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Abstract

Background: Alveolar macrophages (AMs) play a pivotal role in the initiation, resolution, and tissue repair processes of
pulmonary inflammatory diseases. The regulation of poly (ADP-ribose) polymerase-1 (PARP-1) is closely associated with
inflammatory mechanisms, including the expression of inflammatory mediators, macrophage polarization, and mitochondrial
damage. Tanshinone IIA, the primary active component of the Chinese herb Salvia miltiorrhiza Bge., exhibits potent anti-
inflammatory activity.

Objectives: This study aims to elucidate the mechanism by which tanshinone IIA inhibits macrophage polarization,
attenuates the inflammatory response, and prevents mitochondrial damage through regulation of the PARP-1 signaling
pathway.

Methods: We investigated the effects of tanshinone IIA on macrophage polarization, inhibition of inflammation and oxidative
stress, and protection against mitochondrial damage via the PARP-1 signaling pathway using various experimental approaches,
including enzyme-linked immunosorbent assay (ELISA), flow cytometry, western blot analysis, molecular docking, and
molecular dynamics (MD) simulation studies.

Results: Compared with the model group, tanshinone IIA significantly inhibited the phosphorylation and activation of
nuclear factor kappa B (NF-kB, P < 0.05) in AMs by modulating PARP-1 (P < 0.05). This modulation led to suppression of NLRP3
inflammasome activation (P < 0.05 versus the model group), ultimately inhibiting the release of inflammatory mediators such
as nitric oxide (NO), interleukin-1f (IL-1B), interleukin-6 (IL-6), and tumor necrosis factor-alpha (TNF-a, P < 0.05). Simultaneously,
tanshinone IIA suppressed cellular oxidative stress via the Nrf2/heme oxygenase-1 (HO-1) pathway (P < 0.05 versus the model
group), resulting in decreased reactive oxygen species (ROS) release (P < 0.05) and reduced mitochondrial MitoSOX production
(P < 0.05). By regulating PARP-1, tanshinone IIA also effectively inhibited mitochondrial damage (compared with the model
group, JC-1decreased and mitochondrial permeability transition (MPTP) increased, P < 0.05) and M1 polarization of AMs induced
by lipopolysaccharide [LPS; expression of CD86, cyclooxygenase-2 (COX-2), and inducible nitric oxide synthase (iNOS) decreased;
arginase-1 (ARG-1) and CD206 increased, P < 0.05]. Furthermore, it efficiently modulated signaling pathways involved in
mitochondrial fission and fusion [optic atrophy 1(OPA1), dynamin-related protein 1(DRP1)] (P < 0.05).

Conclusions: These findings suggest that the therapeutic effects of tanshinone IIA on pulmonary inflammation are closely
related to its ability to inhibit inflammatory damage and oxidative stress, regulate AM polarization, and alleviate mitochondrial
damage in AMs through modulation of the PARP-1 pathway.
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1. Background further amplifying the inflammatory response.
Therefore, effective regulation of macrophage

Poly (ADP-ribose) polymerase-1 (PARP-1) is the most
extensively studied member of the PARP family. It is
characterized by a zinc-finger DNA-binding domain, an
auto-modification domain, and a catalytic domain
responsible for adding branched ADP-ribose moieties to
target proteins (1). In recent years, numerous studies
have shown that PARP-1 is involved in regulating
inflammatory damage by modulating the expression of
various cytokines, chemokines, and adhesion molecules,
thereby playing a key role in the inflammation cycle (2,
3). Our previous studies have also demonstrated that
inhibiting PARP-1 expression can significantly alleviate
lipopolysaccharide (LPS)-induced acute lung injury (ALI)
(4).

The PARP-1 regulates the inflammatory response in
various cell types, including innate immune -cells
(macrophages, neutrophils), adaptive immune cells
(lymphocytes), and non-immune cells (such as
fibroblasts and endothelial cells) (5, 6). Modulation of
PARP-1 expression, alterations in its enzymatic activity,
and post-translational modifications can significantly
influence the inflammatory activation process of
macrophages. In macrophages, PARP-1 plays a crucial
role in the regulation of transcription, signaling,
inflammasome activity, metabolism, and redox balance.
This regulation supports the polarization of
macrophages toward the pro-inflammatory Mi
phenotype, thereby contributing to
inflammatory responses and subsequent tissue damage
(7,8).

