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Abstract

Background: Herb-drug interactions (HDIs) have garnered significant attention in recent years.
Objectives: To investigate the effects of acacetin on the pharmacokinetics of diazepam both in vivo and in vitro.

Methods: Rat liver microsomes (RLMs) were incubated with diazepam and acacetin to determine the half-maximal inhibitory concentration (IC5,) and

inhibition constant (Ki) values of acacetin, as well as to evaluate its inhibitory effect on diazepam metabolism in vitro. For the in vivo experiment, twelve male
Sprague-Dawley rats were randomly allocated into two groups (n = 6) and received either 50 mg/kg acacetin or vehicle for two weeks. Subsequently, diazepam
(10 mg/kg) was administered to each rat. Blood samples (300 uL) were collected from the tail vein at 0.083, 0.25, 0.5,1, 2, 3, 4, 6, and 8 hours post-administration.
The plasma concentrations of diazepam and its metabolites were quantified using ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-
MS/MS).

Results: The IC;, values for temazepam and nordiazepam in RLMs were 2.065 uM and 5.2 pM, respectively. The Ki values for temazepam and nordazepam

demonstrated that acacetin inhibits diazepam metabolism in vitro. In vivo, pretreatment with acacetin increased the area under the curve (AUC) and maximum
plasma concentration (Cmax) of diazepam, while significantly decreasing its apparent clearance (CLz[F, P < 0.05). The AUC values for temazepam and
nordiazepam decreased, whereas their CLz/F values increased significantly (P < 0.05). PyMOL simulations indicated that acacetin and diazepam share the same
cytochrome P450 3A4 (CYP3A4) or cytochrome P450 2C19 (CYP2C19) binding pocket, suggesting that acacetin inhibits diazepam metabolism via competitive
inhibition.

Conclusions: Acacetin significantly altered the pharmacokinetics of diazepam both in vivo and in vitro, indicating a potential interaction between acacetin
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and diazepam. Therefore, the concomitant use of acacetin and diazepam in clinical practice should be approached with caution.
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1. Background

Diazepam, a benzodiazepine with diverse
therapeutic applications, is widely used for the
management of disorders such as insomnia, muscle
spasms, anxiety, and seizures. Diazepam is primarily
metabolized by cytochrome P450 2C19 (CYP2C19) or
cytochrome P450 3A4 (CYP3A4) to form nordiazepam or
temazepam, which are subsequently converted to

oxazepam via hydroxylation or demethylation (1, 2).
Additional P450 enzymes, including CYP1A2, CYP2B6,
CYP2C8, and CYP2E1, also contribute to diazepam
metabolism (3). For reference, we generated three-
dimensional representations of the chemical structures
of diazepam and its two major metabolites (Figure 1).
The CYP is the most crucial enzyme system for drug
metabolism in humans, and the majority of clinically
used medications are metabolized by this system (4, 5).
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Figure 1. Structure diagrams of diazepam and its metabolites: Three-dimensional model of the chemical structure of diazepam (A); three-dimensional model of the chemical
structure of nordazepam (B); three-dimensional model of the chemical structure of temazepam (C); and three-dimensional model of the chemical structure of clonazepam (D).

CYP450 enzymes include CYP3A4, CYP2D6, CYP2C9,
CYP1A2, CYP2E1, CYP2C19, and additional subtypes.
Notably, CYP3A4, CYP2D6, and CYP2C9 account for the
majority of drug metabolism activity in the human liver
(6, 7). Consequently, any compound that inhibits CYP
enzyme activity is likely to affect the metabolism of
substrate drugs.

When diazepam is coadministered with central
nervous system depressants, such as monoamine
oxidase type A inhibitors or tricyclic antidepressants,
these agents can have mutually reinforcing effects.
Combining antihypertensive drugs or diuretic
antihypertensive drugs with diazepam enhances their
antihypertensive effect. Furthermore, diazepam may
interact more complexly with drugs that influence
CYP450 enzymes; for example, hepatic enzyme inducers
such as phenobarbital, phenytoin, and rifampicin can
accelerate the elimination of diazepam, thereby
reducing its plasma concentration (8, 9). Conversely,
coadministration with inhibitors of hepatic drug-
metabolizing enzymes can increase diazepam plasma
concentration and prolong its half-life.

