, 10 mg/kg; p.o.) for 15 days (from day 6) after
the third dose of PTZ in KS-induced mice. Groups VI and

VII received a combination of ZO (25 and 50 mg/kg; p.o.)

with SB-366791 (10 mg/kg; p.o.), respectively, for 15 days
after the third dose of PTZ administration. Additionally,

the animals in groups II to VII were employed in the PTZ
challenge test on day 20 by administering a 35 mg/kg

dose of PTZ.

3.3. Induction and Assessment of Kindled Seizures

Three sub-convulsant dosages of PTZ (35 mg/kg) were

repeatedly injected intraperitoneally on days 1, 3, and 5

to induce KS. According to Tambe et al. (11), with

modification from Shimada and Yamagata (12), this

method can induce kindling seizures in mice.

Convulsive behaviors were monitored for 30 minutes

after the PTZ challenge test on day 20. Van Erum et al.'s

modified Racine's scoring system was employed to

evaluate the severity of the Seizure Index (SI) on the

twentieth day (13).

3.4. Assessment of Kindled Seizures-Induced Spatial
Cognition by the Water Y-Maze Test

The KS-induced changes in spatial cognition were

assessed by water Y-maze tests as described by the

method of Deacon (14) with the modification of

Kraeuter et al. (15). The water Y-maze test was used for

the assessment of KS-associated spatial cognitive

functions. The spatial cognitive function of mice was

assessed by placing the mice at the starting point of the

water Y-maze test device. An acclimatization period of 5

minutes was allotted before performing the test

observation. During this acclimatization period, the

animal was exposed to all three arms. Mice were placed

at the starting point to assess spatial cognitive functions

by determining transfer latency (TL). The cut-off time

was maintained for two minutes for this cognitive

functional observation.

3.5. Assessment of Kindled Seizures-Induced Spatial
Cognition by Water T-Maze Test

Water T-maze tests were used to investigate the

effects of KS on spatial cognition, following the method

reported by Guariglia and Chadman (16) and Locchi et

al. (17). The water T-maze test assessed spatial cognitive

abilities linked with KS. The spatial cognitive function of

mice was assessed by placing the mice at the starting
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point of the water T-maze test device. An acclimatization

period of 5 minutes was allotted before performing the

test observation. During this acclimatization period, the

animal was exposed to all three arms. If the animal did

not reach the red and green chambers, guidance was
given to reach the corner of each arm. The next day, mice

were placed at the starting point to assess spatial

cognitive functions by determining TL. The cut-off time

was maintained for two minutes for this cognitive

functional observation.

3.6. Estimation of Hippocampal Tissue Markers Changes

Following the evaluation of behavioral data, mice

were sacrificed by cervical dislocation. A phosphate

buffer with a pH of 7.4 that had been chilled with ice was

used to homogenize the hippocampus tissue. Tissue

biomarkers, such as thiobarbituric acid reactive

substances (TBARS), reduced glutathione (GSH), tumor

necrosis factor-alpha (TNF-α), and TRPV1 expression

levels, were evaluated using the aliquot.

3.6.1. Estimation of Thiobarbituric Acid Reactive Substances

The TBARS estimation is an indicator of lipid

peroxidation, which is produced during cellular stress

and damaged conditions. The Ohkawa et al. (18)

approach was used to assess the tissue TBARS levels. In

simple terms, 0.2 mL of the aliquot was combined with

1.5 mL of 30% acetic acid, 0.2 mL of sodium dodecyl

sulfate (8.1%), and 1.5 mL of thiobarbituric acid (0.8%).

Distilled water was used to create the entire volume of 4

mL. A spectrophotometer (DU 640B Spectrophotometer,

Beckman Coulter Inc., Brea, CA, USA) set to 532

nanometers was used to quantify the variations in the

pink-colored chromogen.