Alveolar macrophages (AMs), a critical subset of
innate immune cells, are essential for the initiation,
resolution, and tissue repair processes associated with
lung inflammation (9). Based on activation status,
function, and secreted factors, AMs can be categorized
into two types: Classically activated M1 macrophages
and alternatively activated M2 macrophages. Typically,
M1 macrophages are activated by interferon-y and LPS.
They predominantly secrete interleukin-1f (IL-1B),
interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-a),
and other inflammatory mediators, which play
important roles in the early stages of inflammation (10-

excessive

12). Furthermore, activated M1 macrophages can recruit
monocytes from peripheral blood into the alveoli and
promote their polarization into the M1 phenotype,

polarization and inhibition of the subsequent cascade
expansion of the inflammatory response are key
challenges in the treatment of ALL

Tanshinone IIA is the principal active ingredient in
the Chinese herb Salvia miltiorrhiza, renowned for its
potent anti-inflammatory activity (13). In the treatment
of pulmonary inflammatory diseases, tanshinone IIA
has demonstrated significant therapeutic efficacy in
conditions such as asthma, ALI, and chronic obstructive
pulmonary disease (COPD) (14, 15). It can markedly
inhibit inflammatory damage and oxidative stress in
lung tissue, reduce pulmonary edema, and suppress the
adhesion and migration of neutrophils, macrophages,
and other immune cells into the lung tissue. Research
has also shown that tanshinone IIA can promote the
cleavage of PARP-1 and reduce its expression (16, 17).

2. Objectives

Consequently, we hypothesize that the anti-
inflammatory activity of tanshinone IIA may be
associated with its ability to regulate macrophage
polarization, mitigate mitochondrial damage, and
modulate the expression of inflammatory factors via the
PARP-1 signaling pathway. Therefore, we investigated the
regulatory mechanism of tanshinone IIA on
macrophage polarization, mitochondrial damage, and
inflammatory response using a LPS-induced AM model.

3.Methods

3.1. Materials and Reagents

Tanshinone IIA was procured from Chengdu
Herbpure Biotechnology Co., Ltd. RPMI 1640 medium
was purchased from Wuhan Pricella Biotechnology Co.,
Ltd. B-mercaptoethanol was purchased from Shanghai
Macklin Biochemical Technology Co., Ltd. The 0.45 pm
PVDF membrane was obtained from Merck Co., Ltd. The
TNF-a, IL-1B, and IL-6 enzyme-linked immunosorbent
assay (ELISA) kits were procured from Shenzhen Dakewe
Biotech Co., Ltd. The NO detection kit, reactive oxygen
species (ROS) detection kit, mitochondrial membrane
potential detection kit (JC-1), mitochondrial superoxide
detection kit (MitoSOX Red), mitochondrial
permeability transition pore (MPTP) detection Kkit,
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electrophoresis solution, membrane transfer solution,
molecular weight standard, BCA protein assay Kkit,
blocking solution, and ECL chemiluminescence kit were
purchased from Shanghai Beyotime Biotechnology Co.,
Ltd. Antibodies for inducible nitric oxide synthase
(INOS), p65, phosphorylated p65 (p-P65), PARP-,
arginase-1 (ARG-1), pro-caspasel, cleaved caspasel, Nrf2,
NLRP3, dynamin-related protein 1 (DRP1), heme
oxygenase-1 (HO-1), optic atrophy 1 (OPA1), mitofusin 2
(Mfn2), cyclooxygenase-2 (COX-2), CD86, (D206,
inhibitor of nuclear factor kappa B-a (IkB-a),
phosphorylated inhibitor of nuclear factor kappa B-a (p-
IkBa), B-tubulin, and HRP-labeled goat anti-rabbit
secondary antibody were purchased from Changzhou
Affinity Biosciences Co., Ltd.

3.2. Cell Grouping and Drug Treatment

Mouse alveolar macrophages (MH-S) were obtained
from Wuhan Pricella Biotechnology Co., Ltd. Cells were
maintained in RPMI 1640 medium supplemented with
10% fetal bovine serum (FBS) and 0.05 mM -
mercaptoethanol, and cultured in a humidified
incubator at 37°C with 5% CO,. Cells were seeded at a

density of 1 x 10° cellsjmL in 12-well plates and
subsequently treated with LPS (10 ug/mL) along with
varying concentrations of tanshinone IIA (0, 2.5, 5, and
10 umol/L) for 24 hours.

3.3. Griess Nitrite Assay

The production of NO was assessed using the Griess
assay (18). According to the manufacturer’s instructions,
50 uL each of Griess reagent I and II were added to 50 uL
of MH-S culture supernatant in a microplate and
incubated at room temperature. After 10 minutes, the
optical density was measured at 540nm using a

microplate reader (Spark®, TECAN, Switzerland), and the
concentration of nitrite was determined using sodium
nitrite as a standard.