Herb-drug interactions (HDIs) have become an
increasing concern in recent years. The HDIs are among

the most significant clinical challenges that arise when
prescription medicines and herbal products are taken
concurrently. The widespread use of polypharmacy in
treating most diseases further elevates the risk of HDIs
in patients. The pharmacokinetic and pharmacological
mechanisms underlying drug-drug interactions also
underlie HDIs (10).

Acacetin is a naturally occurring flavonoid present in
significant amounts in food sources and in the flowers
of plants such as chrysanthemum and safflower (11). It
can be extracted from wattle, acacia tree, thistle,
airplane grass, Buddleja officinalis, and chrysanthemum,
and is utilized in both medical research and the
cosmetics industry. In addition to its traditional uses for
alleviating depression, calming the mind, regulating qi,
and dredging collaterals, acacetin exhibits a wide range
of pharmacological activities, including anti-
inflammatory, antimicrobial, antioxidant, and
antimalarial effects, making it commonly used for the
treatment of bone loss, cardiovascular disease, and
various other conditions (12-15).

Previous studies have demonstrated that acacetin
exerts anticancer effects by inhibiting receptors and
transcription factors, modulating carcinogenic
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metabolism, promoting cancer cell proliferation, and
regulating signaling pathways (16-20). Acacetin also
inhibits glutamate release, regulates apoptosis in
human T-cell leukemia Jurkat cells, and protects against
kainic acid-induced neurotoxicity (21). The broad
pharmacological profile of acacetin, particularly its
antitumor activity, may render it a promising anticancer
agent.

Like many xenobiotics, acacetin undergoes
metabolism in vivo and can modulate CYP enzyme
activity, acting as a potent inhibitor of the CYP1 family.
Research indicates that it may also inhibit other CYP450
isoforms, such as CYP2B1, CYP2C9, CYP2Ci1, CYP2Di,
CYP2E1, and CYP3A2. Additionally, acacetin has
demonstrated both irreversible and reversible
inhibition of CYP3A4. Recent studies suggest that
acacetin suppresses CYP1A2 and CYP3A2, while inhibiting
CYP2B1, CYP2C11, and CYP2E1 (22, 23). Despite the in vitro
evidence of acacetin’s inhibitory activity against CYP450
enzymes, its potential interaction with diazepam — a
drug primarily metabolized by CYP2C9 — has not been
fully characterized in in vivo pharmacokinetic studies.

2. Objectives

In the present study, we aimed to investigate the
effect of acacetin on the pharmacokinetics of diazepam
both in vivo and in vitro. This research may prove
pivotal in evaluating potential HDIs between acacetin
and diazepam.

3. Methods

3.1. Drugs, Chemicals, and Reagents

Diazepam was obtained from Tianjin KingYork
Pharmaceutical Co., Ltd. Nordazepam, temazepam, and
clonazepam (internal standard, IS, purity > 98%) were
purchased from Sigma-Aldrich (St. Louis, MO, USA).
Analytical grade formic acid was also purchased from
Sigma-Aldrich. Acacetin was supplied by Chengdu Must
Technology Co., Ltd. (Chengdu, China). Nicotinamide
adenine dinucleotide phosphate (NADPH) was acquired
from Roche (Shanghai, China). Ultrapure water was
prepared using a Milli-Q filtration system (Millipore,
Bedford, MA, USA). UPLC-grade methanol and
acetonitrile were obtained from Merck Company
(Darmstadt, Germany). All other chemicals used were of
analytical reagent grade.

3.2. Animals

Twelve healthy male Sprague-Dawley rats (220 £ 20 g)
were provided by the Experimental Animal Center of
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Wenzhou Medical University, China. The animals were
housed under controlled conditions with a 12-hour
light/dark cycle, temperature maintained at 20 - 26°C,
and relative humidity of 55 + 15%. Rats received a
standard rodent diet and had free access to tap water,
except during the 12-hour fasting period prior to
pharmacokinetic testing. All experimental protocols
were reviewed and approved by the Lishui University
Animal Care and Use Committee (ID: 2023YD0063), in
accordance with the Guide for the Care and Use of
Laboratory Animals. The study conformed to
internationally accepted standards for animal research,
adhering to the 3Rs principle. The ARRIVE guidelines
were followed to ensure ethical reporting of
experiments involving live animals.