3.6.2. Estimation of Reduced Glutathione

The GSH estimation is an indicator of oxidative stress,

which is depleted during cellular stress and damaged

conditions. Ellman's method for estimating tissue GSH

levels was reported (19). In summary, 10% w/v

trichloroacetic acid (1:1 ratio) was combined with the

tissue supernatant. These mixtures were centrifuged at

123 G force for ten minutes at 4°C. Two milliliters of

disodium hydrogen phosphate (0.3 M) were combined

with roughly 0.5 milliliters of a clear aliquot. A freshly

made 5,5-Dithiobis (2-Nitro Benzoic Acid and DTNB;

0.001 M) solution was then added in an amount of

approximately 0.25 mL. Using a spectrophotometer (DU

640B Spectrophotometer, Beckman Coulter Inc., Brea,

CA, USA) set to 412 nanometers, the variations in the

yellow-colored chromogen were measured.

3.6.3. Estimation of Tumor Necrosis Factor-alpha and
Transient Receptor Potential Vanilloid Receptor 1 Expression

The estimation of TNF-α and TRPV1 is an indicator of

inflammation and activation of TRPV1 channels,

respectively, which are expressed during KS conditions

with neuronal damage. It was calculated using the

guidelines provided by the commercial enzyme-linked

immunosorbent assay (ELISA) kit (MyBioSource,

Selangor Darul Ehsan, Malaysia). The changes in

chromogen were measured by a microplate reader

(BioTek Microplate Instruments, Penang, Malaysia) at

450 nanometer wavelengths.

3.6.4. Estimation of Tissue Total Proteins

The approach published by Lowry et al. (20) was used

to estimate the total proteins in the tissue. In summary,

5 mL of Lowry's reagents, 1 mL of phosphate buffer, and

roughly 0.15 mL of an aliquot were combined in test

tubes. The Folin-Ciocalteu reagent (0.5 mL) was then

added and quickly vortexed. A spectrophotometer (DU

640B Spectrophotometer, Beckman Coulter Inc., Brea,

CA, USA) set to 750 nanometers was used to measure the

variations in the purple-colored chromogen.

3.7. Statistical Analysis

The standard deviations (SD) of each data set were

displayed. GraphPad Prism software version 5.0,

developed by Dotmatics (R&D scientific software firm,

San Diego, CA, USA), was used to statistically evaluate the

data from the KS score, water Y-maze, and water T-maze

tests using the two-way analysis of variance (ANOVA) test

and the Bonferroni post-hoc test. Additionally, one-way

ANOVA and Tukey's multiple range tests were used to
assess the results on TBARS, GSH, TNF-α, TRPV1, and total

protein levels. A statistically significant probability (P)

value was defined as one that was less than 0.05.

4. Results

4.1. Effect of Zingerone on the Changes of Kindled Seizures-
Induced Racine's Score

The administration of PTZ (35 mg/kg; i.p., for three

alternate days, i.e., day 1, 3, and 5) resulted in a

significant increase in Racine's score compared to the

normal group (P < 0.01). The data showed similar results

in the day 20 PTZ challenge test, suggesting that PTZ

produces KS due to alterations in neuronal membrane

potential (excitation). When compared to the KS group,

the oral administration of ZO (25 and 50 mg/kg; for 15

days) and in combination with SB-366791 decreased the
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KS-induced Racine's score in a dose-dependent manner.

The SB-366791 (10 mg/kg; p.o.) alone treatment group

experienced a similar effect. The ZO has the same

ameliorative potential against KS via TRPV1 antagonist

action, indicated by a reduction of KS-induced Racine's

scores. The data results are displayed in Figure 1.