3.4. Cytokine Measurement
Immunosorbent Assay

Using  Enzyme-Linked

The concentrations of TNF-q, IL-1B, and IL-6 in cell
culture supernatants were measured using ELISA Kkits
according to the manufacturer’s instructions. The
absorbance was read at 450nm on a microplate reader

(Spark®, TECAN, Switzerland).
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3.5. Measurement of Reactive Oxygen Species, Mitochondrial
Superoxide, Mitochondrial Membrane Potential, and
Mitochondrial Permeability

Cell seeding and treatment were performed as
described above. After 24 hours of treatment,
intracellular  ROS,  mitochondrial superoxide,
mitochondrial membrane potential, and mitochondrial
permeability were detected using DCFH-DA, MitoSOX
Red, JC-1, and MPTP Kkits, respectively, in accordance with
the manufacturers’ protocols. Flow cytometry was
performed using a CytoFLEX (Beckman Coulter, USA).

3.6. Western Blot Analysis

Western blot analysis was performed as previously
described in our research (19). Total protein was
extracted from MH-S cells using RIPA protein lysis buffer,
and protein concentrations were determined using a
BCA protein assay kit. Equal amounts of protein were
separated by 10% SDS-polyacrylamide gel electrophoresis
and transferred onto an Immobilon-E PVDF membrane.
Membranes were blocked with 5% non-fat milk for 1 hour
at room temperature, followed by overnight incubation
at 4°C with primary antibodies (1:1000 dilution). After
washing, membranes were incubated with an HRP-
conjugated secondary antibody (1:5000 dilution).
Protein bands were visualized using the ECL detection
system, and band intensities were quantified using
Image] software.

3.7. Molecular Docking

The three-dimensional molecular structure of
tanshinone IIA was retrieved from the PubChem
database (PubChem CID 164676), downloaded and saved
in .sdf format. The three-dimensional structure of PARP-1
was obtained from the RCSB Protein Data Bank (PDB ID:
5DS3) and saved in .PDB format. Molecular docking was

performed using Glide software (Version 12.0.,
Schrodinger, 2024).
3.8. Molecular Dynamics Simulation Studies

Molecular dynamics (MD) simulations were

performed using Gromacs 2022. Tanshinone IIA was
parameterized with the GAFF force field, while PARP-1
was described by the AMBER14SB force field and the
TIP3P water model. The PARP-1 and tanshinone IIA
complex was assembled for simulation. Hydrogen
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bonds were constrained using the LINCS algorithm with
a 2fs integration step. Electrostatic interactions were
calculated using the Particle-Mesh Ewald (PME) method
with a cutoff of 1.2nm. Non-bonded interactions used a
10A cutoff, updated every 10 steps. The system
temperature was maintained at 298 K using the V-rescale
method, and the pressure was controlled at 1bar using
the Berendsen method. A 100ps NVT and NPT
equilibration simulation was performed at 298K,
followed by a 100 ns MD production run. Snapshots were
saved every 10ps. Trajectory analyses were performed
with VMD and PyMol, and the binding free energy
between PARP-1 and tanshinone IIA was evaluated using
the g_mmpbsa program.

3.9. Statistical Analysis

Data are presented as mean * standard deviation
(SD). Statistical analysis was performed using SPSS 18.0
software. One-way analysis of variance (ANOVA) and the
least significant difference (LSD) test were used for data
analysis. A P-value less than 0.05 was considered
statistically significant.

4. Results

4.1. Tanshinone IIA Inhibits the Inflammatory Response of
Lipopolysaccharide-Induced Alveolar Macrophages

Tanshinone IIA is well known for its superior anti-
inflammatory activity. Our experiments demonstrated
that tanshinone IIA exerts a significant anti-
inflammatory effect on LPS-induced AMs. As shown in

Figure 1A, tanshinone IIA (2.5, 5, and 10 pmol x L7)
significantly inhibited the expression of pro-
inflammatory mediators — nitric oxide (NO), IL-1B, IL-6,
and TNF-a — in AMs stimulated by LPS. To further
elucidate the molecular mechanisms underlying the
protective effect of tanshinone IIA on AMs exposed to
LPS, we assessed the expression patterns of nuclear
factor kappa B (NF-xB) and NLRP3 proteins in LPS-
induced AMs. The results showed that tanshinone IIA
has the capacity to inhibit the phosphorylation and
activation of NF-kB, thereby suppressing the expression
of the NLRP3 inflammasome and inhibiting the cleavage
and activation of caspase-1 (Figure 1B).

