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Abstract

Background: Diabetic cardiomyopathy (DCM) involves ferroptosis, an iron-dependent cell death pathway. Ellagic acid (EA), a

natural antioxidant flavonoid, may offer therapeutic potential; however, its mechanisms in DCM remain unexplored.

Objectives: This study investigated the cardioprotective effects of EA in experimental DCM, focusing on its capacity to mitigate

ferroptosis via the sirtuin 1 (SIRT1)/p53 pathway.

Methods: The EA (25, 50, or 100 mg/kg/day) was orally administered to streptozotocin (STZ)-induced diabetic rats for 60 days.

We assessed cardiac function, histology, metabolic parameters, oxidative stress, inflammation, and key markers of ferroptosis

and the SIRT1/p53 axis. Data were analyzed by one-way analysis of variance (ANOVA) with Tukey's post-hoc test.

Results: The EA treatment dose-dependently attenuated cardiac hypertrophy, myocardial injury, and metabolic dysregulation,

with maximal benefits at 100 mg/kg. It also reduced oxidative stress and inflammation. Crucially, EA inhibited ferroptosis, as

evidenced by reduced iron overload and upregulation of solute carrier family 7 member 11 (SLC7A11) and glutathione peroxidase

4 (GPX4). These benefits were associated with the upregulation of SIRT1 and downregulation of p53 in cardiac tissue.

Conclusions: The EA mitigates DCM by suppressing ferroptosis, potentially through modulation of the SIRT1/p53 pathway,

thereby improving cardiac function and metabolic homeostasis. However, as this study utilized an STZ-induced model of type 1

diabetes, further research is warranted to confirm its efficacy in type 2 diabetic contexts.

Keywords: Oxidative Stress, Hypoglycemic Agents, Phytochemicals, Lipid Metabolism, Cell Death

1. Background

Diabetes mellitus is a pervasive global health

challenge, with prevalence projected to rise from 463

million cases in 2019 to 700 million by 2045 (1, 2). A

major complication is diabetic cardiomyopathy (DCM),

characterized by ventricular hypertrophy and

systolic/diastolic dysfunction, which remains a leading

cause of mortality despite current therapies (3, 4). The

pathophysiology of DCM involves multiple factors,

including the accumulation of cytotoxic advanced

glycation end-products (AGEs) and lipid intermediates

that drive reactive oxygen species (ROS) overproduction

(5, 6), alongside dysregulated cell death pathways.

Importantly, ferroptosis, an iron-dependent form of

regulated cell death driven by lipid peroxidation (7), has

emerged as a critical mediator of myocardial damage in

diabetes (8). Iron overload promotes the peroxidation of

membrane phospholipids, disrupting redox

homeostasis and directly triggering cardiomyocyte

death.
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Current DCM management, focused on glycemic

control (CON), inadequately addresses heart failure risk,

highlighting the need for targeted therapies (9). Natural

polyphenols represent promising candidates for DCM

(10). For instance, ellagic acid (EA), a bioactive flavonoid

abundant in pomegranate and berries, has

demonstrated direct cardioprotective and anti-diabetic

properties in preclinical models. Studies have shown

that EA attenuates cardiac hypertrophy and fibrosis in

hypertensive rats (11) and improves glycemic CON in

streptozotocin (STZ)-induced diabetic models (12).

Furthermore, emerging evidence suggests that EA can

inhibit ferroptosis in neuronal and hepatic injury

models (13, 14). However, its specific role in modulating

cardiac ferroptosis within the context of DCM remains

entirely uncharacterized.

2. Objectives

Given the multifactorial pathogenesis of DCM, this

study investigates the cardioprotective potential of EA.

The present study specifically evaluates the hypothesis

that EA mitigates DCM by inhibiting ferroptosis and

focuses on the modulation of the sirtuin 1 (SIRT1)/p53

axis, a key pathway governing iron-dependent cell

death. The findings may address a significant

knowledge gap in diabetic cardiovascular therapeutics.

