
Iran J Pharm Res. January-December 2025; 24(1): e164947 https://doi.org/10.5812/ijpr-164947

Published Online: 2025 August 30 Research Article

Copyright © 2025, Mahmudi et al. This open-access article is available under the Creative Commons Attribution 4.0 (CC BY 4.0) International License

(https://creativecommons.org/licenses/by/4.0/), which allows for unrestricted use, distribution, and reproduction in any medium, provided that the original

work is properly cited.

How to Cite: Mahmudi A, Seydi E, Ahmadi N, Mohsenifar Z, Azami Movahed M, et al. Evaluation of Anticarcinogenic and Cytotoxic Effects of COX-2 Specific

Inhibitors on an Animal Model of Hepatocellular Carcinoma Using Isolated Mitochondria. Iran J Pharm Res. 2025; 24 (1): e164947. https://doi.org/10.5812/ijpr-

164947.

Evaluation of Anticarcinogenic and Cytotoxic Effects of COX-2 Specific

Inhibitors on an Animal Model of Hepatocellular Carcinoma Using

Isolated Mitochondria

Alireza Mahmudi # 1 , Enayatollah Seydi # 2 , 3 , Nahid Ahmadi 4 , 5 , Zhaleh Mohsenifar 6 , Mahsa Azami

Movahed 5 , Afshin Zarghi 5 , * , Jalal Pourahmad 7 , **

1 School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
2 Department of Occupational Health and Safety Engineering, School of Health, Alborz University of Medical Sciences, Karaj, Iran
3
 Research Center for Health, Safety and Environment, Alborz University of Medical Sciences, Karaj, Iran

4 Department of Pharmaceutical Chemistry, School of Pharmacy, Semnan University of Medical Sciences, Semnan, Iran
5 Department of Pharmaceutical Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
6 Department of Pathology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
7 Department of Toxicology and Pharmacology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran

*Corresponding Author: School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran. Email: zarghi@sbmu.ac.ir
**Corresponding Author: School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran. Email: pourahmad.j@sbmu.ac.ir
# These authors have contributed equally.

Received: 29 July, 2025; Revised: 8 August, 2025; Accepted: 15 August, 2025

Abstract

Background: Cancer is regarded as one of the most significant health concerns in the world. Hepatocellular carcinoma (HCC)

is a malignancy with high incidence and mortality rates and can lead to death. Cyclooxygenase (COX)-2 is responsible for the

development of various cancers, including HCC. Therefore, the use of COX-2 inhibitors can help in the prevention and treatment

of cancer.

Objectives: The present study aimed to synthesize and examine the effect of imidazolium [1,2-a] piperidinium (4cl-A) and

benzo [d] imidazo [1,2-b] thiazolium (1-naphtyl-C) compounds as COX-2 inhibitors on the rat model of HCC.

Methods: Animals were randomly assigned to control and HCC induction groups. The study duration was 15 weeks. The HCC

was induced using DEN (200 mg/kg, ip) at a single dose and 2-AAF (dietary, 0.02% w/w, for 2 weeks). After 15 weeks, the

investigation focused on mitochondrial toxicity parameters. One-way and two-way ANOVA statistical tests were used to analyze

the data.

Results: The results showed that 4cl-A and 1-naphtyl-C can reduce mitochondrial activity, increase the level of free radicals

(ROS), collapse in mitochondrial membrane potential (MMP), cause swelling of mitochondria, and release cytochrome c from

HCC mitochondria. While this effect was not observed in healthy mitochondria.

Conclusions: The results of the study indicate that these COX-2 inhibitors, along with selected drugs, can help in the

treatment of HCC. However, more clinical studies should be conducted.
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1. Background

Cancer is recognized as one of the world’s major

health problems, with the incidence of various cancers

on the rise. Estimates project that the yearly death toll

from cancer will reach nearly 21 million by 2030 (1, 2).

Hepatocellular carcinoma (HCC) is the most common

and significant type of liver cancer, and it is both deadly

and dangerous. Hepatocellular carcinoma is a global

health concern, and its incidence rate is increasing (3-5).