3.3. Kinetic Studies and Enzyme Inhibition of Acacetin in vitro

The procedures described by Zhou et al. (24) were
employed for the preparation and quantification of rat
liver microsome (RLM) protein concentrations. The
incubation solution comprised diazepam, 100 mM
potassium phosphate buffer (pH 7.4), 0.3 mg/mL RLMs,
acacetin (inhibitor), and 1 mM NADPH. Inhibitory
concentration (IC;,) was determined using substrate

concentrations approximating their respective Km
values (128.8 uM and 65.72 uM for diazepam conversion
to temazepam and nordiazepam, respectively). Acacetin
was tested at concentrations of 0.01, 0.1, 1, 2, 10, 20, 50,
and 100 uM.

To determine the inhibition constant (Ki), acacetin
(0, 1, 2, and 4 uM) was incubated with varying
concentrations of diazepam (12.5, 25, 50, and 100 uM) for
assessment of temazepam formation, and acacetin (0, 2,
5, and 10 uM) was incubated similarly for nordiazepam
formation. The mixtures were preincubated at 37°C for 5
minutes. The reaction was initiated by adding NADPH
for a 30-minute incubation, then terminated by
transferring to ice and adding 200 pL of acetonitrile.
Clonazepam (20 pL) was added as the internal standard,
the mixture was vortexed for two minutes, and
centrifuged at 13,000 rpm for 5 minutes. The ultra-
performance liquid chromatography-tandem mass
spectrometry (UPLC-MS/MS) analysis was performed
using a 2 pL aliquot of the supernatant.

3.4. In vivo Pharmacokinetic Experiments

Following approval by the Animal Care and Use
Committee of Wenzhou Medical University, the twelve
rats were divided into two groups of six. The
experimental group received daily intraperitoneal
injections of 50 mg/kg acacetin for two weeks, while the
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control group received vehicle (a mixture of dimethyl
sulfoxide, polyethylene glycol 200, and ultrapure water)
as pretreatment. All rats were then administered
diazepam by oral gavage at a dose of 10 mg/kg, 30
minutes after the final pretreatment. Blood samples
(300 uL) were collected from the tail vein at 0.083, 0.25,
0.5,1,2,3, 4, 6,and 8 hours post-administration. Plasma
was separated by centrifugation at 3000 rpm for 10
minutes and immediately stored at -80°C. For analysis,
plasma samples were thawed at room temperature and
mixed with 200 pL acetonitrile and 20 pL internal
standard, followed by 30 seconds of vortexing and
centrifugation at 13,000 rpm for 5 minutes. UPLC-MS/MS
analysis was conducted on 2 uL of the supernatant.

3.5. Instrumentation and Ultra-Performance  Liquid
Chromatography-Tandem Mass Spectrometry Conditions

Separation of diazepam and its metabolites was
achieved using an ACQUITY UPLC BEH Ci8 column (50
mm x 2.1 mm, 1.7 um). The mobile phase consisted of a
gradient of (A) acetonitrile and (B) 0.1% formic acid,
delivered at a flow rate of 0.4 mL/min. The elution
gradient was as follows: 0 - 0.3 min, 10% — 30% A; 0.3 - 2
min, 30% — 95% A; 2 - 2.5 min, 95% A; and 2.5 - 2.6 min, 95%
- 10% A. The column was maintained at 40°C for 3
minutes. Clonazepam (500 ng/mL) was used as the
internal standard.

Mass spectrometry was performed in positive ion
mode using a triple quadrupole mass spectrometer with
an electrospray ionization interface. Quantitative
analysis was conducted in multiple reaction monitoring
mode. The nitrogen cone gas flow rates were 50 L/h and
1000 L/h. The ion source and desolvation gas
temperatures were 150°C and 500°C, respectively, and
the capillary voltage was 2.5 kV. The monitored
transitions were: 285.1 - 193.1 m/z for diazepam, 271.1 -
139.9 m/z for nordazepam, 3011 - 254.9 m/z for
temazepam, and 316.1 - 269.9 m|z for clonazepam. Data
were processed using MassLynx version 4.1 software
(Waters Corp., Milford, MA, USA). The analytical method
validation was performed as described by Zhou et al.
(24).