3. Methods

3.1. Chemicals

The EA dihydrate (CAS 476-66-4; MW 302.19 g/mol;

purity ≥ 95%) was sourced from Sigma-Aldrich (St. Louis,

MO), along with STZ and protease inhibitors. Beyotime

Biotechnology (Shanghai, China) provided the BCA

Protein Assay Kits and Radioimmunoprecipitation Assay

(RIPA) Lysis Buffer. Abcam (Cambridge, UK) supplied

enzyme-linked immunosorbent assay (ELISA) kits for

inflammatory cytokines [interleukin-1 beta (IL-1β),

interleukin-6 (IL-6), interleukin-4 (IL-4), interleukin-10

(IL-10)] and oxidative stress markers [superoxide

dismutase (SOD), catalase (CAT), glutathione (GSH),

malondialdehyde (MDA)]. Anesthesia reagents

(ketamine 10%; xylazine 2%) were procured from Bremer

Pharma (Warburg, Germany) and Alfasan (Woerden,

Netherlands), respectively.

3.2. Experimental Animals and Diabetic Model

Forty male albino Wistar rats (8 weeks; 200 - 250 g)

were maintained under controlled conditions (22 ± 3°C;

12-hour light/dark cycle; and 50 ± 5% humidity) with ad

libitum access to a standard laboratory rodent diet

(Teklad Global 18% Protein Rodent Diet) and water. No

supportive care (e.g., insulin) or analgesics were

administered during the study to avoid confounding

the diabetic state and the investigated parameters.

Diabetes was induced via intraperitoneal injection of

STZ (45 mg/kg in pH 4.5 citrate buffer) after 12-hour

fasting. The CON animals received citrate buffer alone.

Diabetic status was confirmed by fasting blood glucose

> 250 mg/dL on three consecutive measurements 7 days

post-injection. Normoglycemic controls maintained

blood glucose levels of 80 - 100 mg/dL. The induction of

diabetes in the experimental cohort was accomplished

through the application of well-established protocols

(15). At the end of the experimental period, animals were

euthanized by an overdose of the anesthetic cocktail

(ketamine/xylazine) followed by exsanguination, in

strict accordance with the approved ethical guidelines.

3.3. Treatment Groups and Protocol

Animals were stratified into five cohorts (n =

8/group).

1. The CON: Non-diabetic+saline gavage.

2. The DCM: Diabetic+saline gavage.

3. EA25: Diabetic + 25 mg/kg/day EA.

4. EA50: Diabetic + 50 mg/kg/day EA.

5. EA100: Diabetic + 100 mg/kg/day EA.

Sample size (n = 8 per group) was determined based

on previous studies in similar DCM models (16) and our

pilot data, which indicated that this provides adequate

power (≥ 80%) to detect significant differences in key

parameters including cardiac hypertrophy indices,

metabolic parameters, and molecular markers with α =

0.05. The doses of EA (25, 50, and 100 mg/kg/day) were

selected based on previous preclinical studies

demonstrating efficacy and safety in rodent models of

diabetes and cardiovascular complications (11, 17).

Treatments were initiated 14 days after the confirmation

of diabetes and were administered daily via oral gavage

for a subsequent period of 60 days. Thus, the total study

duration from STZ injection to the endpoint was 74 days.

All oral gavage procedures were performed at a fixed

time each morning (between 9:00 and 10:00 AM) to
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maintain consistent pharmacodynamic conditions. All

forty animals completed the entire study protocol with

no unexpected mortality, and all were included in the

final analyses. Body weight was recorded biweekly.

Primary outcomes included cardiac function

(hemodynamic parameters, cardiac injury biomarkers)

and cardiac histology. Secondary outcomes

encompassed metabolic parameters (glucose tolerance,

lipid profiles), oxidative stress markers, inflammatory

cytokines, and molecular markers of ferroptosis and the

SIRT1/p53 pathway.

