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Abstract

Background: Non-alcoholic fatty liver disease (NAFLD) is a prevalent chronic hepatic condition that can progress to non-
alcoholic steatohepatitis (NASH) through inflammatory processes.

Objectives: This research aimed to examine the impact of an aqueous extract of Capparis spinosa fruit and the lipid-lowering
agent fenofibrate (FENO) on hepatic inflammation and steatosis in rats subjected to a high-fat emulsion.

Methods: Male Wistar rats were given a high-fat diet (HFD) to develop NASH. The high-fat treated rats were categorized into
three groups and administered either C. spinosa, FENO, or a vehicle control. Histopathological analyses, Liver Index
computation, and measurements of body and liver weights were conducted. Serum levels of liver enzymes, adiponectin, and
leptin were also assessed. Additionally, the expression of hepatic genes for monocyte chemoattractant protein 1 (MCP-1),
transforming growth factor-beta (TGF-B), interleukin 6 (IL-6), and tumor necrosis factor-alpha (TNF-a) was evaluated.

Results: The administration of C. spinosa extract to the NASH model rodents significantly increased their adiponectin levels
while substantially decreasing their levels of leptin, alanine aminotransferase (ALT), and aspartate transaminase (AST). Hepatic
steatosis, liver inflammation, and collagen deposition were significantly reduced by C. spinosa treatment. Furthermore, the
hepatic mRNA expression of the proinflammatory cytokines TNF-q, IL-6, and MCP-1, as well as the hepatic fibrogenic marker TGF-
B1, was significantly reduced by C. spinosa treatment. The FENO exhibited a comparable pattern of response.

Conclusions: Our findings suggest that C. spinosa has a positive anti-inflammatory effect and may protect the liver against
hepatic fibrosis, inflammation, and steatosis. These findings demonstrate the promising therapeutic potential of C. spinosa in
the management of NASH.
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1. Background

In recent years, non-alcoholic fatty liver disease
(NAFLD) has become one of the most common chronic
liver diseases in developed countries (1). This condition
is often linked to metabolic issues like type 2 diabetes
and obesity. A major feature of NAFLD is low-grade
inflammation, which is closely related to insulin

resistance and the buildup of fat in the liver. A more
severe form of this disease, called non-alcoholic
steatohepatitis (NASH), is marked by significant
inflammation in the liver (2). If NASH is not treated, it
can lead to serious problems such as cirrhosis and liver
fibrosis, mainly due to the release of pro-inflammatory
substances from both fat tissue and immune cells in the
liver (3).
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Cytokines like tumor necrosis factor-alpha (TNF-a),
interleukin 6 (IL-6), monocyte chemoattractant protein 1
(MCP-1), and transforming growth factor-beta (TGF-B)
are important players in the development of NASH (4).
When liver macrophages become activated, they release
these inflammatory and fibrotic factors such as TGF-,
which then stimulate hepatic stellate cells. These stellate
cells are crucial in the process of fibrosis, creating a
connection between inflammation and fibrosis in the
liver (5, 6). The MCP-1 is produced by various types of
liver cells, including hepatocytes and activated stellate
cells, highlighting its key role in liver inflammation and
its progression to fibrosis (7). On the other hand, IL-6 has
a more complicated role in liver disease, especially in
disrupting insulin signaling (8).

In addition to these cytokines, important signaling
molecules called adipokines, such as adiponectin and
leptin, also play significant roles in NAFLD and NASH.
Adiponectin helps improve insulin sensitivity and
protects the liver by reducing inflammation and
fibrosis. It has been shown to help reduce liver fat and
inflammation by lowering levels of TNF-a in the liver
and in the bloodstream (9-11). While leptin is mainly
produced by fat tissue, it can also be made by activated
stellate cells during inflammation (12). In the early
stages of NAFLD, leptin may help reduce fat buildup in
the liver, but in later stages of NASH, it tends to promote
inflammation and fibrosis (13).

Despite the development of various treatments in
recent years, there is still no widely accepted cure for
NAFLD|NASH. This has led to increased interest in
finding effective medications for these conditions.
Herbal remedies that have antioxidant, cholesterol-
lowering, and blood sugar-lowering properties may
help relieve symptoms of NAFLD. Traditional medicine
around the world often uses herbal extracts to treat liver
diseases (14). One such plant is Capparis spinosa, which
belongs to the Capparidaceae family and has been
shown to have cholesterol-lowering, antioxidant, and
anti-inflammatory effects. Research has found that C.
spinosa extract can significantly lower blood sugar and
cholesterol levels in diabetic rats. Additionally, C. spinosa
is known to contain anti-inflammatory compounds that
can reduce the production of pro-inflammatory
substances (1,15, 16).

