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Abstract

Background: Oxygen saturation is a vital parameter for evaluating the severity of COVID-19 in hospitalized patients, with

levels below 90% indicating respiratory distress and a potential need for intensive care.

Objectives: This study develops machine learning (ML) models that integrate computed tomography (CT)-based features with

clinical and laboratory data to predict binary oxygen saturation outcomes in COVID-19 patients.

Patients and Methods: We conducted a retrospective study of 1,008 COVID-19 patients admitted between October 2020 and

May 2021, utilizing 70% of the data for training and 30% for testing. The classifiers used were linear support vector machine

(SVM), SVM with radial basis function (RBF) kernels, logistic regression, random forests (RFs), naive Bayes, and XGBoost.

Performance was assessed by validation area under the curve (AUC) and the range of AUC from 10-fold cross-validation. Features

were selected through a multi-step process integrating importance ranking and stability analysis, with the top three features

showing stability ≥ 0.7 chosen for model development, yielding the highest AUC among tested combinations.

Results: Linear ML classifiers performed well in Clinical and Laboratory Models, while non-linear classifiers excelled in CT-

Based and Integrated Models. Logistic regression in the Clinical Model achieved an AUC of 0.82, with age, gender, and fever as

significant features. In the Laboratory Model, linear SVM (AUC = 0.82) identified white blood cell (WBC) count as key. Random

forest in the CT-Based Model (AUC = 0.87) highlighted mean lesion volume. The Integrated Model's top classifier, SVM with RBF

kernel (AUC = 0.89), found WBC and mean non-lesion lung volume (NLLV) critical.

Conclusion: Linear classifiers effectively predict oxygen saturation using clinical and laboratory data, while non-linear

classifiers excel with CT-based and integrated models, highlighting the need for tailored ML approaches to different data types

in COVID-19 patient care.

Keywords: Radiomics, Coronavirus Disease 2019 (COVID-19), Oxygen Saturation, Machine Learning, Computed

Tomography, Predictive Modeling

1. Background

The COVID-19 pandemic has profoundly impacted

global healthcare systems, necessitating swift and

precise evaluations of disease severity. Critical in this

assessment is oxygen saturation, a vital indicator of

respiratory function, where levels below 90% suggest

severe respiratory compromise (1, 2). Computed

tomography (CT) scans play a crucial role in gauging the

severity of COVID-19 by offering prognostic insights not
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captured by standard methods. The extent of lung

lesions visible on CT scans correlates significantly with

disease severity, providing a measurable index of lung

involvement. Notably, specific radiographic patterns,

such as the "crazy-paving pattern," indicate advancing

severity towards substantial lung consolidation,

highlighting the transition phases within the

pulmonary structure affected by the infection (2-5). Non-

lesion lung volume (NLLV), defined as the volume of

aerated lung tissue not affected by visible lesions,

provides a marker of preserved lung function. The

‘crazy-paving’ pattern refers to ground-glass opacities

with superimposed interlobular septal thickening,

typically associated with disease progression and

increasing lung consolidation.

This evolving understanding underscores the

potential of advanced machine learning (ML) models

that integrate CT data with clinical and laboratory

assessments to enhance the prediction accuracy of

critical outcomes such as oxygen saturation. The

intersection of ML and radiomics has transformed

medical imaging analysis (4, 6-8). The development of

sophisticated algorithms facilitates deep explorations

into high-dimensional imaging data (9, 10), thus

broadening the horizon for improved diagnostic

precision and predictive capabilities in managing

COVID-19 outcomes. However, the adoption of these

advanced techniques in clinical practice is hampered by

challenges such as biases in feature extraction and

selection, which can undermine the reliability of

predictive models (11-14). Furthermore, without careful

management, feature selection processes might

prioritize computational artifacts over clinically

relevant data, necessitating a meticulous approach to

ensure the utility of CT-integrated ML models in clinical

settings.