3.4. The Analysis of Physical and Cardiac Indices

Subsequent to euthanasia, specimens were carefully

separated to ensure precise weight measurements. In

order to assess cardiac hypertrophy progression, the

cardiac weight-to-body weight ratio (HW/BW ratio) was

calculated using the following formula: Cardiac weight-

to-body weight (CW/BW) ratio = Cardiac weight/Body

weight. Tissues and chemicals were weighed using a

Sartorius CPA224S analytical balance. Furthermore,

blood pressure measurements were taken upon

completion of the experimental procedure utilizing tail-

cuff plethysmography on awake animals that had been

preheated in a temperature-regulated restraint device

(XBP1000, Kent Scientific) for 10 minutes (18). Diastolic

blood pressure (DBP) and systolic blood pressure (SBP)

were determined by averaging 3 - 5 measurements taken

during three separate sessions. Additionally, levels of

the cardiac biomarkers troponin T and creatine kinase-

myocardial band (CK-MB) were measured.

3.5. The Measurement of Glycemic and Lipid Profiles

A standardized protocol was followed to conduct

glucose tolerance tests and insulin tolerance tests (GTT

and ITT). Additionally, the plasma biochemical

parameters, which encompass lipid profiles

[triglycerides (TG), high-density lipoprotein (HDL), low-

density lipoprotein (LDL), and total cholesterol (TC)]

along with fasting blood sugar (FBS) levels, were

analyzed utilizing MyBioSource reagents, adhering

strictly to the manufacturer's instructions.

3.6. Histological Analysis of Cardiac Tissues

Cardiac tissue specimens were fixed in 10% buffered

formalin for 24 hours. Subsequently, tissues were

dehydrated using a graded ethanol series. Following

dehydration, tissues were embedded in paraffin wax.

Sections of 5 µm thickness were prepared from the

paraffin blocks using a microtome (Viabrembo, Milan,

Italy). The sections were then dewaxed in xylene,

rehydrated through a descending ethanol gradient, and

finally rinsed in sterile distilled water. Hematoxylin and

eosin (H&E) staining was performed according to

standard protocols (11). Stained sections were examined

and imaged using light microscopy (Nikon, Tokyo,

Japan).

3.7. Enzyme-Linked Immunosorbent Assay

The cardiac tissues, each weighing approximately

half a gram, were homogenized with a RIPA buffer that

included protease inhibitors. Consequently,

inflammatory cytokines such as IL-1β, IL-6, IL-4, and IL-10

were measured in the cardiac tissue homogenates using

ELISA kits provided by Abcam. The analysis was executed

in accordance with the manufacturer's instructions, and

a BioTek Synergy H1 microplate reader was used for

absorbance measurement. Following this, the focus

shifted to the detection of four significant proteins: The

SIRT1, p53, glutathione peroxidase 4 (GPX4), and solute

carrier family 7 member 11 (SLC7A11). Moreover, tissue

levels of iron were measured in the cardiac

homogenates, with strict compliance with the protocols

recommended by the manufacturer.

3.8. Analysis of Oxidative Stress

Homogenized cardiac tissues were evaluated for

oxidative stress by measuring the activity of SOD,

glutathione reductase (GR), and CAT, along with reduced

GSH and MDA concentrations. Absorbance was

measured using a BioTek Synergy H1 microplate reader.

Appropriate commercial kits were utilized in strict

adherence to the manufacturer's protocols to maintain

precision.

3.9. The Analysis of Gene Expression

The PureLink RNA Mini Kit (catalog number:

12183018A, Thermo Fisher Scientific, USA) was used to

extract total RNA following the manufacturer's protocol.

The Biotek Nanodrop system measured RNA quality and

quantity. For complementary DNA (cDNA) synthesis, the

High-Capacity cDNA Reverse Transcription Kit (catalog

number: 4368814, Thermo Fisher Scientific, USA) was

employed. Subsequent quantitative polymerase chain
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reaction (qPCR) analysis used the StepOne Real-time PCR

System (Applied Biosystems, USA) and Maxima SYBR

Green qPCR Master Mix (catalog number: K0253, Thermo

Fisher Scientific, USA). Glyceraldehyde-3-phosphate

dehydrogenase (GAPDH) served as the normalization

control for gene expression levels. Fold changes in

expression were calculated using the 2-ΔΔCT method. All

primers used in this study are listed in Table 1.

