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Abstract

Background: Long noncoding RNA (IncRNA) hox transcript antisense intergenic RNA (HOTAIR) is implicated in the
progression of gastric cancer (GC) by promoting the microRNA-217 (miR-217)-glypican-5 (GPC5) axis. Quercetin (QCT), a well-
known flavonoid, has demonstrated anticancer effects against various malignancies, including GC. However, the impact of QCT
on HOTAIR expression and its downstream mediators remains unclear.

Objectives: This study aimed to elucidate the antitumor mechanisms of QCT and its regulatory effects on the HOTAIR/miR-
217|GPC5 axis in AGS and MKN-45 GC cell lines.

Methods: Cellular viability, apoptosis, cell cycle progression, invasion, and oxidative stress markers were assessed using the
MTT assay, annexin V-FITC/PI staining, real-time quantitative polymerase chain reaction (RT-qPCR), enzyme-linked
immunosorbent assay (ELISA), and spectrophotometry. Expression levels of HOTAIR, miR-217, and GPC5 were quantified.

Results: The QCT significantly downregulated HOTAIR and GPC5 while upregulating miR-217 in both cell lines (P < 0.001). The
QCT induced dose-dependent apoptosis and cell cycle arrest, and reduced invasion through upregulation of TP53/PTEN (P <
0.05). Oxidative stress modulation displayed lineage-specific differences, with a marked reduction in malondialdehyde (MDA)
in MKN-45 cells (P = 0.013). AGS cells exhibited greater sensitivity to QCT than MKN-45 cells.

Conclusions: These findings highlight QCT’s ability to inhibit GC progression via the HOTAIR/miR-217/GPC5 axis, with
molecular heterogeneity influencing therapeutic response. The QCT emerges as a promising candidate for further investigation
as a multifaceted agent against GC, though validation in preclinical models is necessary.
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1. Background

Gastric cancer (GC) is a primary malignant neoplasm
arising from the gastric epithelium (1). Although
incidence and mortality rates have gradually declined in
recent years, GC remains among the most prevalent
malignancies worldwide, ranking as the fifth most
common cancer and the fourth leading cause of cancer-
related deaths globally (2, 3). The clinical management
of GC is complicated by intra-tumor and inter-tumor
heterogeneity (4).

Hox transcript antisense intergenic RNA (HOTAIR) is
a long noncoding RNA (IncRNA) involved in multiple
facets of  carcinogenesis, including cellular
proliferation, migration, apoptosis, metastasis, and
drug resistance (5, 6). Elevated HOTAIR expression has
been consistently associated with accelerated cancer
progression and poor prognosis (7). Furthermore,
HOTAIR expression correlates with resistance to
chemotherapeutic agents such as cisplatin, oxaliplatin,
and trastuzumab (8, 9).

MicroRNA-217 (miR-217) is a key microRNA implicated
in the progression of various cancers through
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regulation of cellular proliferation, migration, and
epithelial-to-mesenchymal transition (10-12). Glypican-5
(GPC5), a member of the heparan sulfate proteoglycan
family, plays crucial roles in cellular regulation and
development (13). Notably, HOTAIR overexpression
significantly impacts GPC5 expression by modulating
miR-217, leading to increased GPC5 levels (14).

Quercetin (QCT), a ubiquitous flavonoid abundant in
plant-based foods, exhibits a diverse range of health-
promoting properties. It is extensively studied for its
impact on gastrointestinal carcinogenesis, with
evidence suggesting that its effects extend beyond anti-
inflammatory action to modulation of cellular
migration, apoptosis, and angiogenesis (15).

2. Objectives

Given the limited understanding of how QCT
influences HOTAIR expression and its downstream
effects, this study aimed to investigate the anticancer
potential of QCT in GC cells and clarify the role of the
HOTAIR/miR-217/GPC5 axis in this context.

3. Methods

3.1. Cell Culture and Treatment Protocol

Human gastric adenocarcinoma cell lines (AGS
[American Type Culture Collection (ATCC) ®] CRL-1739™),
MKN-45 (ATCC® CRL-5979")] and normal gastric
epithelial cells [GES-1 (ATCC® CRL-5978 )] were obtained
from the ATCC. AGS and MKN-45 cell lines were selected
as they represent different molecular subtypes of GC:
AGS cells are TP53 wild-type and derived from a primary
gastric adenocarcinoma, whereas MKN-45 cells harbor a
TP53 mutation and are derived from a lymph node
metastasis. This selection enhances the translational
relevance by enabling investigation across distinct
genetic backgrounds. The GES-1 cell line served as a
normal control to evaluate QCT’s selective toxicity.