4.2. Tanshinone IA Inhibits the Oxidative Damage of
Lipopolysaccharide-Induced Alveolar Macrophages

Oxidative = damage  frequently = accompanies
inflammation and can further amplify the
inflammatory response. We further investigated the
protective effects of tanshinone IIA on LPS-induced

oxidative damage in AMs. The study demonstrated that

tanshinone IIA (2.5, 5, and 10 umol x L) exhibited a
marked protective effect against LPS-induced oxidative
damage in AMs, significantly suppressing both
intracellular ROS levels and mitochondrial superoxide
generation (Figure 2A and B). Western blot analysis
further revealed that tanshinone IIA modulates the
Nrf2/HO-1 pathway, leading to significant upregulation
of Nrf2 and HO-1 expression in LPS-induced AMs (Figure
2C).

4.3. Tanshinone IIA Inhibits the Mitochondrial Damage of
Lipopolysaccharide-Induced Alveolar Macrophages

Mitochondria play a pivotal role in cellular energy
metabolism, and mitochondrial damage significantly
promotes inflammation and oxidative stress (20). We
further evaluated the mitochondrial protective effects
and underlying mechanisms of tanshinone IIA on
macrophages subjected to inflammatory injury. The
results indicated that tanshinone IIA can markedly
alleviate mitochondrial damage induced by LPS in AMs.
Mitochondrial membrane potential and mitochondrial
permeability assays revealed that the proportion of JC-1
monomer was significantly increased in the LPS-induced
group (Figure 3A), and green fluorescence of MPTP was
quenched (Figure 3B), suggesting compromised
mitochondrial activity, decreased membrane potential,
and increased permeability. In contrast, the tanshinone

IIA treatment groups (2.5, 5, and 10 umol x L) exhibited
a significant reduction in the proportion of JC1
monomer and a notable enhancement in green
fluorescence intensity of MPTP. Western blot results
showed that tanshinone IIA inhibited DRP1
translocation and increased the expression of fusion
proteins OPA1 and Mfn2, thereby suppressing
mitochondrial fission and maintaining mitochondrial
structural stability (Figure 3C).

4.4. Tanshinone IIA Regulates the Mi/M2 Polarization of
Lipopolysaccharide-Induced Alveolar Macrophages

Studies have demonstrated that LPS stimulation
promotes M1 polarization in AMs, triggering an
inflammatory response (21). Our experimental results
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Figure 1. Tanshinone IIA inhibits the inflammatory response of alveolar macrophages (AMs) induced by lipopolysaccharide (LPS): A, pro-inflammatory cytokine levels [nitric

oxide (NO), tumor necrosis factor-alpha (TNF-a), interleukin-1B (IL-1B), interleukin-6 (IL-6)] in LPS-induced AMs; B, expression of p65, phosphorylated p65 (p-p65), NLRP3, pro-
Caspasel, and cleaved Caspasel in LPS-induced AMs [n = 3; values are presented as mean * standard deviation (SD); *** P < 0.001 vs. the control group, @ P < 0.05, @@ P < 0.01, and

@@@ P <0.001vs. LPS-treated group|.

corroborated that LPS induces increased expression of
M1 polarization markers such as iNOS, CD86, and COX-2
in AMs, while decreasing the expression of M2
polarization markers including ARG-1 and CD206
(Figure 4). Tanshinone IIA treatment effectively
suppressed the M1 polarization induced by LPS in AMs.
Compared with the LPS group, the tanshinone IIA

treatment groups (2.5, 5, and 10 umol x L7)
demonstrated a significant reduction in iNOS, CD86,
and COX-2 expression, alongside a significant increase in
ARG-1and CD206 expression.