Table 1. Primer Sequences

Primers Sequence

GAPDH

Forward 5′-GGTGGACCTCATGGCCTACAT-3′

Reverse 5′-GCCTCTCTCTTGCTCTCAGTATCCT-3′
p53

Forward 5′-TTCCCTCAATAAGCTGTTCTG CC-3′

Reverse 5′-TGCTCAAGTTCCACTAGCTGG-3′
SIRT1

Forward 5′-GAGTAGTCTATAGGTTACGTGG-3′

Reverse 5′-AAATATGAAGAGGTGTTGGTGG-3′
GPX4

Forward 5′-ACGCCAAAGTCCTAGGAAGC-3′

Reverse 5′-CTGCGAATTCGTGCATGGAG-3′
SLC7A11

Forward 5′-GACAGTGTGTGCATCCCCTT-3′

Reverse 5′-GCATGCATTTCTTGCACAGTTC-3′

Abbreviations: GAPDH, glyceraldehyde-3-phosphate dehydrogenase; SIRT1,

sirtuin 1; GPX4, glutathione peroxidase 4; SLC7A11, solute carrier family 7 member 11.

3.10. Statistical Analysis

Data are presented as mean ± SD. Intergroup

differences were assessed by one-way analysis of

variance (ANOVA; SPSS v24.0) with Tukey's post-hoc test.

Time-course data were analyzed via two-way ANOVA. The

significance threshold was set at P < 0.05. Figures were

generated with GraphPad Prism v8.

4. Results

4.1. Ellagic Acid Alleviated Physical and Metabolic Markers in
Diabetic Cardiomyopathy Animals

Treatment with EA (100 mg/kg/day) significantly

attenuated DCM-associated pathophysiology. Diabetic

rats exhibited reduced body weight versus CONs (P =

0.009), with EA100 partially restoring mass (P < 0.001).

Cardiac hypertrophy, assessed by CW/BW ratio, showed

complete normalization in EA100 versus DCM (P =

0.002) and CON (P > 0.355). Hemodynamic parameters

revealed EA100-mediated reduction of systolic and

diastolic pressures compared to DCM (P < 0.001, Figure

1). The analysis of tolerance to glucose and insulin

showed that all studied groups had a significant

increment in comparison with normoglycemic rats (P <

0.05). However, the EA100 group represented a

significant difference with DCM animals as well (P <

0.01). Metabolic profiling demonstrated EA100's efficacy

in glucose regulation (103.46 ± 10.47 mg/dL vs. DCM

326.28 ± 7.99 mg/dL, P < 0.01) and lipid homeostasis,

including HDL restoration: 42.80 ± 2.57 mg/dL (DCM:

28.12 ± 1.50), LDL reduction: 51.40 ± 5.97 mg/dL (DCM:

91.88 ± 2.86), TG normalization: 68.06 ± 5.82 mg/dL

(DCM: 158.39 ± 8.13), and TC normalization: 72.88 ± 8.43

mg/dL (DCM: 141.51 ± 11.08). Cardiac injury biomarkers

troponin T and CK-MB in EA100 approached CON levels

versus DCM (P < 0.05, Table 2).

4.2. Effect of Ellagic Acid on Cardiac Histomorphology in
Diabetic Cardiomyopathy Rats

Histomorphological analysis revealed that cardiac

tissue from CON animals exhibited preserved

architecture, characterized by striated cardiomyocytes

with centrally located nuclei and

anastomosing/branched fibers organized in linear

arrays. Conversely, cardiac tissue from DCM rats and rats

treated with EA25 and EA50 displayed a loss of striation

and anastomoses, alongside the presence of

intercalated discs. Notably, histopathological

assessment indicated that EA100 treatment resulted in

amelioration of cardiac tissue histoarchitecture

compared to the untreated DCM group (Figure 2).