Cells were seeded in 96-well plates at a density of 1.0 x

10% cells per well. The culture medium consisted of
Dulbecco’s Modified Eagle Medium (DMEM; Gibco,
#11965092) with 10% fetal bovine serum (FBS; Gibco,
#10270106), 1%  penicillin-streptomycin  (Gibco,
#15140122; final concentration 100 U/mL penicillin and
100 pg/mL streptomycin), and 0.1% amphotericin B
(Sigma-Aldrich, #A2942; 0.25 pg/mL). After 24 hours of
incubation, cells were treated with various

concentrations of QCT (Sigma-Aldrich, #Q4951, purity >
95%) dissolved in ethanol (0.3% v|v). Treatments lasted
for an additional 24, 48, and 72 hours. All experiments
included three biological replicates, with technical
triplicates for quantitative polymerase chain reaction
(qPCR) and enzyme-linked immunosorbent assay
(ELISA) assays.

3.2. MIT Assay and Apoptosis Assessment by Annexin V-
FITC/PI

Cellular viability was evaluated using the MTT assay.
MTT reagent (Sigma-Aldrich, #M5655) was added to each
well at a final concentration of 0.5 mg/mL and
incubated for 4 hours at 37°C. Formazan crystals were
dissolved in 100 pL of dimethyl sulfoxide (DMSO), and
absorbance was measured at 570 nm using a microplate
reader (BioTek Instruments). IC;, values were calculated

from dose-response curves using a four-parameter
logistic (4PL) nonlinear regression model in GraphPad
Prism (Version 9.0.0).

Apoptosis was assessed using the annexin V-FITC/PI
apoptosis detection kit (BD Biosciences, USA, #556547).
After treatment, cells were harvested, washed twice with
ice-cold phosphate-buffered saline (PBS), and
resuspended in 500 uL of 1X annexin V binding buffer.
Then, 5 pL of annexin V-FITC and 5 pL of propidium
iodide were added, and samples were incubated in the
dark for 15 minutes at room temperature. Apoptotic
populations were quantified using a BD FACSCalibur
flow cytometer (BD Biosciences, USA) and analyzed with
Flow]Jo (Version 10.8.1).

3.3. RNA Extraction and Real-time Quantitative Polymerase
Chain Reaction

Total RNA was extracted using the PureLink RNA Mini
Kit (Thermo Fisher Scientific, USA, #12183018A), following
the manufacturer’s instructions. RNA quality and
quantity were assessed using a Biotek Nanodrop system.
Complementary DNA (cDNA) synthesis for HOTAIR and
GPC5 was performed using the High-Capacity cDNA
Reverse Transcription Kit (Thermo Fisher Scientific, USA,
#4368814). For miR-217, cDNA synthesis utilized the
TagMan MicroRNA Reverse Transcription Kit (Applied
Biosystems, Foster city, CA, USA). Glyceraldehyde-3-
phosphate dehydrogenase (GAPDH) and small nuclear
RNA U6 served as endogenous controls for HOTAIR/GPC5
and miR-217 normalization, respectively, based on their
stable expression in GC cell lines, even under
phytochemical treatment (16). Relative gene expression
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was calculated using the 222¢T method (Table S1, in the
Supplementary File).

3.4. Enzyme-Linked Immunosorbent Assay

The ELISA was conducted as per the manufacturers’
instructions. Kits for GPC5 (Abcam, #ab313967), BCL-2
(Abcam, #ab272102), CASP-3 (Abcam, #ab220655), TP53
(MyBioSource, #MBS175896), PTEN (MyBioSource,
#MBS761600), cyclin A2 (Abbexa, #abx259510), and
cyclin D1 (Abcam, #ab214571) were used. Cell lysates were
diluted 1:10 in diluent buffer. Absorbance was read at
450 nm, with a correction at 570 nm, using a BioTek
microplate reader.

3.5. Assessment of Oxidative Stress Markers

Cell extracts were prepared by lysing cells in RIPA
buffer and centrifuging at 12,000 x g for 15 minutes at
4°C. Catalase and superoxide dismutase (SOD) activities
were measured with commercial kits (Catalase: Cayman
Chemical, #707002; SOD: Cayman Chemical, #706002),
strictly following the manufacturers’ protocols.
Malondialdehyde (MDA) levels were determined using a
colorimetric assay kit (Sigma-Aldrich, #MAKO0S85).
Absorbances for catalase, SOD, and MDA were measured
at 540 nm, 440 nm, and 532 nm, respectively.