This study models peripheral oxygen saturation

(SpO₂) measured at hospital admission — defined as the

earliest recorded oxygen saturation within two hours of

arrival — to anchor predictive learning on a

standardized, clinically meaningful outcome. While not

a substitute for direct measurement, modeling the

structural determinants of initial desaturation enables

retrospective triage modeling, reveals cross-modal

patterns of early respiratory compromise, and provides

a robust benchmark for evaluating classifier

generalizability and feature relevance in real-world

datasets

2. Objectives

This study aims to develop ML models that

incorporate CT-based interpretable features with

clinical and laboratory data to predict binary oxygen

saturation outcomes in COVID-19 patients. By evaluating

both linear and non-linear classifiers, this research seeks

to assess their effectiveness in forecasting oxygen

saturation levels, considering the evolution of CT scan

features from ground-glass opacities to complete lung

consolidation. We hypothesize that non-linear classifiers

will outperform linear ones in CT-based and integrated

models due to the complex spatial and textural patterns

present in radiological data, whereas linear classifiers

may suffice for clinical and laboratory variables.

Incorporating domain knowledge to distinguish

between clinically relevant features and computational

artifacts is crucial, ensuring that the models remain

applicable in real-world clinical settings, particularly

regarding decisions on intensive care unit (ICU)

admissions and mechanical ventilation requirements.

3. Patients and Methods

3.1. Study Design and Population

We conducted a retrospective cohort study of adults

(≥ 18 years) with reverse transcription polymerase chain

reaction–confirmed COVID-19 admitted to Baqiyatallah

Hospital between October 2020 and May 2021. Inclusion

required a chest CT within one day of admission;

patients with incomplete clinical data or inter-hospital

transfers were excluded. The primary binary outcome

was peripheral oxygen saturation at first reading within

two hours of admission and prior to high-flow

oxygen/ventilatory support (SpO₂ < 90% vs ≥ 90%). After

applying criteria, 1,008 of 1,744 patients were included

(training n = 706; validation n = 302). The study was

approved by the institutional ethics committee

(IR.BMSU.BAQ.REC.1400.079); data were anonymized. A

participant flow diagram is presented in Figure 1.

(Details in Appendix 1 in the Supplementary File.)

3.2. Data Collection and Preprocessing

Demographics, exposure history, comorbidities,

symptoms, laboratory values, and treatment records

were extracted from electronic health records.

Continuous clinical variables were standardized using z-

scores derived from the training set; categorical

variables were one-hot or binary encoded. Missing data

https://brieflands.com/journals/ijradiology/articles/162426
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Figure 1. Participant flow diagram. Of 1,744 patients initially assessed, 736 were excluded: 416 due to incomplete data (220 lacking CT scans; 196 missing laboratory or clinical
information), and 320 due to early discharge or inter-hospital transfers (190 transferred from other hospitals; 130 discharged within 24 hours). The final study cohort consisted
of 1,008 patients, split into a training set (n = 706) and a validation set (n = 302)

(< 10% overall) were handled via multiple imputation by

chained equations. Symptom concordance with chart

documentation was assessed in a validation subset.

(Appendix 2 and 6 in the Supplementary File.)

3.3. Computed Tomography Acquisition, Segmentation, and
Features

Non-contrast chest CT scans were acquired on a GE

Revolution EVO 64-slice scanner within one day of

admission using a standardized protocol. A 2D U-Net

segmented lungs and lesions; outputs underwent

radiologist review, with excellent agreement and high

Dice coefficients. Volumetric (e.g., lesion volume; NLLV;

%NLLV) and texture features were computed per image

biomarker standardization initiative recommendations

after intensity normalization and isotropic resampling.

(Appendix 3, 4 and 5 in the Supplementary File.)

3.4. Feature Selection and Model Development

Clinical, laboratory, and CT-derived variables were

considered alongside a priori covariates (age, sex, Body

Mass Index, comorbidities, presenting symptoms).

Classifiers included linear support vector machine

(SVM), SVM with radial basis function (RBF), logistic

regression, random forests (RFs), naive Bayes, and

XGBoost. Feature selection used recursive feature

elimination, embedded importances (RF/XGBoost),

correlation/χ² tests, and minimum redundancy

maximum relevance; stability analyses guided final sets

(typically 8 - 22 features). Hyperparameters were tuned

via Bayesian optimization with stratified cross-

validation; class imbalance was addressed with

synthetic minority over-sampling technique/adaptive

synthetic sampling and cost-sensitive learning.

(Appendix 7 and 8 in the Supplementary File)

3.5. Validation and Interpretability

We used 10-fold stratified cross-validation and an

independent validation split to assess area under the

curve (AUC), balanced accuracy, sensitivity, specificity,

precision, and F1. Feature importance was examined via

model coefficients/embedded scores, permutation

importance, and Shapley additive explanations for

global and local effects. We used principal component

analysis to visualize the distribution and separation of

classes in the feature space (Appendix 9 and 10 in the

Supplementary File).