2. Objectives

This study aims to explore the protective effects of C.
spinosa fruit extract on liver tissue and inflammation
markers related to NASH in mice fed a high-fat diet
(HFD). Given the reported benefits of this plant, the
research will also compare the effects of the extract with

those of fenofibrate (FENO), a medication known for its
positive effects on cholesterol levels and fatty liver. The
study will focus on how C. spinosa affects the expression
of liver genes related to inflammation and fibrosis.

3. Methods

3.1. Materials

The FENO and a vitamin-mineral formulation were
procured from Abidi Pharmaceutical Company, Tehran,
Iran. The high-fat emulsion comprised sodium
deoxycholate, corn oil, total milk powder, cholesterol,
Tween 80, and propylene glycol, with all components
supplied by Sigma-Aldrich Corporation, United States.

3.2. Preparation of the Capparis spinosa Aqueous Extract

Capparis spinosa specimens were collected in Shoosh
(Khuzestan province, Iran) in June 2020. A botanical
specialist recognized the specimens and deposited
them in the herbarium of the Ahvaz Jundishapur
University of Medical Sciences in Ahwaz, Iran. The
aqueous extract of C. spinosa was produced according to
the techniques described by Jalali et al. (1). Capparis
spinosa fruits were cleansed with distilled water and
dried at 40°C before being crushed into a powder. The
aqueous extract was made by immersing 10 g of
powdered fruits in 100 milliliters of distilled water and
carefully mixing for 2 hours. The mixture was
subsequently allowed to settle for 20 minutes after
boiling for 15 minutes. In order to eliminate particulate
matter, the aqueous extract was filtered through a 0.2
mm Millipore filter (Millipore, St Quentin en Yvelines,
France). The filtrate that was obtained was freeze-dried
and stored at -20°C for future use. The aqueous extracts
were produced daily, just before dosing. Jalali et al. (1)
reported that the extract was prepared by reconstituting
freeze-dried extracts in 1.5 mL of distilled water and
administered orally to the experimental groups by
gavage for six weeks at a dosage of 20 mg/kg body
weight once a day.

3.3. Preparation of High-Fat Emulsion

In accordance with the Zou et al. formulation, the
high-fat emulsion diet contained 77% calories from fat,
9% from carbohydrates, and 14% from proteins (2). This
therapy administered saccharose, maize oil fat, and
complete milk powder proteins as carbohydrates. The
high-fat emulsion's makeup is as follows: 400 g corn oil;
150 g saccharose; 80 g complete milk powder; 100 g
cholesterol; 10 g sodium deoxycholate; 1.5 g mineral
combination;36.4 g Tween 80; 2.5 g vitamin mix; 31.1g
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propylene glycol; 10 g culinary salt; and 300 mL purified
water. Originally kept at 4°C, this emulsion was
painstakingly blended in a 42°C water immersion prior
to use. The animals received the high-fat emulsion diet
via gavage at 10 mL/kg/day.

3.4. Animals, Treatments, and Experimental Design

The Experimental Animal Center at Ahvaz
Jundishapur University of Medical Sciences provided 36
mature male Wistar rats, with an average weight of 198 +
11 g. Rats were housed in plastic enclosures with uniform
environmental conditions. These comprised a 12-hour
light/12-hour dark cycle, a constant temperature of 25 +
2°C, and humidity levels of 55 - 60%. They were given a
typical rat chow diet and unrestricted access to drinking
water prior to the commencement of the study. All
operations were authorized by the Ahvaz Jundishapur
University of Medical Sciences Research Center and
Experimental Animal House Ethics Committee.
Following adaptation, rats were randomly assigned to
either a normal control (NC) group (n = 9) or a HFD
group (n = 27) using a random number table. The NC
group received the normal diet. The high-fat emulsion
(10 mL/kg) was administered to the HFD group by
gavage at 9:00 a.m. for 12 weeks while maintaining the
same diet. Equivalent volumes of saline solution were
given to the NC group. Furthermore, the HFD group was
given unrestricted access to a saccharose solution (18%).
The HFD group rats received streptozotocin
intraperitoneally during the fifth week after it had been
dissolved in 0.2 mL of 0.1 M citrate buffer, pH 4.5. The
NASH model phenotype, which is defined by obesity and
immobility, was observed in the HFD group during the
sixth week. One rat from the control group and one rat
from the HFD group were sacrificed to verify the
development of NASH. A pathologist evaluated their
livers in accordance with the histological criteria for
NASH. Using a random number system, the NASH model
group was split up into three groups at the start of the
seventh week: (1) The HFD control group that received
the high-fat emulsion, (2) the group that received 10
mg/kg body weight HFD + C. spinosa, and (3) the group
that received the HFD+FENO 100 mg/kg body weight.
Capparis spinosa and FENO were suspended in 0.5%
carboxymethylcellulose-Na (CMC) solution and given to
the animals via gavage daily at 5:00 PM until the end of
the 12th week.