3.6. Molecular Docking Method

Molecular docking was performed as described in
previous literature (25) to identify potential inhibitory
mechanisms. The molecular structures of diazepam,
nordazepam, and temazepam were retrieved from
PubChem (NCBI), and the crystal structures of CYP2C19
(PDB ID: 4gqgs) and CYP3A4 (PDB ID: 2jod) were obtained
from the RCSB Protein Data Bank. Docking was
conducted using AutoDock Vina Version 1.2.3 (Scripps

Research Institute, USA), with a grid box of 60 A x 60 A x
60 A and spacing of 0.3753 A. Structure optimization and
visualization were performed with PyMOL open-source
Version 2.5.2 (Schrodinger, USA). The docked structure
with the highest affinity was selected for further
analysis.

3.7. Data Analysis

Pharmacokinetic assessment was performed using
noncompartmental analysis with DAS software (version
3.2.8, China). Plasma concentration-time curves were
generated using mean drug concentrations at each time
point. The following pharmacokinetic parameters were
examined: Plasma clearance (CLz[F), plasma halflife
(t1/2), area under the curve (AUC) of the plasma
concentration-time, maximum plasma concentration
(Cmax), and time to maximum plasma concentration
(Tmax). The 1C5,, Ki, and aKi values were calculated

using GraphPad Prism 7.0 software (GraphPad Software
Inc., San Diego, CA, USA). Statistical analyses of the main
pharmacokinetic parameters were conducted using
SPSS 24.0 software (IBM, Chicago, IL, USA) with Student’s
t-test. Differences were considered statistically
significant at P < 0.05.

4. Results

4.1. Effects of Acacetin on the Pharmacokinetics of Diazepam
in vitro

As shown in Figure 2, the IC;, values for diazepam

metabolism to temazepam and nordiazepam were
determined using a range of acacetin concentrations
(0.01 uM to 100 uM). Acacetin moderately inhibited
CYP3A4 and CYP2C19, with IC; values of 2.065 pM and
5.2 UM, respectively (Figure 2A and B). Enzyme kinetics
and secondary plot analysis (Figures 3 and 4) revealed
that acacetin competitively inhibits the metabolism of
diazepam to temazepam and nordiazepam, with Ki
values of 0.1 uyM and 3.54 uM, respectively.

4.2. Effects of Acacetin on the Pharmacokinetics of Diazepam
in vivo

Figure 5 presents the mean plasma concentration-
time curves for temazepam, nordiazepam, and
diazepam in the control and experimental groups. As
shown in Figure 5A, the experimental group exhibited
higher mean plasma concentrations of diazepam
compared to the control group. Figure 5B and C
demonstrate that the experimental group had
significantly lower mean plasma concentrations of
temazepam and nordiazepam than the control group.
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Figure 2. Acacetin at various concentrations was administered to determine the half-maximal inhibitory concentration (IC5,) of diazepam with respect to temazepam (A) and
nordiazepam (B) in rat liver microsomes (RLMs, mean + standard deviation; n=3).
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Figure 3. Michaelis-Menten model for temazepam (A), Lineweaver-Burk plot for temazepam (B), and the slope for temazepam for inhibition constant (Ki) (C) at various
concentrations of acacetin in rat liver microsomes (RLMs)
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Figure 4. Michaelis-Menten model for nordiazepam (A), Lineweaver-Burk plot for nordiazepam (B), and the slope for nordiazepam for inhibition constant (Ki) (C) at various
concentrations of acacetin in rat liver microsomes (RLMs)

The pharmacokinetic parameters are summarized in As indicated in Table 1, the AUC (0 - t) and AUC (0 - )
Tables 1and 2. for diazepam increased by 70.18% and 69.76%,
respectively, relative to the control group. The Cmax
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Figure 5. Mean plasma concentration-time curves for diazepam (A), temazepam (B), and nordiazepam (C) in the experimental group and control group after oral
administration of diazepam (mean + standard deviation, n=6)

Table 1. Main Pharmacokinetic Parameters of Diazepam in the Control Group and Experimental Group (N =6)?