Known risk factors for HCC include hepatitis B and C

viruses, environmental carcinogens, excessive alcohol
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consumption, and fatty liver disease. Despite different

treatment methods, their effectiveness in managing

HCC remains a significant challenge (3, 6, 7).

Consequently, there is a pressing need for new

therapeutic approaches with different mechanisms of

action to improve treatment outcomes for this cancer.

Cyclooxygenase (COX)-2 is recognized as a factor

involved in the process of carcinogenesis and cancer

progression in humans. The COX-2 has been shown to

increase proliferation, cell viability, angiogenesis, and

cell invasion while inhibiting apoptosis and

suppressing the immune system (8-10). Although it is

not easily detected in most tissues under normal

conditions, it is strongly induced in abnormal

conditions and due to inflammatory stimuli (11).

Overexpression of COX-2 causes inflammation, which is

a crucial stimulus for liver fibrosis induction (12). The

relationship between high COX-2 levels and the

tumorigenesis and progression of HCC has been

demonstrated in previous studies. Also, it has been

reported that HCC patients with high COX-2 expression

have a poor prognosis. Therefore, its inhibition can help

in the prevention and treatment of cancer.

Our previous research has shown that COX-2

inhibitors can lead to an increase in the level of reactive

oxygen species (ROS) in cancer mitochondria (13, 14). The

electron transport chain (ETC) in mitochondria is the

primary source of free radical (especially ROS)

production (15, 16). The role of ROS in HCC

tumorigenesis is double-edged. An excessive increase of

ROS causes cytotoxic effects on tumor cells, which can

eventually induce cell death through oxidative stress.

Accordingly, regulating the level of ROS in various

cancer cells can be a suitable approach for cancer

treatment (17-19). Nowadays, targeted molecular therapy

has been investigated by researchers as a treatment

approach for HCC. It has been established that certain

targeted drugs cause cell death in HCC cells by raising

the level of ROS (20). Therefore, the use of COX-2

inhibitor compounds that can increase the level of ROS

in HCC cells may help in the treatment of this cancer

along with selected drugs.

2. Objectives

The present study aimed to examine the effect of

imidazolium [1,2-a] piperidinium (4cl-A) and benzo [d]

imidazo [1,2-b] thiazolium (1-naphtyl-C) compounds as

COX-2 inhibitors on the rat model of HCC.

3. Methods

3.1. Animals

The purchased animals (male Wistar rats) were kept

under standard laboratory conditions, including

controlled temperature, humidity, and lighting cycle.

The ethics and animal supervision committee’s

guidelines were followed in all experiments

(IR.SBMU.PHARMACY.REC.1401.253). This study aimed to

cause minimal suffering to the animals.

3.2. Chemistry

The specifications of the compounds are shown in

Figure 1A and B. The target compound 6 was synthesized

in five steps, as outlined in Figure 2. In the first step,

thioanisole was acetylated to 4-

(methylthio)acetophenone 2 using the Friedel-Crafts

acylation reaction. Then, the 4-

(methylthio)acetophenone 2 afforded the bromoacetyl

derivative 3 by α-bromination reaction. Compound 3

was treated with 1-naphthol to give intermediate 4,

which was oxidized by Oxone and yielded the

corresponding compound 5. These steps were

performed based on the previous study (21). Finally, the

cyclization of intermediate 5 was carried out using

elemental iodine and 2-aminobenzothiazole to obtain

the desired final product 6 (22). The purity of the final

compound was checked with TLC using various solvents

with different polarities. The chemical structure was

characterized by FTIR, 1H NMR, 13C NMR, and ESI-MS.

3.2.1. Procedure for the Synthesis of Compound 6

One mmol of compound 5 was dissolved in 15 mL of

DMF. Then, 3 mmol of 2-aminobenzothiazole and 2

mmol of iodine were added, and the reaction mixture

was refluxed for 24 hours. After the completion of the

reaction (monitored by TLC), a saturated sodium

thiosulfate solution (1 mL) was added to the reaction

mixture and stirred until the brown color disappeared.