3.5. Collection of Liver Tissues and Blood Samples

After a 12-hour fast at the conclusion of the 12-week
study, all animals were anesthetized using a
combination of xylazine (10 mg/kg) and ketamine
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hydrochloride (90 mg/kg) prior to euthanasia. Blood
samples were collected via cardiac puncture, and serum
was separated for the analysis of serum leptin,
adiponectin, and biochemical markers. The rat livers
were promptly excised and rinsed with standard cold
saline. Specimens were weighed to determine the Liver
Index, then frozen in liquid nitrogen (-180°C) for further
investigation of hepatic gene expression. In all groups, a
liver specimen was preserved in 10% formalin for
histological examination.

3.6. Histopathological Examination

Collagen deposition was evaluated using Masson's
trichrome, while hepatic lipid accumulation (steatosis)
was investigated using hematoxylin and eosin (H&E).
These histological alterations were evaluated in 7 mm
liver sections using standard staining methods. The
slices were then examined under a light microscope.
Images were captured using a Leica ICC50 HD digital
camera attached to a motorized light microscope. The
degree of inflammation, fibrosis stage, and steatosis
region were assessed using predetermined criteria.

3.7. Biochemical Parameters Analysis

3.7.1. Liver Function Tests

Blood levels of alanine transaminase (ALT) and
aspartate aminotransferase (AST) were measured using
the Roche 6000 auto-analyzer with appropriate test kits
(Roche, catalog number: 4718569190 and 465754390,
respectively).

3.7.2. Serum Leptin and Adiponectin

Serum levels of adiponectin and leptin were
determined using a commercial ELISA kit from R&D
Systems (Minneapolis, MN, USA).

3.7.3. RNA Extraction, Real-time Polymerase Chain Reaction,
and Hepatic Gene Expression

The hepatic gene expressions of TGF-f1, TNF-a, IL-6,
and MCP1 were quantified using quantitative
polymerase chain reaction (qPCR). Total RNA was

extracted from the frozen liver samples using TRIzol "
Reagent (Invitrogen, Grand Island, NY) according to the
manufacturer's instructions. The integrity and
concentration of the total RNA were assessed using
spectrophotometry (Nanodrop ND-1000; Thermo
Scientific). The cDNA was synthesized using Avian
Myeloblastosis Virus (AMV) Reverse Transcriptase
(Takara Bio, Otsu, Japan).
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Table 1. Sequence of the Primers Used for Real-time PCR

Primer Name Forward Primer Reverse Primer

TGF-B1 5'-CAAAGACATCACACACAGTA-3' 5-GGTGTTGAGCCCTTTCCAGG-3'
TNF-a 5-ACCACGCTCTTCTGTCTACTG-3' 5-CTTGGTGGTTTGCTACGAC-3'
MCP1 5-GTGCTGACCCCAATAAGGAA -3’ 5"TGAGGTGGTTGTGGAAAAGA-3
IL-6 5'-TGATGGATGCTTCCAAACTG-3' 5'- GAGCATTGGAAGTTG GGGTA-3'
B-actin 5-CCCATCTATGAGGGTTACGC-3" 5-TTTAATGTCACGCACGATTTC-3'

Abbreviations: TGF-B, transforming growth factor-beta; TNF-a, tumor necrosis factor-alpha; MCP-1, monocyte chemoattractant protein 1; IL-6, interleukin 6.

Quantitative real-time PCR (qRT-PCR) analysis was
conducted using the SYBR Green PCR reagent (Takara
Bio, Otsu, Japan) on the Gentier96E 3 Real-Time PCR
System (Tianlong Science and Technology), following
the manufacturer's instructions. The comparative
threshold cycle method was used to analyze hepatic
gene expression levels, which were normalized using -
actin as an endogenous control gene (relative
quantification using AACt methods). Gene expression
data were analyzed using Applied Biosystems software.
Primer pairs sequences used for the RT-PCR reactions are
shown in Table 1.