3.6. Statistical Analysis

All experiments were performed with at least three
independent biological replicates (n > 3) to ensure
reliability and account for biological variability. This
sample size was considered sufficient for statistical
power and is consistent with preclinical cell culture
standards. Data are presented as mean * standard
deviation (SD). Statistical significance was determined
using one-way or two-way analysis of variance (ANOVA),
as appropriate, followed by Tukey’s honestly significant
difference (HSD) test for multiple comparisons. A P-
value less than 0.05 was considered statistically
significant.

4. Results

4.1. Quercetin Suppressed the Viability of Gastric Cancer Cell
Lines

The QCT significantly reduced the survival rates of
AGS and MKN-45 GC cells in a dose- and time-dependent
manner (P < 0.05; Figure S1, in the Supplementary File).
The normal gastric GES-1 cell line exhibited higher IC5,
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values than the GC cell lines (Table S2, in the
Supplementary File), indicating reduced sensitivity to
QCT at the tested doses and durations. MTT assay results
demonstrated that prolonged QCT treatment decreased
IC5, values. Based on these findings, a 48-hour QCT

treatment was selected for further studies.

4.2. Quercetin Modulated Hox Transcript Antisense
Intergenic RNA and Downstream Target Gene Expression

The QCT at 50 uM and 100 uM significantly reduced
HOTAIR expression in both AGS and MKN-45 cells (P <
0.05). The GPC5 expression was also significantly
decreased at these concentrations (P < 0.01). In AGS cells,
100 uM QCT increased miR-217 expression by 1.57-fold (P
< 0.0001), while 25 yM and 50 puM did not yield
significant changes (P > 0.05). In MKN-45 cells, 50 uM
and 100 pM QCT induced 1.11-fold (P < 0.05) and 1.22-fold
(P < 0.0001) increases in miR-217, respectively. The ELISA
revealed that QCT significantly reduced GPC5 protein
levels in both cell lines (P < 0.001) compared to controls
(Figure1).

4.3. Quercetin Induced Apoptosis in Gastric Cancer Cell Lines

The QCT at 50 uM and 100 pM markedly altered BCL-2
and CASP-3 gene and protein expression in AGS cells (P <
0.05). Similar modulation was observed in MKN-45 cells
(Figure 2). Annexin V-FITC/PI staining demonstrated that
QCT promoted dose-dependent apoptosis in AGS and
MKN-45 cells (P < 0.05; Figure 3). In AGS cells, 25 uM, 50
uM, and 100 pM QCT increased total apoptosis by 2.96-
fold (P = 0.002), 6.43-fold (P < 0.001), and 11.21-fold (P <
0.0001), respectively, compared to controls. In MKN-45
cells, these concentrations induced 1.65-fold (P = 0.172),
3.05-fold (P < 0.01), and 6.15-fold (P < 0.001) increases,
respectively.

4.4. Quercetin Arrested the Cell Cycle in Gastric Cancer Cell
Lines

In AGS cells, 50 uM and 100 puM QCT significantly
reduced CCNA2 and CCND1 gene expression (P < 0.01).
Cyclin D1 protein levels declined significantly at both
doses, while cyclin A2 protein levels decreased
significantly only at 100 uM (Figure 4). In MKN-45 cells,
100 UM QCT reduced cyclin A2 protein by 23.03% (P <
0.01) and gene expression by 28.72% (P < 0.001). Cyclin D1
protein decreased by 18.18% (P < 0.001), with a 30.07%
reduction in CCND1 gene expression (P < 0.001).

4.5. Quercetin Suppressed Gastric Cancer Cell Invasion
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Figure 1. Quercetin (QCT) modified the expression of the hox transcript antisense intergenic RNA (HOTAIR)/microRNA-217 (miR-217)/glypican-5 (GPC5) axis. In the AGS cell line,

QCT at 100 uM significantly decreased HOTAIR (A) and GPC5 (C) expression, while markedly increasing miR-217 (B). Similarly, QCT decreased HOTAIR (E) and GPC5 expression (G),
and upregulated miR-217 (F) in the MKN-45 cell line. The GPC5 protein levels in both AGS (D) and MKN-45 (H) cell lines increased after QCT administration (*** P < 0.001, **P < 0.01,

and * P < 0.05; ns: Not significant; P < 0.05 was considered significant).
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Figure 2. Quercetin (QCT) administration induced apoptosis. The QCT at 100 uM significantly downregulated BCL-2 levels (A and C), and upregulated CASP-3 (B and D) in the AGS
cell line. In MKN-45 cells, QCT similarly decreased BCL-2 (E and G) and increased CASP-3 (F and H; *** P < 0.001, ** P < 0.01, and * P < 0.05; ns: Not significant; P < 0.05 was

considered significant).