The mixture was then added to a beaker containing ice.

The resulting precipitate was filtered, dried, and

recrystallized using ethanol to give the final product, 2-
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Figure 1. A, the specifications of the 4cl-A; B, the specifications of the 1-naphtyl-C.

Figure 2. Synthesis of benzo[d]imidazo[2,1-b]thiazole derivative. Reagents and conditions: A, AlCl3, CH3COCl, CHCl3, 25°C, and 2h; B, Br2, CH3OH, and RT; C, K2CO3, 1-naphthol,

acetone, reflux, and 5h; D, Oxone, THF, water, RT, and 5h; E, I2 (2eq), 2-aminobenzothiazole (3eq), DMF, 120°C, and 24 h.

(4-(methylsulfonyl)phenyl)-3-(naphthalen-1-

yloxy)benzo[d]imidazo[2,1-b]thiazole.

Yield, 78%; white crystalline powder; melting point:

°C; IR (KBr disk): ν (cm-1) 1144, 1304 (SO2); 1H NMR (DMSO-

d₆): δ ppm 3.21 (s, 3H, SO2Me), 6.91 (d, 1H, J = 7.68 Hz,

naphthyloxy H2), 7.24 (d, 1H, J = 8.0 Hz,

imidazobenzothiazole H5), 7.31 - 7.38 (m, 2H,

imidazobenzothiazole H6 - H7), 7.43 (t, 1H, naphthyloxy

H3), 7.791 - 7.933 (m, 5H, naphthyloxy H4 and H6 - H7 and

methylsulfonylphenyl H2 and H6), 8.086 - 8.165 (m, 4H,

naphthyloxy H5 and methylsulfonylphenyl H3 and H5

and imidazobenzothiazole H8), 8.68 (d, 1H, J = 8.2 Hz,

naphthyloxy H8); 13C NMR (DMSO-d₆): δ ppm 43.94,

109.98, 113.37, 117.03, 125.60, 125.65, 125.73, 126.03, 127.28,

127.57, 127.73, 128.15, 128.25, 129.78, 129.98, 130.59, 131.27,

131.62, 134.25, 135.04, 137.67, 139.17, 143.39, 154.27; LC-MS

(ESI): m/z: 471 (M+1).

3.3. Experimental Design

The animals were divided into two groups for HCC

induction after a week of habituation. Group 1 was

considered the control group. Group 2 was considered

the HCC induction group, receiving DEN (200 mg/kg, ip)

and 2-AAF (dietary, 0.02% w/w). The study was conducted

for 15 weeks. Biochemical and pathological tests were

https://brieflands.com/articles/ijpr-164947
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Figure 3. Evaluation of succinate dehydrogenase (SDH) activity: The effect of A, 4cl-A (10, 20, and 40 µg/mL) and B, 1-naphtyl-C (5, 10, and 20 µg/mL) on mitochondrial SDH activity
[data were represented as mean ± SD; n = 3; ** P < 0.01 and **** P < 0.0001 significant difference with untreated hepatocellular carcinoma (HCC) group].

carried out after the 15th week to determine HCC

induction (data not reported) (23). In the next step,

mitochondria were incubated with different

concentrations of COX-2 inhibitors (4cl-A and 1-naphtyl-

C), and then toxicity tests were conducted.

3.4. Isolation of Mitochondria from Rat Hepatocytes

Ketamine (80 mg/kg, intraperitoneal) and xylazine (5

mg/kg, intraperitoneal) were administered to the

animals at the end of week 15. The first step was to

isolate hepatocytes using a standard protocol (24, 25). To

isolate the mitochondria, the hepatocytes were

centrifuged twice: First at 760 × g for 5 minutes, and

then at 8000 × g for 20 minutes (26, 27). Toxicity

parameters were evaluated after mitochondria were

incubated with different concentrations of COX

inhibitors (4cl-A and 1-naphtyl-C). In this study,

mitochondrial health and integrity were assessed

through the MTT test (for evaluation of mitochondrial

function/mitochondrial complex II) and cytochrome c

oxidase (complex IV) assay kit, respectively.