3.8. Statistical Analysis

The data were presented as the mean * standard
deviation (SD). One-way ANOVA was used, followed by
Tukey’s post-hoc test for multiple comparisons, using
GraphPad Prism version 8.0.2 for Windows (GraphPad
Software, La Jolla, CA, USA). The significance threshold
for all statistical tests was set at P < 0.05.

4. Results

4.1. Effects of Capparis spinosa on Body Weight and Liver
Index in Rats Fed with the High-fat Diet

Rats administered the HFD for 12 weeks exhibited
significantly higher final Body Weights and Liver indices
(liver weight/body weight x 100%) compared to those in
the NC group (P < 0.01, Figure 1A and B). The increase in
body weight was normalized after six weeks of C. spinosa
with FENO medication (P < 0.001). Furthermore, the
Liver Index demonstrated a substantial decline in
response to the C. spinosa after six weeks of therapy (P <
0.01, Figure 1B). In contrast, the Liver Index was not only
not diminished by FENO medication but was also
significantly increased compared to the HFD group (P <
0.05).

4.2. Effect of Capparis spinosa on Serum Alanine
Aminotransferase, Aspartate Transaminase, Leptin, and
Adiponectin Levels in Rats Fed with the High-fat Diet

Figure 2 shows that the HFD group had significantly
higher serum levels of ALT and AST than the NC group (P
< 0.001). Compared to the HFD group, the C. spinosa-
treated group's blood levels of AST and ALT were
considerably lower (P < 0.001, Figure 2A and B). Serum
AST and ALT levels were also decreased by FENO therapy;
however, the C. spinosa effect was much greater (P <
0.001, Figure 2A and B). Insulin resistance and related
disorders, such as obesity and NAFLD, have been linked
to adiponectin and leptin. Therefore, we assessed the
degree to which C. spinosa affected blood levels of
adiponectin and leptin. The HFD-fed animals had
significantly greater blood leptin levels than the NC
group (P < 0.001, Figure 2C). However, C. spinosa
treatment partially corrected the rise in blood leptin
levels caused by the HFD (P < 0.01, Figure 2C). The HFD
mice's blood adiponectin levels were significantly lower
than the NC group's (P < 0.001, Figure 2D). However, C.
spinosa and FENO treatments could dramatically raise
the adiponectin levels that were markedly lowered after
the HFD was administered.

4.3. Effects of Capparis spinosa on Hepatic Steatosis, Liver
Inflammation, and mRNA Expression of Proinflammatory
Cytokines in the Liver of High-fat Diet-Fed Rats

The H&E staining was used to investigate the impact
of C. spinosa extract on hepatic lipid accumulation and
inflammation. Unlike the NC group, which exhibited
significant steatosis in liver cells, the HFD-fed group
showed advanced degrees of inflammation, marked by
enlarged hepatocytes, extensive cytoplasmic fat
vacuoles, and small lipid droplets (Figure 3, upper
panel). Additionally, the HFD diet led to a significant
accumulation of erythrocytes in the liver tissue (Figure
3, middle panel). However, C. spinosa treatment resulted
in a substantial reduction in hepatic inflammation and
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Figure 1. Effect of Capparis spinosa fruit extract and fenofibrate (FENO) on body weight (A) and percentage of Liver Index (B). Bars represent the mean + standard deviation (SD)
of the variables in each group [n=7- 8; CS: Capparis spinosa; Abbreviations: NC, normal control; HFD, high-fat diet; * P < 0.05, ** P < 0.01,and *** P < 0.001; (I) Significantly different
from NC at the end of week 6, (II) significantly different from NC after 12 weeks, and (11I) significantly different between NC, HFD+FENO, and HFD+C. spinosa vs. HFD at the end of

week 12 (P <0.001)].

lipid accumulation compared to the HFD-fed group.
Furthermore, the micro- and macrovesicular steatosis
and hepatic inflammation induced by HFD were
diminished in response to FENO treatment (Figure 3,
middle panel). Consequently, there was a substantial
increase in the mRNA expression of proinflammatory
cytokines IL-6, TNF-a, and MCP-1 in HFD-fed rats
compared to healthy rats (P < 0.001, Figure 3, lower
panel). Conversely, the mRNA levels of these cytokines
were significantly reduced by C. spinosa treatment
compared to the HFD group (P < 0.001). Animals
administered FENO exhibited comparable outcomes.