4.3. Ellagic Acid Attenuated Cardiac Inflammation and
Oxidative Stress

Administration of EA (100 mg/kg/day) significantly

modulated inflammatory mediators in cardiac tissue.

Pro-inflammatory cytokines IL-6 (P < 0.001) and IL-1β (P =

0.002) were reduced significantly versus DCM controls.

Concurrently, anti-inflammatory IL-10 and IL-4 increased

2-fold and 2.1-fold compared to DCM (P < 0.001). The EA

also restored redox homeostasis, enhancing antioxidant

enzyme activities, such as the activity of CAT, SOD, and

GR, and levels of reduced GSH increased more than 40%

(P < 0.001) relative to DCM, while reducing the lipid

peroxidation marker MDA by over 60% (P < 0.001, Figure

3).
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Figure 1. Effects of ellagic acid (EA) on physical, biochemical, and cardiac markers in experimental groups over 60 days: A, mean body weight; B, cardiac weight-to-body weight
(CW/BW) ratio; C, systolic blood pressure (SBP); D, diastolic blood pressure (DBP); E, GTT; and F, ITT of rats in control (CON), diabetic cardiomyopathy (DCM), and EA-treated
diabetic groups (EA25, EA50, EA100). Different symbols (* and &) indicate significant differences (P < 0.05) while shared letters denote no significant difference. Groups that do
not share a common letter are significantly different.

4.4. Ellagic Acid Modified Ferroptotic Markers

The EA treatment (100 mg/kg/day) effectively

reversed ferroptosis indicators. Serum analysis revealed

a 42% reduction in total iron (P < 0.001) and a 51%

decrease in Fe2+ (P < 0.001) compared to DCM. Molecular

assessments demonstrated coordinated upregulation of

ferroptosis defense mechanisms, as SLC7A11 gene

expression increased 3.8-fold (P < 0.001) with a

corresponding protein elevation (P < 0.001). Similarly,

GPX4 expression rose 4.2-fold (P < 0.001), with protein

levels reaching 36.5 ± 3.1 ng/mL (vs. DCM 15.9 ± 1.8 ng/mL;

P < 0.001, Figure 4).

4.5. Ellagic Acid Modulated Upstream Ferroptosis Regulators
in Cardiac Tissue of Diabetic Cardiomyopathy Animals

The SIRT1 and p53 have been recognized in multiple

studies as key upstream modulators of ferroptosis,

making them promising treatment options for

addressing disease resulting from ferroptosis-

dependent cell death (19, 20). The current investigation

revealed that in the cardiac tissue of DCM rats, the

expression levels of SIRT1- and p53-encoding genes,

along with the concentrations of SIRT1 and p53 proteins,

exhibited a significant decline and an increase,

respectively, compared to CON animals (P < 0.001). No

significant difference was found between DCM rats

treated with 25 mg/kg/day EA and the DCM group (P >

0.05). However, EA50 animals showed a significant

difference from both DCM and CON animals regarding

SIRT1 gene expression and protein levels (P < 0.05).

Conversely, the EA100 group demonstrated a notable

improvement in the expression of the SIRT1 coding gene

and the level of SIRT1 protein when compared to DCM

https://brieflands.com/journals/ijpr/articles/166600
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Table 2. Effects of Ellagic Acid on Metabolic Parameters and Cardiac Injury Markers in Experimental Groups a, b

Variables CON DCM EA25 EA50 EA100

Glucose 90.26 ± 1.68 326.28 ± 7.99 c 294.14 ± 26.02 d 173.82 ± 15.06 d 103.46 ± 10.47 e