Parameters Unit Control Group Experimental Group
AUC(0-t) ug/Lxh 172.25+62.45 293.14 + 85.29 b
AUC (0 - ) uglLxh 182.02 £58.15 309.00+83.77°
MRT (0 -t) h 2.51+0.58 2.42+0.26

MRT (0 - ) h 3.11£159 2.8910.54
t12z h 1.81£1.26 1.8410.64
Tmax h 133+0.52 117+ 0.41

Vz[F Lkg 164.39 +141.97 91.91+38.08
CLz[F L/h/kg 59.78+18.43 3431+880°
Cmax ug/L 57.75+24.81 11115 + 42.02°

Abbreviations: AUC, area under the curve; Tmax, time to maximum plasma concentration; Cmax, maximum plasma concentration.

2 Values are expressed as mean = SD.

b Significantly different from the control, P < 0.05.

Table 2. Main Pharmacokinetic Parameters of Temazepam and Nordiazepam in the Control Group and Experimental Group (N=6)

Temazepam Nordiazepam

Parameters Unit

Control Group Experimental Group Control Group Experimental Group
AUC(0-t) ug/Lxh 17131+ 80.86 69.62+29.23P 127.95 £ 61.83 45.90+15.77P
AUC (0 - ) ug/Lxh 191.26 £103.22 71.84 +29.77P 139.73 £ 64.72 4678 +16.15 °
MRT (0-t) h 2.56+0.70 2241036 2.42+0.77 1.93+0.24
MRT (0 - ) h 331£1.44 2.51£0.34 3.22+1.87 2.08+£0.32
t12z h 2.11+0.82 1.62+0.27 1.97+137 1341031
Tmax h 1.50+£0.84 0.75+0.27 1.25+0.88 0.58+0.20
Vz[F L/kg 193.13 £ 11115 409.02+271.30 238.18 £204.62 456.59 £190.36
CLz[F L/h/kg 67.07+38.29 167.23+89.04"° 85.13+36.98 235.89£77.84 °
Cmax ug/L 60.51£20.77 26.78+9.53° 47.75+28.99 24.85+13.22

Abbreviations: AUC, area under the curve; Tmax, time to maximum plasma concentration; Cmax, maximum plasma concentration.

2 Values are expressed as mean * SD.

b Significantly different from the control, P < 0.05.

increased by 92.47%, while the CLz[F decreased by 42.61%.

Table 2 shows that the AUC (0 - t) and AUC (0 - ) for
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Figure 6. Molecular docking scheme for diazepam and acacetin: Action site between acacetin and cytochrome P450 3A4 (CYP3A4), formed via hydrogen bonding (A); enlarged
region of A (B); action site between acacetin and cytochrome P450 2C19 (CYP2C19) (C); and enlarged region of C (D). Blue represents diazepam, and orange represents acacetin.

temazepam decreased by 59.36% and 62.44%,
respectively, and the CLz/F increased by 149.34% with a
55.74% decrease in Cmax compared to the control group.
For nordiazepam, the AUC (0 - t) and AUC (0 - )
decreased by 64.13% and 66.52%, respectively, and the
CLz[F increased by 177.09%. There was no statistically
significant difference in the Cmax between groups for
nordiazepam.

4.3. Molecular Docking Prediction of Diazepam and Its
Metabolites

We conducted molecular docking analysis in this
study using previously reported methods (2, 27) to
elucidate the mechanism underlying the interaction
between acacetin and diazepam, which involves
hydrogen bonding, pi-pi interactions, pi-cation
bonding, and pi-sigma interactions, each characterized

Iran | Pharm Res. 2025; 24(1): €164825

by varying binding energies (Figure 6). As illustrated in
Figure 6A and B, acacetin interacts with glutamic acid
(GLU) at position 374 and arginine (ARG) at position 374
of CYP3A4 via hydrogen bonding, with the respective
interaction sites being 2.9 A and 3.2 A apart according to
the simulation results obtained using PyMOL. As shown
in Figure 6A and B, both acacetin and diazepam bind
closely to CYP3A4 within the same binding pocket,
exhibiting binding energies of -7.3 kcal/mol and -8.5
kcal/mol, respectively. The interaction sites of the
CYP2C19 enzyme with acacetin and diazepam are
depicted in Figure 6C and D, with binding energies of
-8.5 kcallmol and -7.6 kcal/mol, respectively.
Furthermore, acacetin and diazepam also bind closely to
CYP2C19 within the same binding pocket, supporting
the conclusion that acacetin inhibits the metabolism of
diazepam through competitive inhibition.
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5. Discussion

In recent years, interest in herbal remedies as
complementary or alternative medicines has grown,
leading to increased use of herbal products alongside
conventional pharmaceuticals (10, 28). This trend
elevates the risk of HDIs, particularly involving CYP
enzymes.