3.5. Evaluation of Succinate Dehydrogenase Activity

Measurement of mitochondrial evaluation of

succinate dehydrogenase (SDH) activity was done using

the MTT test. Each test was conducted using 1 mg

protein/mL of mitochondria. To determine this

parameter, mitochondria were suspended in the

appropriate assay buffer and then incubated with COX

inhibitors (4cl-A and 1-naphtyl-C) for 1 hour. The activity

of mitochondrial SDH in both groups was measured by

evaluating absorbance at a wavelength of 570 nm (28).

3.6. Evaluation of Reactive Oxygen Species Assay

The DCFH-DA probe was used to measure the ROS

level by suspending mitochondria in a respiration

buffer assay. Next, mitochondria were incubated with

different concentrations of 4cl-A (10, 20, and 40 µg/mL)

and 1-naphtyl-C (5, 10, and 20 µg/mL). Lastly, the assayed

fluorescence intensity level (EX = 488 nm/EM = 527 nm)

indicates the level of mitochondrial ROS generation. At

15, 30, and 60 minutes following incubation with

different concentrations of COX inhibitors (4cl-A and 1-

naphtyl-C), the ROS levels in both groups were

evaluated.

3.7. Evaluation of Mitochondrial Membrane Potential Assay

The Rh123 probe was used to measure mitochondrial

membrane potential (MMP) collapse by suspending

mitochondria in a corresponding assay buffer. Next,

mitochondria were incubated with different

concentrations of 4cl-A (10, 20, and 40 µg/mL) and 1-

naphtyl-C (5, 10, and 20 µg/mL). Lastly, the assayed

fluorescence intensity level (EX = 490 nm/EM = 535 nm)

https://brieflands.com/articles/ijpr-164947
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Figure 4. Reactive oxygen species (ROS) assay: The effect of A, 4cl-A (10, 20, and 40 µg/mL) and B, 1-naphtyl-C (5, 10, and 20 µg/mL) on mitochondrial ROS [data were represented as
mean ± SD; n = 3; ** P < 0.01, *** P < 0.001, and **** P < 0.0001 significant difference with untreated hepatocellular carcinoma (HCC) group].

indicates the MMP collapse. At 15, 30, and 60 minutes

following incubation with different concentrations of

COX inhibitors (4cl-A and 1-naphtyl-C), the MMP collapse

in both groups was evaluated.

3.8. Evaluation of Mitochondrial Swelling

The initial step was to suspend mitochondria in the

appropriate assay buffer. Then, mitochondria were

incubated with several concentrations of 4cl-A (10, 20,

and 40 µg/mL) and 1-naphtyl-C (5, 10, and 20 µg/mL). The

absorbance of each sample was measured at a

wavelength of 540 nm. The test was conducted at 15, 30,

and 60 minutes following the incubation of 4cl-A (10,

20, and 40 µg/mL) and 1-naphtyl-C (5, 10, and 20 µg/mL).

3.9. Measurement of Cytochrome c Release

After mitochondria incubation with 4cl-A (20 µg/mL)

and 1-naphtyl-C (10 µg/mL), cytochrome c release and the

effects of inhibitory compounds were evaluated

according to the manufacturer’s kit instructions.

3.10. Statistical Analysis

The report of results was based on the mean ± SD.

Data analysis was carried out using GraphPad Prism

software (version 8). The level of significance was set at P

< 0.05. A one-way ANOVA test was used for the

assessment of SDH activity and cytochrome c release.

Furthermore, a two-way ANOVA test was used for the

assessment of ROS generation, MMP collapse, and

mitochondrial swelling.