4.4. Effects of Capparis spinosa on Hepatic Fibrosis and
mRNA Expression of Transforming Growth Factor-Beta 1 in
the Liver of High-fat Diet-Fed Rats

The liver sections of rodents in the HFD group
exhibited a significant amount of collagen deposition
and fibrosis, as illustrated in Figure 4. Masson's

Iran | Pharm Res. 2025;24(1): 166099

trichrome staining was used to confirm this. The
combination of C. spinosa and FENO for 42 days
substantially decreased hepatic fibrosis and collagen
deposition (P < 0.001, Figure 4, upper and middle
panels). The HFD group had significantly higher levels of
TGF-f1 mRNA expression than the NC group,
corroborating this finding. The TGF-B1 mRNA expression
decreased considerably with C. spinosa and FENO
treatment (P < 0.001, lower panel).

5. Discussion

The results of this study provide strong evidence for
the therapeutic potential of C. spinosa in treating NASH
induced by a HFD. Our findings demonstrate that C.
spinosa treatment significantly reduced liver enzyme
levels, specifically ALT and AST, which are critical
indicators of hepatocellular injury. This protective effect
was more pronounced than that observed with FENO,
suggesting that C. spinosa may offer superior
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Figure 2. Effects of Capparis spinosa extract on serum alanine aminotransferase (ALT), aspartate transaminase (AST), leptin, and adiponectin: (A) serum ALT, (B) serum AST, (C)
serum leptin, and (D) serum adiponectin in rats fed a high-fat diet (HFD). Values are expressed as the mean + standard deviation (SD, n =7 rats; between-group comparisons were
tested by ANOVA followed by Tukey Kramer multiple comparisons test; CS: Capparis spinosa; abbreviations: NC, normal control; FENO, fenofibrate; ns, non-significant; * P < 0.05,

**P<0.01,and **P < 0.001).

hepatoprotection. The reduction in these enzymes
indicates that C. spinosa can effectively shield
hepatocytes from damage, likely due to its antioxidant
properties, which have been previously documented in
various studies (15-17).

In addition to lowering liver enzyme levels, C. spinosa
treatment resulted in a notable decrease in body weight
and Liver Index compared to the HFD group. This is
particularly relevant considering the established link
between obesity, insulin resistance, and the progression
of NAFLD to NASH. The weight reduction observed in the
C. spinosa-treated group aligns with findings from
earlier studies that highlight the herb’s role in
modulating lipid metabolism and promoting weight

loss. The mechanism behind this effect may involve the
regulation of genes associated with lipogenesis and
lipolysis, which C. spinosa has been shown to influence,
thereby improving metabolic health (18). The FENO-
treated group also exhibited weight loss benefits,
despite the fact that the Liver Index increased rather
than decreased. Animal studies have demonstrated that
hepatomegaly is one of the adverse effects of FENO in
rodents, which is consistent with our findings (19).

The study also revealed that C. spinosa treatment
significantly decreased levels of pro-inflammatory
cytokines, including TNF-a, IL-6, and MCP-1. Elevated
levels of these cytokines are well-known contributors to
the inflammatory processes that exacerbate liver
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Figure 3. Capparis spinosa extract reduces high-fat diet (HFD)-induced hepatic steatosis and inflammation in the non-alcoholic steatohepatitis (NASH) model (n = 7 - 8). Upper
panel: Histopathological observations of liver sections stained with hematoxylin and eosin (H&E, magnification: 100X; abbreviations: A, accumulation of RBCs; I, inflammation;
S, steatosis); middle panel: Mean + standard deviation (SD) of quantitative histopathological assessment for steatosis, accumulation of RBCs, and inflammation after H&E
staining; lower panel: The expression levels of inflammation-related genes in rats fed a HFD (CS: Capparis spinosa; abbreviations: TNF-a, tumor necrosis factor-alpha; IL-6,
interleukin 6; MCP-1, monocyte chemoattractant protein 1; NC, normal control; FENO, fenofibrate; ns, non-significant; ** P < 0.01and *** P < 0.001; $ P < 0.05, $$ P < 0.01, and $$$ P

<0.001vs.NC; {P<0.05, 1f P<0.01,and {ff P < 0.001 vs. HFD).

damage in NASH. For instance, TNF-a has been
implicated in promoting insulin resistance and
activating inflammatory pathways, including nuclear
factor-B and c-jun N-terminal kinase, that lead to
hepatocyte injury (20). Studies suggest a correlation
between hepatic fibrosis and TNF-a levels in patients
with NASH (21). Our results indicate that C. spinosa may
inhibit the production of TNF-a, thereby reducing the
inflammatory response and protecting the liver. This is
consistent with previous research that has
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demonstrated the anti-inflammatory effects of C.
spinosa in various models of metabolic disorders (22,
23).