4.2. Effect of Zingerone on the Changes of Kindled Seizures-
Induced Spatial Cognition in the Water Y-Maze Test

The administration of PTZ (35 mg/kg; i.p., for three

alternate days, i.e., day 1, 3, and 5) resulted in a

significant increase in TL duration (P < 0.05). This

suggests that PTZ impairs spatial cognition in KS-

induced mice relative to the normal group due to

alterations in neuronal excitation brought on by

neuronal injury and neurotransmitter dysfunction

compared to the KS group (P < 0.037). The PTZ-induced

increase in TL length is attenuated in a dose-dependent

manner by oral ZO treatment (25 and 50 mg/kg) and in

combination with SB-366791 for 15 consecutive days. The

SB-366791 (10 mg/kg; p.o.) alone treatment group

experienced a similar effect. The decrease in TL length

suggests that ZO can alleviate KS, which is comparable

to TRPV1 antagonist therapies. The data results are

displayed in Figure 2.

4.3. Effect of Zingerone on the Changes of Kindled Seizures-
Induced Spatial Cognition in the Water T-Maze Test

The administration of PTZ (35 mg/kg; i.p., for three

alternate days, i.e., day 1, 3, and 5) resulted in a

significant increase in TL duration compared to the

normal group (P < 0.001). This indicates that PTZ
impairs spatial cognition in KS-induced mice due to

alterations in neuronal excitation linked to

neurotransmitter dysfunction and neuronal death. In

comparison to the KS group, the PTZ-induced increase in

TL length was reduced in a dose-dependent manner by
oral administration of ZO (25 and 50 mg/kg) and in

combination with SB-366791 for 15 days. The SB-366791

(10 mg/kg; p.o.) alone treatment group experienced a
similar effect. The decrease in TL length suggests that ZO

can alleviate KS, which is comparable to TRPV1
antagonist therapies. The data results are displayed in

Figure 3.

4.4. Effect of Zingerone on the Changes in Hippocampal
Tissue Markers

The administration of PTZ (35 mg/kg; i.p., for three

alternate days, i.e., day 1, 3, and 5) resulted in a

significant rise in TBARS content, expression of TNF-α
and TRPV1 proteins, and reduced GSH content levels.

This indicates that PTZ causes neuronal damage via

oxidative stress, lipid peroxidation, and alteration of

neuronal membrane potentials when compared to the

normal group (P < 0.029). Compared to the KS group,

the PTZ-induced changes in the aforementioned

hippocampus tissue markers were lessened when ZO (25

and 50 mg/kg) was administered orally, either alone or

in combination with SB-366791, for 15 consecutive days.

The SB-366791 (10 mg/kg; p.o.) alone treatment group

experienced a similar effect. The regulation of tissue

biomarkers and neuronal calcium ion channel proteins

indicates that ZO possesses ameliorative potential

against KS, similar to TRPV1 antagonist treatments. The

results of the data are tabulated in Table 1.

5. Discussion

The i.p. administration of PTZ (35 mg/kg; i.p., for three

alternate days, i.e., day 1, 3, and 5) in mice demonstrated

a significant development of the KS Racine score in the

PTZ challenge test. It also causes cognitive dysfunction

due to the alteration of neuronal membrane calcium

ion channel proteins, expression of inflammatory

cytokines, and induction of oxidative stress. The PTZ was

causing the KS and behavioral alterations in mice (21).

This study's findings show that PTZ demonstrated

changes in spatial memory in the water Y-maze and

water T-maze tests comparable to normal animals.

Additionally, PTZ decreased the amount of GSH in the

hippocampus tissue of mice and increased the levels of

TBARS, TNF-α, and TRPV1. These findings are comparable

to those of other studies (22). Our results indicate that

KS conditions cause severe neuronal oxidative stress and

neuroinflammation in mice with the expression of

TRPV1 channel proteins. Furthermore, it causes kindling

seizures in mice; hence, it is known as the chemical

kindling model of epilepsy (23). Long-term exposure to

PTZ also induces the release of neurotransmitter

precursors, i.e., phenylalanine and isoleucine, for

glutamate synthesis (24). The present studies also

revealed that PTZ causes the reduction of neuronal

endogenous antioxidant molecules, i.e., GSH.