The QCT at 50 yM and 100 uM increased TP53 and
PTEN gene expression in AGS cells. TP53 protein levels
rose by 1.14-fold (P = 0.005) and 1.34-fold (P < 0.0001),
while PTEN increased by 1.11-fold (P < 0.001) at 100 uM. In

MKN-45 cells, 100 uM QCT elevated TP53 and PTEN gene
expression by 1.25-fold (P < 0.01) and 1.27-fold (P < 0.001),
respectively, with protein analyses corroborating these
findings (Figure 5).
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Figure 3. Quercetin (QCT) induced apoptosis in gastric cancer (GC) cell lines in a dose-dependent manner: Representative flow cytometry plots of annexin V-FITC/PI staining in
AGS (A-D)and MKN-45 (E - H) cells treated with 0 uM (A, E), 25 uM (B, F), 50 uM (C, G), and 100 uM (D, H) QCT for 48 hours; quantitative analysis of total apoptosis (%) in AGS (I) and
MKN-45 (J) cells (*** P < 0.001, ** P < 0.01,and * P < 0.05; ns: Not significant; P < 0.05 was considered significant).
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Figure 4. Quercetin (QCT) induced cell cycle arrest in gastric cancer (GC) cell lines. Expression of CCNA2 (A in AGS and E in MKN-45) and CCND1 (B in AGS and F in MKN-45), along
with cyclin A2 (C in AGS and G in MKN-45) and cyclin D1 (D in AGS and H in MKN-45) protein levels was measured (***P < 0.001, ** P < 0.01, and * P < 0.05; ns: Not significant; P <
0.05 was considered significant).

significant changes in MDA levels were observed in AGS

4.6. Quercetin Modulated Oxidative Stress and Lipid cells at any QCT concentration (P > 0.05; Figure S2, in
Peroxidation in Gastric Cancer Cell Lines Supplementary File). In MKN-45 cells, 100 uM QCT
In AGS cells, 100 pM QCT significantly increased SOD  increased SOD activity by 28.93% (P < 0.001), with
and catalase activity (P < 0.0001), while 50 uM QCT  moderate increases at lower doses. Catalase activity rose
significantly enhanced SOD activity (P < 0.05). No by 32.76% (P < 0.0001) at 100 uM, though increases at 50
UM and 25 pM were not statistically significant. The MDA
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Figure 5. Tumor invasion was suppressed in gastric cancer (GC) cell lines after quercetin (QCT) treatment. Expression of p53 (A in AGS and E in MKN-45) and PTEN (B in AGS and F

in MKN-45) genes increased upon QCT treatment. Additionally, 100 pM QCT significantly increased TP53 (C in AGS and G in MKN-45) and PTEN (D in AGS and H in MKN-45) protein
levels (***P < 0.001, **P < 0.01, and *P < 0.05; ns: Not significant; P < 0.05 was considered significant).

levels decreased by 24.79% (P = 0.013) at 100 pM, with
non-significant trends at lower concentrations.

5. Discussion

The QCT inhibited HOTAIR and GPC5 expression while
upregulating miR-217 in a dose-dependent manner in
both cell lines. Suppression was more pronounced in
AGS than in MKN-45 cells, suggesting inherent
differences in HOTAIR regulation — possibly due to
baseline HOTAIR expression or molecular heterogeneity
among GC subtypes (17). The GPC5 protein reduction was
also less substantial in MKN-45 cells, potentially
reflecting lineage-specific reliance on glypican-
mediated pathways (18). These results align with
evidence that GC cell lines possess unique molecular
profiles affecting treatment responsiveness (19).