3.6. Use of Artificial Intelligence Assistance

Specialized GPT-4 configurations assisted in

optimization setup, literature review, and language

editing, while all methodological decisions and analyses

were conducted by the authors. All artificial intelligence

assistance in writing, literature review, and other

technical aspects was carefully checked and supervised

by the authors.

https://brieflands.com/journals/ijradiology/articles/162426
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Figure 2. A and B, The radiographic progression of lung involvement in COVID-19 pneumonia, beginning with ground-glass opacity (GGO), an early radiographic finding
representing alveolar damage and fluid accumulation; C, As the disease advances, GGO may increase in distribution, exhibiting peripheral predominance; C and D, The crazy
paving pattern, characterized by thickened interlobular septa superimposed on ground-glass opacity, indicates deeper lung parenchyma involvement; E and F, Further
progression leads to consolidation; where dense opacities obscure the underlying vasculature, signaling severe alveolar damage.

Table 1.  Classifier Performance for Oxygen Saturation Prediction: Validation Area Under the Curve and Training Folds Range

Classifier Clinical Model Laboratory Model CT-Based Model Integrated Model

Linear classifiers

Logistic regression 0.82 (0.80 - 0.85) 0.81 (0.78 - 0.94) 0.76 (0.78 - 0.85) 0.84 (0.83 - 0.87)

Linear SVM 0.80 (0.77 - 0.83) 0.82 (0.80 - 0.84) 0.71 (0.63 - 0.88) 0.78 (0.76 - 0.90)

Naive Bayes 0.76 (0.72 - 0.78) 0.74 (0.71 - 0.76) 0.79 (0.66 - 0.82) 0.81 (0.78 - 0.83)

Non-linear classifiers

SVM (RBF Kernel) 0.75 (0.72 - 0.78) 0.76 (0.74 - 0.79) 0.85 (0.86 - 0.91) 0.89 (0.92 - 0.97)

RF 0.78 (0.74 - 0.81) 0.79 (0.76 - 0.82) 0.87 (0.78 - 0.93) 0.86 (0.81 - 0.96)

XGBoost 0.77 (0.63 - 0.80) 0.78 (0.71 - 0.81) 0.81(0.77 - 0.92) 0.85 (0.80 - 0.95)

Abbreviation: SVM, support vector machine; RBF, radial basis function; RF, random forest.

4. Results

4.1. Patients’ Characteristics

The characteristics of COVID-19 patients with oxygen

saturation levels below and above 90% were examined in

two distinct cohorts, each with training and validation

groups. The first cohort includes patients with oxygen

saturation below 90%, comprising 224 in the training

group and 96 in the validation group. The second cohort

involves patients with oxygen saturation equal to or

above 90%, with 482 in the training group and 206 in the

validation group. A detailed breakdown of clinical

characteristics, biological measures, symptoms, and CT

features is provided in Appendix 12, 13 and 14 in the

Supplementary File. Figure 2 depicts the typical

progression of lung damage in COVID-19, from ground-

glass opacity to consolidation, reflecting the increasing

https://brieflands.com/journals/ijradiology/articles/162426
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severity of the disease. Appendix 15 in the

Supplementary File provides a complete list of features

selected in each model by the top-performing classifier,

along with their importance and stability scores.

4.2. Outperformance of Linear Machine Learning Classifiers
in Clinical and Laboratory Models

The performance of the ML classifiers in predicting

oxygen saturation outcomes (below or above 90%) in

COVID-19 patients was assessed, with the validation AUC

values and training folds range detailed in Table 1, with

validation AUC values and the range of AUC from 10-fold

cross-validation (in parenthesis) for each model type:

Clinical, Laboratory, CT-based, and Integrated. Classifiers

are grouped into linear and non-linear categories.