Furthermore, PTZ also enhances the MDA products,

which are released due to neuronal membrane lipid

peroxidation via modulation of the TRPM2 channel, i.e.,

transient receptor potential melastatin-2 (25). Besides,

PTZ also causes KS in rats via the expression of central

TRPV1 receptors (26).

Natural products, such as ZO, are known to activate

the TRPV1 receptor (27). Furthermore, another study

evidenced that the vanilloid group of ZO is not sufficient

to activate the TRPV1 channels (28). The synthetic analog

of the TRPV1 agonist, capsaicin, activates the TRPV1

channels at the initial stage, whereas later it acts as an

https://brieflands.com/articles/ijpr-162878


Tian X and Xu X Brieflands

Iran J Pharm Res. 2025; 24(1): e162878 5

Figure 1. Effect of ZO on the changes of the KS-induced Racine's score. The numbers in parentheses represent a dose of mg/kg. The results are presented as the mean SD, with n =
8 mice per group. a, P < 0.05 versus the control group; and b, P < 0.05 versus the KS group. (Abbreviations: KS, kindled seizure; SB-366791, selective TRPV1 antagonist; and ZO,
zingerone).

Figure 2. Effect of ZO on the changes of the KS-induced spatial cognition in the water Y-maze test. The numbers in parentheses represent a dose of mg/kg. The results are
presented as the mean SD, with n = 8 mice per group. a, P < 0.05 versus the control group; and b, P < 0.05 versus the KS group. (Abbreviations: KS, kindled seizure; SB-366791,
Selective TRPV1 antagonist; TL, transfer latency; and ZO, zingerone).

antagonist of the TRPV1 channel (29). Hence, natural

pungent compounds like ZO have pleiotropic actions on

the same receptor based on the exposure episodes and

duration in experimental animals (30). In epileptic
conditions, ZO possesses hippocampal neuroprotection

against lithium chloride and pilocarpine-induced

neuroinflammation and neurodegeneration (31).

Furthermore, the aging process is known to decline

cognitive functions. According to the Jackson Aging

Center, a 12-month-old mouse is considered a mature

adult or middle-aged mouse (32). This may be one of the
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Figure 3. Effect of ZO on the changes of the KS-induced spatial cognition in the water T-maze test. The numbers in parentheses represent a dose of mg/kg. The results are
presented as the mean SD, with n = 8 mice per group. a, P < 0.05 versus the control group; b, P < 0.05 versus the KS group. (Abbreviations: KS, kindled seizure; SB-366791, Selective
TRPV1 antagonist; TL, transfer latency; and ZO, zingerone).

Table 1. Effect of Zingerone on the Changes of Hippocampal Tissue Markers a,b

Groups (mg/kg) c TBARS (nmol/mg of Protein) GSH (µmol/mg of Protein) TNF-α (pg/mg of Protein) TRPV1 (pg/mg of Protein)

Normal 1.21 ± 0.04 54.82 ± 1.6 0.32 ± 0.02 41.34 ± 1.4

KS (35) 4.37 ± 0.05 d 10.89 ± 1.3 d 4.63 ± 0.07 d 113.71 ± 2.1d

KS+ZO (25) 3.16 ± 0.06 e 32.47 ± 1.7 e 1.58 ± 0.05 e 56.14 ± 1.8 e

KS+ZO (50) 2.53 ± 0.04 e 42.83 ± 1.5 e 1.12 ± 0.06 e 51.46 ± 1.9 e

KS+SB-366791 (10) 1.48 ± 0.06 e 49.93 ± 1.1 e 0.71 ± 0.04 e 44.89 ± 1.7 e

KS+ZO (25)+SB-366791 (10) 2.93 ± 0.04 e 37.19 ± 2.2 e 1.16 ± 0.03 e 49.72 ± 1.4 e