4.5. Tanshinone IIA Regulates the Poly (ADP-ribose)
Polymerase-1 Signaling Pathway in Lipopolysaccharide-
Induced Alveolar Macrophages

The PARP-1 signaling pathway is closely linked to
inflammation, oxidative damage, and macrophage

Iran ] Pharm Res. 2025; 24(1): €166272

polarization, among other processes (22, 23). Our
molecular docking studies showed that tanshinone I1A
can effectively interact with PARP-1 (Figure 5B). Within
PARP-1, amino acids His-862, Tyr-907, Ala-898, and Lys-903
formed hydrophobic interactions with tanshinone IIA
via Pi-Pi stacking, alkyl, and Pi-alkyl mechanisms. In
addition, amino acids such as Ser-904, Phe-897, and Tyr-
896 established van der Waals interactions with
tanshinone IIA. Western blot analysis demonstrated that
tanshinone IIA significantly inhibits PARP-1 and
suppresses activation of the PARP-1 signaling pathway,
reducing the phosphorylation of downstream signaling
molecule IkB-a (Figure 5A). Further MD simulation
results indicated that tanshinone IIA binds stably to
PARP-1. Analysis of binding energy revealed that van der
Waals interactions are the primary determinant,
followed by hydrophobic interactions, with electrostatic
interactions contributing as a tertiary factor (Figure 6).
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Figure 2. Tanshinone IIA inhibits the oxidative damage of alveolar macrophages (AMs) induced by lipopolysaccharide (LPS): A, intracellular reactive oxygen species (ROS) levels;
B, mitochondrial MitoSOX content in LPS-induced AMs; C, expression of Nrf2 and heme oxygenase-1 (HO-1) in LPS-induced AMs [n = 3; values are presented as mean # standard
deviation (SD); *** P < 0.001 vs. the control group, @ P < 0.05, @@ P < 0.01,and @@@ P < 0.001 vs. LPS-treated group|.

5. Discussion

The AMs, a major component of the innate immune
system, reside in the alveoli and perform critical
functions including phagocytosis, both  pro-
inflammatory and anti-inflammatory activities, and the
activation of T helper 1 (Thi) and T helper 2 (Th2)
responses (24). The AMs are essential for maintaining
pulmonary immune homeostasis, and disturbances in
their inflammatory response, oxidative balance, and
polarization status contribute significantly to the onset
and progression of acute pulmonary inflammatory
diseases such as ALL It is well established that LPS
promotes M1 polarization in AMs,
subsequently stimulating the secretion of pro-
inflammatory mediators such as IL-1B, IL-6, TNF-a (12).
The release of these pro-inflammatory factors further
amplifies inflammation, leading to increased lung
damage. Moreover, excessive inflammation reciprocally
promotes oxidative and mitochondrial damage.

induction

The PARP- is implicated in regulating numerous
inflammatory processes (6), closely associated with the

activation of immune cells — including macrophages,
neutrophils, dendritic cells, and lymphocytes — as well
as the inflammatory responses of non-immune cells
such as fibroblasts and endothelial cells. Among these,
the polarization and activation of AMs play a pivotal role
in the acute phase of pulmonary inflammation (11).
Research has shown that PARP-1 is crucial in regulating
LPS-induced macrophage polarization, enhancing
polarization towards the M1 phenotype by affecting
both transcriptional and post-transcriptional processes.
The PARP-1 facilitates the expression and mRNA stability
of pro-inflammatory factors. In response to LPS, PARP-1 is
phosphorylated at the conserved Y829 site by the c-Abl
tyrosine kinase, which in turn activates NF-kB (7). The
NFkB is a key transcription factor governing the
expression of inflammation-related genes and
orchestrating innate immune responses. The activation
of NFxB in macrophages initiates an inflammatory
cascade and promotes their recruitment to sites of
infection, where activated M1 macrophages secrete TNF-
a, IL-1B, IL-6, and other cytokines to mobilize neutrophils
and initiate the host response (25).
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Figure 3. Tanshinone IIA inhibits the mitochondrial damage of alveolar macrophages (AMs) induced by lipopolysaccharide (LPS): A, mitochondrial membrane potential levels;
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Figure 4. Tanshinone IIA regulates the M1/M2 polarization of alveolar macrophages (AMs) induced by lipopolysaccharide (LPS): A, expression of M1 polarization markers [CD86,
cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS)] in LPS-induced AMs; B, expression of M2 polarization markers [CD206, arginase-1 (ARG-1)] in LPS-induced AMs [n
=3;values are presented as mean + standard deviation (SD); *** P < 0.001 vs. the control group, @ P < 0.05, @@ P < 0.01,and @@@ P < 0.001 vs. LPS-treated group|.