Acacetin, a naturally occurring flavone, possesses
multiple pharmacological effects. Previous studies have
shown that acacetin inhibits glutamate release and
protects against kainic acid-induced neurotoxicity in
rats (29). Additionally, acacetin has demonstrated
chemopreventive effects in cancer models by inhibiting
glutamate release and preventing neurotoxicity.
Acacetin has also been reported to inhibit the
metabolism of drugs such as flurbiprofen and
testosterone, which are CYP2C9 and CYP3A4 substrates,
respectively (30). However, limited research has focused
on HDIs between diazepam and conventional herbal
medicines.

This study is the first to examine the effects of
acacetin on diazepam both in vitro and in vivo. In vitro,
acacetin significantly inhibited diazepam metabolism
in RLMs, with IC;( values of 2.065 uM and 5.2 uM for

temazepam and nordazepam, respectively. The Ki values
for temazepam and nordazepam were 0.1 UM and 3.54
UM, respectively, indicating competitive inhibition of
diazepam metabolism by acacetin. Previous research
(23) found that acacetin competitively inhibits CYP2BI,
CYP2C11, and CYP2E], and exhibits mixed inhibition of
CYP1A2 and CYP3A2. These results suggest that acacetin
and diazepam bind to the same active site on the
enzyme, with overlapping binding positions (Figure 6).

The competitive inhibition of CYP3A4 and CYP2C19 by
acacetin suggests that acacetin may interact with other
CYP3A4 or CYP2C19 substrates, including tyrosine kinase
inhibitors such as osimertinib, apatinib, and tofacitinib
(31-33), as well as proton pump inhibitors such as
omeprazole (34).

Diazepam is frequently administered orally for
central nervous system disorders, such as anxiety,
epilepsy, and alcohol withdrawal. Its long and variable
half-life (20 - 50 hours) can result in prolonged sedation,
ataxia, psychosis, hypotension, and decreased
respiratory rate; its active metabolite, nordiazepam, has
an even longer halflife (50 - 100 hours). Given these
pharmacokinetic properties, interactions involving
diazepam and other drugs or herbs require careful
consideration.

When coadministered with acacetin, the AUC (0 - t),
AUC (0 - «), and Cmax values for diazepam increased

significantly, while CLz/F decreased by 42.61%. For
temazepam and nordiazepam, acacetin decreased AUC
(0-t)and AUC (0 - ») but increased CLz[F. These findings
from in vivo experiments align with the in vitro results,

confirming that acacetin influences diazepam
metabolism. Notably, the Cmax for temazepam
decreased  significantly, ~while the Cmax for

nordiazepam did not differ significantly between
groups. This suggests that acacetin more potently
inhibits CYP3A4 than CYP2C19, consistent with the in
vitro data. Acacetin likely alters diazepam
pharmacokinetics by inhibiting CYP3A4 activity and
reducing first-pass hepatic metabolism, thereby
increasing diazepam bioavailability.

Other herbs, such as imperatorin, have also been
shown to inhibit diazepam metabolism both in vivo and
in vitro. This study is the first to investigate the effects of
acacetin on diazepam pharmacokinetics, providing
essential data for clinical practice. Nevertheless, some
limitations remain. Due to resource constraints, this
study could not be conducted in a clinical setting.
Future research should further elucidate specific
inhibitory mechanisms, and clinical trials are necessary
to confirm these findings.

5.1. Conclusions

Given that CYP3A4 and CYP2C19 inhibitors are
frequently prescribed in clinical practice, the effects of
coadministered medications on diazepam disposition
should be closely monitored. Acacetin significantly
altered the pharmacokinetics of diazepam both in vivo
and in vitro. The HDIs may occur when acacetin and
diazepam are used together; therefore, clinicians should
exercise caution with their concurrent administration.
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