4. Results

4.1. Effects of 4cl-A and 1-naphtyl-C on Mitochondrial
Evaluation of Succinate Dehydrogenase Activity

In the HCC group, results revealed that the activity of

mitochondrial SDH was decreased by 4cl-A (10, 20, and

40 µg/mL; Figure 3A) and 1-naphtyl-C (5, 10, and 20

µg/mL; Figure 3B). These two compounds have no effect

on mitochondrial SDH activity in healthy mitochondria

(the data are not shown). These results suggest that

mitochondrial function in the HCC group can be

decreased by these two COX inhibitor compounds.

4.2. Effects of 4cl-A and 1-naphtyl-C on Mitochondrial
Reactive Oxygen Species

The results revealed that 4cl-A (10, 20, and 40 µg/mL)

and 1-naphtyl-C (5, 10, and 20 µg/mL) have considerably

increased the ROS level in the HCC group (Figure 4A and

B). This effect was not observed in the normal group (the

data are not shown). An increase in ROS level was

observed at 15, 30, and 60 minutes after incubation of

https://brieflands.com/articles/ijpr-164947
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Figure 5. Mitochondrial membrane potential (MMP) collapse assay: The effect of A, 4cl-A (10, 20, and 40 µg/mL) and B, 1-naphtyl-C (5, 10, and 20 µg/mL) on MMP collapse [data
were represented as mean ± SD; n = 3; ** P < 0.01, *** P < 0.001, and **** P < 0.0001 significant difference with untreated hepatocellular carcinoma (HCC) group].

mitochondria with 4cl-A (10, 20, and 40 µg/mL; Figure

4A) and 1-naphtyl-C (5, 10, and 20 µg/mL; Figure 4B).

4.3. Effects of 4cl-A and 1-naphtyl-C on Mitochondrial
Membrane Potential Collapse

After incubation of mitochondria for 15, 30, and 60

minutes with 4cl-A (10, 20, and 40 µg/mL; Figure 5A) and

1-naphtyl-C (5, 10, and 20 µg/mL; Figure 5B), the results

indicate a collapse in the MMP in the HCC group. The

release of pro-apoptotic proteins can be a consequence

of a collapse in the MMP.

4.4. Effects of 4cl-A and 1-naphtyl-C on Mitochondrial
Swelling

In the HCC group, results revealed that

mitochondrial swelling was increased by 4cl-A (10, 20,

and 40 µg/mL; Figure 6A) and 1-naphtyl-C (5, 10, and 20

µg/mL; Figure 6B). In the normal group, these two

compounds do not affect mitochondrial swelling (the

data are not shown). The results indicate that these

compounds can cause damage to mitochondria.

4.5. Effects of 4cl-A and 1-naphtyl-C on Cytochrome c Release

After incubation of mitochondria with 4cl-A (20

µg/mL; Figure 7A) and 1-naphtyl-C (10 µg/mL; Figure 7B),

the results indicate a release of cytochrome c in the HCC

group. The release of cytochrome c was not reported

after the incubation of mitochondria with a high

concentration of 4cl-A (40 µg/mL; Figure 7A) and 1-

naphtyl-C (20 µg/mL; Figure 7B) in the normal group.

Furthermore, the results indicated that CsA and BHT, as

inhibitors, decrease the effect of 4cl-A (20 µg/mL; Figure

7A) and 1-naphtyl-C (10 µg/mL; Figure 7B) on the release

of cytochrome c from HCC mitochondria (Figure 7A and

B).

5. Discussion

Our research focused on investigating the

mechanism of the effect of COX-2 inhibitors on

mitochondria from an HCC rat model, with the objective

of aiding HCC treatment. In recent years, many

researchers have investigated mitochondria as an

important target for the treatment of various cancers.