KS+ZO (50)+SB-366791 (10) 1.78 ± 0.05 e 47.14 ± 0.9 e 0.98 ± 0.06 e 47.92 ± 1.1 e

Abbreviations: TBARS, thiobarbituric acid reactive substances; GSH, glutathione; TNF-α, tumor necrosis factor-alpha; TRPV1, transient receptor potential vanilloid receptor 1; KS,
kindled seizure; ZO, zingerone; SB-366791, selective TRPV1 antagonist.

a Values are expressed as mean ± standard deviations (SD).

b N = 8 mice per group.

c The numbers in parentheses represent a dose of mg/kg.

d P < 0.042 versus the control group.

e P < 0.039 versus the KS group.

limitations of this study. However, after 12 months, mice

show a decline in cognitive functions and physical

abilities (32, 33). Hence, a 12-month-old mouse was used

in this study. The ZO has been reported to possess

potential anti-inflammatory and antioxidant actions in

maximal electroshock and PTZ-induced seizures in mice

via regulation of superoxide dismutase, catalase, and

TBARS (34). Furthermore, ZO also reduced hippocampal

neurodegeneration with the regulation of nuclear

factor-kappa B pathways mediated by TNF-α in lithium

chloride and pilocarpine-induced epilepsy in male mice

(31).

Mechanistically, compounds of Zingiber officinale, like

ZO, directly interact with the S4 - S5 linker of the TRPV1

cation channel and regulate nociception (27).

Furthermore, the activation of TRPV1 possesses both pro-

inflammatory and anti-inflammatory actions

depending upon the expression of TRPV1 in specific
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cells. It also plays a key role in the modulation of

immune reactions, leading to antioxidant and anti-

inflammatory actions (35). The present study also shows

that ZO possesses potential anti-convulsant action

against PTZ-induced KS in mice due to its antioxidant,

anti-inflammatory, and TRPV1 receptor modulatory

actions.

The modulation of TRPV1 plays a key role in the

pathogenesis of epilepsy via neuroinflammatory

reactions in brain tissue. Furthermore, the

administration of anti-inflammatory drugs, such as

acetaminophen, and TRPV1 antagonists, such as

capsazepine, attenuates the epilepsy condition in mice

(7). The present results showed that ZO, in combination

with a TRPV1 antagonist (SB-366791; 10 mg/kg), exerts

anticonvulsant action with anti-inflammatory effects

(reduction of TBARS and TNF-α levels) compared to SB-

366791 treatment alone. The primary pathogenesis of

PTZ-induced kindling seizure is due to the modulation

of the TRPV1 channel and the gamma-aminobutyric acid

– A receptor antagonistic action, leading to hyper-

excitation of neuronal tissue (36).

Moreover, the effect of ZO with the modulation of the

TRPV1 channel in different pathological conditions, such

as microglia activation and glutamate receptors

associated with various types of KS conditions, still

needs to be investigated in experimental animal models

(37). Animal models of KS have been established by the

application of corneal and hippocampal electrical

stimuli, optogenetics (light) exposure, and picrotoxin

and kainic acid administration in mice and rats (38-40).

Even chemical methods of KS have been studied in

zebrafish species (41). These kinds of KS models can be

used to investigate the effect of ZO on KS to establish its

effects on the modulation of TRPV1 channels.

Furthermore, this research hypothesis will be extended

in our next research work.

5.1. Conclusions

The oral administration of ZO and a SB-366791, alone

and in combination, ameliorates PTZ-induced KS in mice

by reducing TBARS, TNF-α, and TRPV1 levels and raising

GSH levels. The anticonvulsant action of ZO is due to its

potential antioxidant, anti-lipid peroxidation, anti-

inflammatory, and TRPV1 channel modulatory actions.

However, a more extensive study is required in various

animal models of KS to establish the ameliorative

actions of ZO on KS with modulation of TRPV1 channel

functions.
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