The activity of NF-kB is regulated in part by PARP-1. cytoplasm in resting cells, preventing its nuclear
The inhibitor of kappa B (IkB) retains NF-kB in the localization and transcriptional activity (26). The PARP-1
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Figure 5. Tanshinone IIA regulates the poly (ADP-ribose) polymerase-1 (PARP-1) pathway in alveolar macrophages (AMs) induced by lipopolysaccharide (LPS): A, expression of
PARP-], inhibitor of kappa B-a (IkB-a), and phosphorylated inhibitor of kappa B-a (p-IkB-a) in LPS-induced AMs; B, schematic diagram of molecular docking of tanshinone IIA
with PARP-1[n = 3; values are presented as mean + standard deviation (SD); *** P < 0.001 vs. the control group, @ P < 0.05, @@ P < 0.01,and @@@ P < 0.001 vs. LPS-treated group].

activates and phosphorylates inhibitor of kappa B
kinase (IKK), which phosphorylates IkB, promoting its
degradation and the release of NF-kB, thereby enabling
its nuclear translocation and activation. The p65
subunit of NFxB (p-p65) is phosphorylated and
translocates to the nucleus to drive transcription of
target genes (27).

Tanshinone IIA is widely recognized for its potent
anti-inflammatory properties and exhibits significant
therapeutic  efficacy in  various pulmonary
inflammatory diseases, including ALI (28). Previous
studies have explored the mechanisms by which
tanshinone 1IIA treats pulmonary inflammation,
demonstrating its ability to inhibit NF-kB (29), suppress
NLRP3 inflammasome activation (30), and regulate
macrophage polarization (15). However, the regulatory
mechanism of tanshinone IIA on pulmonary
inflammation-related signaling pathways via PARP-1 has
not been systematically studied.

Our findings demonstrate that the anti-
inflammatory effects of tanshinone IIA are mediated by
its suppression of inflammatory factor expression and
M1 polarization of AMs through the PARP-1 pathway.

Molecular docking and molecular dynamics simulation
studies revealed a strong binding affinity of tanshinone
IIA to PARP-1. Western blot analysis further confirmed
that tanshinone IIA inhibits PARP-1 and its associated
signaling pathway, resulting in the suppression of IkB-a

phosphorylation. This, in turn, inhibits the
phosphorylation and activation of NFkB p65,
suppresses NLRP3 inflammasome activation, and

ultimately reduces the expression of pro-inflammatory
factors.

Mitochondria are critical organelles involved in
cellular energy metabolism, signal transduction, and
apoptosis. Studies have shown that mitochondrial
damage and cellular inflammatory responses are
mutually reinforcing (31). Inflammatory responses can
induce mitochondrial damage, and inflammatory
cytokines can significantly alter mitochondrial
dynamics and compromise mitochondrial energy
metabolism, ultimately leading to apoptosis (32).
Damaged mitochondria can further amplify
inflammation by overproducing mitochondrial ROS and
releasing damage-associated molecular patterns
(DAMPs) (33). Additionally, alterations in mitochondrial
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Figure 6. Molecular dynamics (MD) simulation results of tanshinone IIA and poly (ADP-ribose) polymerase-1 (PARP-1): A, root mean square deviation (RMSD) of the protein
backbone, B, root mean square fluctuation (RMSF) of amino acid residues in the protein; C, radius of gyration of the protein backbone; and D, solvent-accessible surface area of

the protein.

energy metabolism can influence macrophage
polarization (34).
The PARP-1 hyperactivity can indirectly affect

metabolic homeostasis. Excessive activation of PARP-1

leads to depletion of nicotinamide adenine

dinucleotide (NAD*), resulting in reduced glycolysis,
impaired electron transport chain function, and
decreased adenosine triphosphate (ATP) production —
ultimately compromising mitochondrial and cellular
function (35). Furthermore, PARP-1 is involved in the
regulation of mitochondrial fission and fusion protein
expression, and its inhibition can enhance
mitochondrial stability (36, 37). Our results indicate that
tanshinone IIA may directly prevent mitochondrial

damage caused by NAD' depletion through the
inhibition of PARP1 and may also regulate
mitochondrial fission/fusion balance by inhibiting
PARP-1. Additionally, tanshinone IIA reduces cellular

Iran ] Pharm Res. 2025; 24(1): €166272

inflammatory injury via the PARP-1 pathway, thereby
mitigating mitochondrial damage.

The development of therapeutics targeting the PARP-
1 pathway for regulation of inflammatory responses is
gaining increasing attention. Our study supports the
hypothesis that the therapeutic effects of tanshinone I1A
in pulmonary inflammatory diseases are attributable to
its interaction with the PARP-1 signaling pathway, a
finding with significant implications for the future
application and exploration of tanshinone IIA.
Nevertheless, our research is currently limited to in
vitro mechanistic studies. Further in vivo investigations
and comprehensive mechanistic analyses will be
required to validate these findings.
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