The HOTAIR is recognized as a key contributor to GC
carcinogenesis, promoting malignancy by modulating
intracellular pathways and altering microRNA levels (20,
21). The miR-217, sponged by HOTAIR, increases oncogene
expression and epithelial-to-mesenchymal transition in
GC cells. The antitumor role of miR217 in
gastrointestinal malignancies is largely mediated by
inhibition of proliferation and invasion (11, 22). The
GPC5, a target of miR-217, is implicated in tumor
progression. Thus, HOTAIR, miR-217, and GPC5 are
promising therapeutic targets, and agents modulating

this axis represent potential for GC

management.

strategies

While this study elucidates the mechanistic action of
QCT on the HOTAIR/miR-217/GPC5 axis, its potential
interactions with other critical GC signaling networks,
such as the transforming growth factor-beta (TGF-B)
pathway, warrant further exploration (23). For example,
QCT-mediated HOTAIR suppression may influence TGF-3
effectors like SMAD proteins, as IncRNAs often serve as
scaffolds for  chromatin-modifying  complexes.
Additionally, the reduction in GPC5 may impact growth
factor pathways such as vascular endothelial growth
factor (VEGF) and fibroblast growth factor (FGF)
signaling (24), potentially contributing to QCT’s anti-
angiogenic and anti-invasive effects. Thus, QCT’s
antitumoral actions likely involve both direct
suppression of the HOTAIR/miR-217/GPC5 axis and
indirect modulation of broader oncogenic networks.

The QCT-induced apoptosis and cell cycle arrest were
dose-dependent in both cell lines, though MKN-45
displayed greater resistance. This may be due to
differential expression of anti-apoptotic regulators or
epigenetic modifications, as seen in chemoresistant GC
models (22). Malignant cells evade apoptosis and
proliferate excessively (25). Here, QCT at high doses
significantly reduced cyclin A2 and D1 levels. Cell cycle
modulation was more robust in AGS cells; MKN-45 cells
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required higher QCT concentrations for similar effects,
possibly due to aberrant cyclin-dependent kinase
activity in metastatic GC subtypes (26). Cyclin A2
upregulation drives proliferation, while its targeting
induces arrest and apoptosis. Cyclin D1 is a GC
progression marker, and its downregulation is
therapeutically valuable (26).

Mutations in TP53 and loss of PTEN function are
frequent in advanced GC (27, 28). In this study, QCT
upregulated TP53 and PTEN, suppressing invasion in
both cell lines, though MKN-45 exhibited greater PTEN
protein variability at 100 pM. This reflects clinical
observations  of  intra-tumor  plasticity = and
compensatory signaling in GC (27). Excess reactive
oxygen species and oxidative stress damage DNA and
lipids, promoting angiogenesis and invasion (29). The
QCT increased SOD and catalase activity, enzymes that
convert reactive oxygen species into less reactive
molecules. While both cell lines showed increased
antioxidant enzyme activity, only MKN-45 exhibited
significant MDA reduction, underscoring lineage-
specific differences in lipid peroxidation dynamics and
the need for diverse models when evaluating
phytochemicals (22).

Despite compelling in vitro data, QCT’s clinical
translation is challenged by poor bioavailability due to
extensive first-pass metabolism and low water solubility
(30, 31). Innovative delivery systems, such as
nanoparticles and liposomes, are being developed to
improve QCT’s bioavailability and targeted delivery. The
mechanistic insights provided here support the
rationale for future in vivo studies employing such
strategies to assess QCT’s therapeutic efficacy.

Limitations include the exclusive use of in vitro
models, which cannot fully capture the complexity of
the tumor  microenvironment or  systemic
pharmacology. The study focused narrowly on the
HOTAIR/miR-217/GPC5 axis, not excluding other
contributing pathways. Furthermore, the connection
between TP53/PTEN upregulation and reduced invasion
was correlative; genetic knockdown studies are needed
for definitive causal inference. Future research should
employ in vivo models and broader pathway analysis to
facilitate translation of these promising results.

5.1. Conclusions

This study demonstrates that QCT exerts significant
antitumor effects in GC by targeting the HOTAIR/miR-
217/GPC5 pathway. AGS cells were more sensitive to QCT,

Iran ] Pharm Res. 2025; 24(1): 165480

with marked cyclin downregulation and strong
apoptotic activation, while MKN-45 cells displayed
diminished responses, highlighting the impact of
molecular heterogeneity on therapeutic efficacy. The
QCT further inhibited invasion via TP53/PTEN
upregulation and modulated oxidative stress by
enhancing antioxidant enzyme activity and reducing
lipid peroxidation in MKN-45 cells. These preclinical in
vitro findings reveal the diverse mechanisms through
which QCT suppresses GC cell proliferation and survival,
suggesting its potential for further development as an
adjunctive therapy. However, these findings are
preliminary and require validation in complex in vivo
models. Variations in lineage-specific efficacy emphasize
the need for rigorous preclinical studies in animal
models before clinical trial consideration. Future
research should refine dosing strategies and explore
combination  therapies to address resistance
mechanisms.
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