HDL 43.80 ± 2.04 28.12 ± 1.50 c 29.15 ± 1.72 c 37.11 ± 2.54 d 42.80 ± 2.57 e

LDL 38.34 ± 2.16 91.88 ± 2.86 c 91.92 ± 2.69 c 69.96 ± 8.88 d 51.40 ± 5.97 d

TG 50.52 ± 2.67 158.39 ± 8.13 c 157.04 ± 6.47 c 97.84 ± 6.84 d 68.06 ± 5.82 d

TC 79.34 ± 3.91 141.51 ± 11.08 c 122.51 ± 11.09 c 77.83 ± 7.08 e 72.88 ± 8.43 e

Troponin T 66.16 ± 0.55 191.61 ± 5.61 c 190.11 ± 2.88 c 106.99 ± 6.43 d 68.92 ± 3.86 e

CK-MB 181.08 ± 13.30 447.50 ± 20.84 c 441.51 ± 21.17 c 312.74 ± 32.91 d 210.43 ± 17.85 e

Abbreviations: CON, control; DCM, diabetic cardiomyopathy; HDL, high-density lipoprotein; LDL, low-density lipoprotein; TG, triglycerides; TC, total cholesterol; CK-MB, creatine
kinase-myocardial band.

a Values are expressed as mean ± SD.

b Fasting blood glucose (mg/dL), lipid profiles (HDL, LDL, TG, and TC all in mg/dL), and cardiac biomarkers (troponin T in ng/mL and CK-MB in U/L) in CON, DCM, and ellagic acid
(EA)-treated diabetic rats (EA25, EA50, EA100).

c Significant difference compared to CON.

d Significant difference compared to both CON and DCM (P-value < 0.05).

e Significant difference compared to DCM.

Figure 2. Histopathological analysis of cardiac tissues: A, control (CON): Normal architecture with striated cardiomyocytes, central nuclei, and linear fiber arrays; B, diabetic
cardiomyopathy (DCM): Arrows indicate loss of striation and disrupted anastomoses; C, EA25: Similar pathology to DCM; D, EA50: Arrows indicate partial restoration of

striations; E, EA100: Arrows indicate near-normal histoarchitecture with restored striations (Abbreviation: H&E, hematoxylin and eosin staining; scale bar: 10 μm; original
magnification 400X).

rats (P < 0.001). Similarly, EA25 did not represent a

significant difference compared to DCM regarding p53

gene expression and protein levels (P > 0.05); EA50 and

EA100 represented a significant difference from both

CON and DCM animals (P < 0.05, Figure 5).

5. Discussion

The DCM is pathologically associated with cardiac

hypertrophy and hypertension (21). The EA treatment

(100 mg/kg/day) effectively reduced FBS and normalized

lipid profiles. These cardiometabolic improvements are

consistent with the established capacity of

phytochemicals such as EA to enhance endocrine and

metabolic homeostasis via antioxidant and anti-

inflammatory mechanisms (22-25). Accordingly, EA

administration significantly reduced cardiac tissue

levels of pro-inflammatory cytokines (IL-6 and IL-1β) and

elevated anti-inflammatory cytokines (IL-10 and IL-4) in

DCM rats. Furthermore, EA treatment enhanced the

activity of key antioxidant enzymes (SOD, GR, and CAT)

and increased reduced GSH levels in cardiac tissue,

while reducing lipid peroxidation (measured by MDA).

Oxidative stress, characterized by disrupted glucolipid

metabolism, inflammation, and an imbalance between

free radical generation and antioxidant defenses, is a

well-established pathophysiological mechanism in DCM

initiation and progression (5, 26). Consequently,

targeting oxidative stress signaling pathways remains a

promising therapeutic approach for DCM.