Moreover, the reduction in MCP-1 levels observed in
the C. spinosa-treated rats is particularly significant, as
MCP-1is a key chemokine that facilitates the recruitment
of inflammatory cells to the liver, contributing to the
progression of hepatic inflammation and fibrosis (24,
25). Our findings support earlier studies that have
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Figure 4. Capparis spinosa extract improves high-fat diet (HFD)-induced hepatic fibrosis in the non-alcoholic steatohepatitis (NASH) model. Upper panel: Representative images
of Masson Trichrome stained liver tissue sections (magnification: 100X; abbreviation: F, fibrosis); middle panel: Quantitative histopathological assessment for fibrosis and
collagen deposition; lower panel: Expression of hepatic transforming growth factor-beta (TGF-B) 1 mRNA in rats fed a HFD. Values are given as mean * standard deviation (SD, CS:
Capparis spinosa; Abbreviations: NC, normal control; FENO, fenofibrate; n = 7- 8 rats; *** P < 0.001; $$$ P < 0.001 vs. NC; {11 P < 0.001 vs. HFD).

shown a correlation between elevated MCP-1 levels and
the severity of liver disease. The ability of C. spinosa to
normalize MCP-1 levels suggests a mechanism by which
it mitigates inflammation and fibrosis in the liver.

The modulation of adipokines by C. spinosa is
another critical aspect of our findings. The observed
decrease in serum leptin levels, coupled with an
increase in adiponectin, highlights the herb’s role in
restoring adipokine balance in the context of metabolic
syndrome. Leptin is known to promote inflammation
and insulin resistance (26), while adiponectin exerts
protective effects on the liver by enhancing insulin
sensitivity and exhibiting anti-inflammatory properties
(27). Leptin, through the glucose-stimulated insulin
secretion pathway, is directly related to the secretion of
insulin granules, which may promote insulin resistance
(28). It has been shown that leptin increases TGF-B in
Kupffer cells, which causes fibrogenesis and
inflammation in the liver (12). The C. spinosa treatment
resulted in a decrease in leptin levels in these animals.
This result was also consistent with the reduction in
body weight. The changes in these adipokines following
C. spinosa treatment align with previous findings that
link low adiponectin levels to the development of
NAFLD|NASH.

Furthermore, the significant reduction in TGF-B1
expression following C. spinosa treatment underscores
its anti-fibrotic potential. The TGF-B1is a well-established
mediator of fibrogenesis, and its upregulation is
associated with increased collagen production and liver

fibrosis (29, 30). Our results indicate that C. spinosa can
effectively downregulate TGF-B1, thereby potentially
reversing the fibrotic process. This finding is consistent
with studies that have highlighted the importance of
targeting TGF-B1in the management of liver fibrosis.
Histological analysis further corroborated our
biochemical findings, showing a marked improvement
in liver architecture in the C. spinosa-treated group. The
reduction in steatosis, inflammatory cell infiltration,
and collagen deposition observed in liver sections aligns
with the biochemical improvements noted. Previous
studies have shown that effective treatments for NASH
often lead to similar histological outcomes (31, 32),
reinforcing the notion that C. spinosa may serve as a
viable therapeutic option for managing liver disease.

5.1. Conclusions

In conclusion, our study presents compelling
evidence that C. spinosa aqueous extract offers
significant protective effects against HFD-induced NASH.
The herb’s ability to modulate key inflammatory
cytokines, improve adipokine profiles, and reduce liver
injury markers suggests that it could be a promising
alternative treatment for NASH. Given the multifactorial
nature of the disease, further investigation into the
precise mechanisms of action and potential clinical
applications of C. spinosa is warranted, particularly in
the context of developing effective therapies for
metabolic liver diseases.
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5.2. Limitations

This study has not determined which of the active
compounds of the C. spinosa is responsible for these
effects, and it is necessary to examine this in future
studies.
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