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Dear Editor,

Brain death is defined as the irreversible cessation of

all brain functions; however, the biological sequence

that leads to this brain death is not yet fully understood.

Accumulating evidence suggests that what we currently

label as “irreversibility” is largely the consequence of a

profound bioenergetic collapse — an event in which

mitochondrial failure, rather than structural injury

alone, determines the terminal loss of neuronal

viability. This perspective opens a provocative question:

If the critical determinant of irreversibility is energetic

failure, could mitochondrial-based interventions alter

the trajectory before brain death becomes fixed (1-3)?

Ischemia is the primary trigger causing catastrophic

damage to the mitochondrial architecture in the central

nervous system. During acute cerebral hypoxia-

ischemia, mitochondrial oxygen consumption
decreases within minutes, the membrane action

potential collapses, and ATP synthesis is rapidly reduced
(4). Impaired electron transport accelerates the

production of reactive oxygen species, causing lipid

peroxidation, protein oxidation, and mitochondrial
permeability transition; as cytochrome c escapes into

the cytosol, the intrinsic apoptotic cascade is activated
(5). But from here on, what happens is not cell death,

but a rapidly expanding energetic vacuum: If

mitochondria become dysfunctional, cellular ion
homeostasis breaks down, membrane pumps fail, and

neurons lose the ability to maintain structural and

electrical integrity. In severe global ischemia, this

cascade spreads across brain regions and culminates in
the metabolic silence characteristic of brain death (4, 6).

Current neuroprotective strategies are inadequate

because they fail to directly address this energy collapse.

Hemodynamic optimization, oxygenation,

osmotherapy, and hypothermia may reduce secondary

damage, but none restore mitochondrial function after

the respiratory chain has failed. This therapeutic gap,

which is in fact a paradox between the initial injury and

the treatment methods and is the source of irreversible

damage, is precisely where mitotherapy may play a role

as a potentially life-saving concept (7, 8).

Mitochondrial targeted therapy (mitotherapy)

encompasses several approaches aimed at restoring or

enhancing mitochondrial function (9). The most

important of these approaches include: Direct

mitochondrial transplantation, stimulation of
endogenous mitochondrial biogenesis, transfer of

healthy mitochondria via extracellular vesicles,
mitochondrial-targeted peptides, and modulation of

intercellular mitochondrial exchange. Experimental

data are still preliminary and require further study;
however, these initial research findings are very

promising. In animal models of cerebral ischemia,
exogenous mitochondria delivered to damaged brain

tissue have shown rapid internalization by neurons and

glia, restoration of ATP levels, increased oxygen
consumption, reduced neuronal apoptosis, and

improved functional outcomes (10-12).

Mitochondrial transfer from astrocytes to neurons

has been observed as a natural salvage mechanism,

https://doi.org/10.5812/ijpr-168337
https://doi.org/10.5812/ijpr-168337
https://crossmark.crossref.org/dialog/?doi=10.5812/ijpr-168337&domain=pdf
https://crossmark.crossref.org/dialog/?doi=10.5812/ijpr-168337&domain=pdf
https://orcid.org/0000-0003-4344-8131
https://orcid.org/0000-0003-4344-8131
https://orcid.org/0000-0002-4555-4168
https://orcid.org/0000-0002-4555-4168
mailto:alidabbagh@yahoo.com


Dabbagh A et al. Brieflands

2 Iran J Pharm Res. 2025; 24(1): e168337

suggesting an intrinsic biological background for

mitochondrial replacement (13, 14). These findings lend

mechanistic validity to the idea that restoration of
bioenergetic capacity, even after profound injury, may

revive cellular processes once thought to be
permanently shut down.
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