The DCM is a complex pathology; hence the

molecular mechanisms driving DCM progression

remain incompletely elucidated. The DCM typically
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Figure 3. Effects of ellagic acid (EA) on inflammation and oxidative stress markers in cardiac tissue: The levels of inflammatory markers including A, interleukin-6 (IL-6); B,

interleukin-1 beta (IL-1β); C, interleukin-10 (IL-10); and D, interleukin-4 (IL-4, pg/mL) along with oxidative stress markers including E, catalase (CAT) activity (mU/mg protein); F,
superoxide dismutase (SOD) activity (U/mg protein); G, glutathione reductase (GR, mU/mg protein); H, glutathione (GSH) levels (nmol/mg protein); and I, malondialdehyde
(MDA) levels (nmol/mg protein) are depicted. Different symbols (* and &) indicate significant differences (P < 0.05) while shared letters denote no significant difference. Groups
that do not share a common letter are significantly different [values are expressed as mean ± SD).

advances through cardiac fibrosis to heart failure, a

process strongly associated with cardiomyocyte death

(27, 28). This study demonstrated that EA administration

significantly ameliorated serum iron overload in

diabetic rats, reducing both total iron and Fe2+ levels.

Iron overload directly promotes tissue damage through

increased ROS generation, elevated lipid peroxidation,

and GSH depletion (29). The observed attenuation of

ferroptosis by EA is consistent with its antioxidant

properties, aligning with established roles of

antioxidants in inhibiting ferroptosis. Key molecular

markers of ferroptosis include the downregulation of

SLC7A11 (a cystine/glutamate antiporter essential for GSH

synthesis) and GPX4 (a GSH-dependent enzyme that

reduces lipid hydroperoxides to mitigate oxidative

damage) (8). Crucially, in diabetic rats, EA treatment

upregulated the expression of both SLC7A11 and GPX4

genes and increased corresponding protein levels in

cardiac tissue. This concomitant upregulation of core

ferroptosis defense components mechanistically

supports EA-mediated inhibition of ferroptosis in DCM.

While reducing inflammation and oxidative stress

can inhibit ferroptosis, identifying the upstream

regulators is critical. Therefore, this study investigated

the SIRT1/p53 axis. The SIRT1 is a nicotinamide adenine

dinucleotide (NAD+)-dependent deacetylase that

regulates inflammation, cell death, and mitochondrial

function. It acts by deacetylating both histone and non-

histone substrates (30). Deubiquitination-mediated

stabilization of SIRT1 inhibits pro-apoptotic pathways,

notably by suppressing the transcriptional activity of

p53 (31, 32). Reduced SIRT1 activity correlates with p53

overexpression, a key driver of chronic cardiovascular

pathologies including DCM (33, 34). Significantly, p53 is a

primary ferroptosis inducer that transcriptionally

represses SLC7A11, limiting cystine uptake and GSH

synthesis, and downregulates GPX4. Consequently, the

SIRT1/p53 axis is recognized as a principal regulator of

ferroptosis and a promising therapeutic target,

particularly for phytochemicals. In alignment with this

paradigm, the present study demonstrates that EA

administration (100 mg/kg/day) significantly

upregulated SIRT1 expression while downregulating p53

in cardiac tissue. These findings indicate that EA restores

SLC7A11 and GPX4 expression, thereby inhibiting

ferroptosis in DCM, through modulation of the

SIRT1/p53 signaling pathway. Importantly, the observed

dose-dependent efficacy of EA, with the 100 mg/kg dose

producing the most significant restoration of

physiological and molecular parameters, provides

strong internal validation of its therapeutic effect and

argues against non-specific actions.

The present findings hold significant translational

promise, suggesting EA as a possible adjunct therapy for

DCM. However, key limitations warrant consideration.

First, the exclusive use of a STZ-induced model of type 1
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Figure 4. Ellagic acid (EA) modulates ferroptosis markers in diabetic cardiomyopathy (DCM) rats: A, serum total iron (nM); B, Fe2+ (nM); C, glutathione peroxidase 4 (GPX4)
mRNA [fold change vs. control (CON)]; D, GPX4 protein (ng/mL); E, solute carrier family 7 member 11 (SLC7A11) mRNA (fold change vs. CON); and F, SLC7A11 protein (ng/mL).
Different symbols (* and &) indicate significant differences (P < 0.05) while shared letters denote no significant difference. Groups that do not share a common letter are
significantly different.

diabetes may not fully recapitulate type 2 DCM

pathophysiology. Moreover, EA's well-documented poor

oral bioavailability in humans presents a major

pharmacological challenge. Achieving effective cardiac

tissue concentrations may require pharmaceutical

optimization through advanced delivery systems such

as nano-formulations. Also, while our 60-day treatment

showed no adverse effects, long-term safety and cardiac-

specific outcomes beyond this period remain

unvalidated.