Additionally, scientists are focused on compounds that

have the ability to target mitochondria in cancer cells

(29-31). Mitochondria are one of the most important

intracellular organelles that play crucial roles in various

physiological conditions, and the effect of compounds

on them can be associated with significant changes in

the cell (32-34). The investigation focused on the effects

of COX inhibitors (4cl-A and 1-naphtyl-C) on

https://brieflands.com/articles/ijpr-164947


Mahmudi A et al. Brieflands

Iran J Pharm Res. 2025; 24(1): e164947 7

Figure 6. Mitochondrial swelling assay: The effect of A, 4cl-A (10, 20, and 40 µg/mL) and B, 1-naphtyl-C (5, 10, and 20 µg/mL) on mitochondrial swelling [data were represented as
mean ± SD; n = 3; * P < 0.05, and **** P < 0.0001 significant difference with untreated hepatocellular carcinoma (HCC) group].

Figure 7. Cytochrome c release assay: The effect of A, 4cl-A (20µg/mL) and B, 1-naphtyl-C (10 µg/mL) on cytochrome c release [data were represented as mean ± SD; n = 3; **** P <
0.0001 significant difference with untreated hepatocellular carcinoma (HCC) group; #### P < 0.0001 significant difference with 20 µg/mL + HCC group].

mitochondrial parameters that could be responsible for

cell death.

According to research, COX-2 is involved in both

carcinogenesis and the proliferation and progression of

cancer cells. Additionally, COX-2 exhibits the ability to

suppress apoptosis and stimulate angiogenesis in

cancer cells (10, 11, 35). Liver cancer has been shown to

have high levels and expression of COX-2, which could

lead to tumorigenesis in these patients (8, 35-37).

Inhibition of COX-2 can aid in the prevention and

treatment of this cancer. Our previous studies have

https://brieflands.com/articles/ijpr-164947
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demonstrated that compounds that inhibit COX-2 can

kill cancer cells through their effect on mitochondria

(13, 14). Our initial findings showed that 4cl-A and 1-

naphtyl-C were able to affect mitochondrial SDH activity

and decrease its activity. The results indicate that these

COX-2 inhibitors can cause dysfunction of cancer

mitochondria.

Mitochondria are known as important producers of

ROS (38, 39). The ROS play significant roles at different

levels in cells. Accordingly, ROS has been investigated as

an important target in cancer treatment by researchers.

The ROS at low levels can play a role in the process of

carcinogenesis, but at high and toxic levels, they can

help kill cancer cells and aid in the treatment of cancer.

Furthermore, ROS at high levels can induce apoptosis

and have anti-tumor effects (16-19, 40). It has also been

shown that these oxidative agents can play a role in

killing HCC cells. One of the approaches of targeted

drugs has been the creation of ROS in HCC cells, leading

to the induction of apoptosis in these cells (5, 20, 41).

Therefore, the use of compounds that can increase the

level of ROS in cancer cells may be an important

approach in cancer treatment. The results of our study

showed that 4cl-A and 1-naphtyl-C can increase the level

of ROS in HCC mitochondria. It is possible that COX-2

inhibitors in this study caused the production of ROS in

HCC mitochondria through their effect on the

mitochondrial ETC.

Further, our results showed that 4cl-A and 1-naphtyl-

C, as COX inhibitors, caused mitochondrial swelling,

collapse in MMP, and release of cytochrome c in the HCC

mitochondria. These events may be caused by the

generation of ROS in HCC mitochondria. Researchers

have shown that ROS can cause the opening of the

mitochondrial permeability transition pore (MPTP),

which results in mitochondrial swelling, collapse in the

MMP, and the release of pro-apoptotic compounds (42-

44). Therefore, 4cl-A and 1-naphtyl-C may affect the

mitochondrial ETC, causing the generation of ROS,

which can lead to further events. In this study, it was

shown that the use of an antioxidant (BHT) and an MPT

pore inhibitor (CsA) decreased the effects of COX-2

inhibitors.

5.1. Conclusions

In conclusion, we suggest a novel effect mechanism

of 4cl-A and 1-naphtyl-C involving an increase in ROS

generation, leading to mitochondrial swelling, MMP

collapse, and subsequent cytochrome c release. These

results suggest that mitochondria can be a target for

COX-2 inhibitory compounds and provide a theoretical

approach for its clinical application in HCC treatment.
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