Additionally, while our data demonstrate a strong

association between EA treatment and modulation of

the SIRT1/p53 pathway, we acknowledge that this

evidence is correlative rather than definitively causal.

Future studies using SIRT1 inhibitors or p53 activators

would be needed to establish direct mechanistic

causality. The present study assessed total p53 protein

levels but did not evaluate its active form (e.g.,

phosphorylated p53), which would provide deeper

insight into its functional state. The inclusion of a

known ferroptosis inhibitor (e.g., ferrostatin-1) as a

positive CON would have further strengthened present

conclusions by providing a direct comparison for EA's

anti-ferroptotic effects. In addition, detailed correlation

analysis between inflammatory markers and ferroptosis

indicators was not performed, which could have

provided additional insight into their relationship.

https://brieflands.com/journals/ijpr/articles/166600


Wang Q et al. Brieflands

Iran J Pharm Res. 2025; 24(1): e166600 9

Figure 5. Ellagic acid (EA) regulates the sirtuin 1 (SIRT1)/p53 pathway in cardiac tissue: A, SIRT1 mRNA [fold change vs. control (CON)]; B, SIRT1 protein (ng/mL); C, p53 mRNA (fold
change vs. CON); and D, p53 protein (ng/mL). Different symbols (* and &) indicate significant differences (P < 0.05) while shared letters denote no significant difference. Groups
that do not share a common letter are significantly different.

Moreover, ferroptosis was assessed primarily through

systemic iron measurements and molecular markers.

While we demonstrated a clear upregulation of the key

ferroptosis defense proteins SLC7A11 and GPX4 in cardiac

tissue, future studies would benefit from direct

quantification of cardiac tissue iron content using

techniques such as inductively coupled plasma mass

spectrometry (ICP-MS) to provide an even more direct

link. Furthermore, while present H&E staining

demonstrated clear improvement in cardiac tissue

architecture with EA treatment, the authors

acknowledge that more specific histological techniques

would strengthen our findings.

Future studies should prioritize validating these

mechanisms in diabetic large mammals (e.g., pigs) with

inherent metabolic similarities to humans, evaluating

EA in combination with standard-of-care

cardioprotective agents [e.g., sodium-glucose

cotransporter 2 (SGLT2) inhibitors], and investigating

dose-dependent effects on human cardiomyocytes using

three-dimensional (3D) organoid models. Until such

data are available, clinical translation should remain

cautious, though our results robustly nominate EA as a

novel ferroptosis-targeting candidate for DCM

management.

5.1. Conclusions

In conclusion, this study demonstrates that EA

administration, particularly at 100 mg/kg/day,

ameliorates STZ-induced DCM in rats through

multifaceted mechanisms. The EA significantly

attenuated cardiac hypertrophy, hypertension, and

histopathological damage while normalizing metabolic

dysregulation (glucose intolerance, LDL, TG, and HDL)

and reducing myocardial injury biomarkers (troponin T

and CK-MB). Crucially, EA suppressed ferroptosis by

reducing systemic iron overload (total Fe and Fe2+),

upregulating key ferroptosis inhibitors (SLC7A11 and

GPX4), and restoring redox balance (increased SOD, CAT,

and GSH; decreased MDA). These effects were mediated

via modulation of the SIRT1/p53 axis, wherein EA

upregulated SIRT1 expression while suppressing p53
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activation. Collectively, these findings establish EA as a

promising phytotherapeutic agent against DCM,

primarily through ferroptosis inhibition orchestrated

by SIRT1/p53 pathway regulation, suggesting its

potential role in clinical evaluations for diabetic

cardiovascular complications.
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