Tighter cross-validation ranges indicate greater

consistency across training folds, suggesting a more

reliable and generalizable model. In addition to

validation AUC, we evaluated clinical utility metrics —

sensitivity, specificity, positive predictive value, and

negative predictive value — for the best-performing

classifier in each model type. The Clinical Model's

logistic regression (AUC = 0.82 [95% CI: 0.80 - 0.85])

achieved a sensitivity of 0.798, specificity of 0.801,

positive predictive value (PPV) of 0.776, and negative

predictive value (NPV) of 0.823. The Laboratory Model's

top classifier, linear SVM (AUC = 0.82 [95% CI: 0.80 -

0.84]), showed a sensitivity of 0.812 and specificity of

0.809, with PPV and NPV values of 0.788 and 0.832,

respectively. In addition to discrimination metrics,

calibration analyses were conducted for all top-

performing classifiers. The Clinical Model (logistic

regression) demonstrated acceptable calibration

(Hosmer-Lemeshow χ² = 6.77, df = 8, P = 0.56; Brier score

= 0.118), as did the Laboratory Model (linear SVM; χ² =

7.92, P = 0.44; Brier = 0.105).

4.3. Non-linear Classifiers Excelled in Computed
Tomography-Based and Integrated Models

In the Computed Tomography-Based Model, RF (AUC

= 0.87 [95% CI: 0.78 - 0.93]) achieved 0.845 sensitivity,

0.827 specificity, 0.806 positive predictive value, and

0.865 negative predictive value. The Integrated Model’s

SVM with RBF kernel (AUC = 0.89 [95% CI: 0.92 - 0.97])

reached the highest overall performance, with

sensitivity of 0.861, specificity of 0.824, PPV of 0.794, and

NPV of 0.884.

The Computed Tomography-Based Model (RF)

showed strong alignment (χ² = 9.35, P = 0.31; Brier =

0.098). The Integrated Model’s SVM with RBF achieved

the best calibration (χ² = 7.38, P = 0.50; Brier = 0.092),

supporting the reliability of its predicted probabilities.

Figure 3 illustrates the SVM with RBF decision

boundaries in a two-dimensional space, derived from

the first two principal components, revealing distinct

patterns of separability in the clinical, laboratory, CT-

based, and integrated models.

4.4. Key Features for Oxygen Saturation Prediction

The Clinical Model's logistic regression classifier

achieved an AUC of 0.82, with age emerging as the most

important predictor of oxygen saturation in COVID-19

patients (Table 2). It had a feature importance of 0.51 and

a stability of 0.89. Gender followed with an importance

of 0.33 and a stability of 0.81. Fever, with an importance

of 0.31 and stability of 0.73, also contributed

significantly, highlighting the role of clinical symptoms

in oxygen saturation prediction. In the Laboratory

Model, linear SVM (AUC = 0.82) identified white blood

cell (WBC) count as the most significant predictor, with

an importance of 0.53 and stability of 0.88. The

lymphocyte count, with an importance of 0.35 and

stability of 0.83, and platelet count, with an importance

of 0.32 and stability of 0.80, indicate the potential link

between coagulation and respiratory outcomes in

COVID-19.

For the Computed Tomography-Based Model, RF

achieved an AUC of 0.87, with mean lesion volume

showing a high feature importance of 0.24 and stability

of 0.90. Lower zone predominance achieved an

importance of 0.20 and stability of 0.85, and NLLV

skewness, an importance of 0.16 and stability of 0.80. In

the Integrated Model, the SVM with RBF kernel (AUC =

0.89) led the way with WBC as the most significant

predictor, having an importance of 0.31 and stability of

0.88. The mean NLLV followed with an importance of

0.30 and stability of 0.85, reinforcing the importance of

CT-based lung volume metrics. Crazy paving, with an

importance of 0.22 and stability of 0.72, highlights the

role of specific CT patterns in the model's predictive

accuracy. Table 2 displays the top features for predicting

oxygen saturation in each model type, based on the

classifier with the highest AUC in the validation dataset.

The feature importance values are normalized,

reflecting the relative significance of each feature

within its respective model, while feature stability

measures the consistency of importance across

subsampling runs.

https://brieflands.com/journals/ijradiology/articles/162426


Shahidzade M et al. Brieflands

6 I J Radiol. 2025; 22(3): e162426

Figure 3. Two-Dimensional Support Vector Machine (SVM) Decision Boundaries and Heatmaps derived from Principal Component Analysis across four datasets: Clinical,
laboratory, computed tomography-based (CT-based), and integrated features. The first two principal components explain a significant portion of the variance: 81.5% in the
clinical dataset, 88.8% in the laboratory dataset, 71.7% in the CT-based dataset, and 79.3% in the integrated model. The SVM with radial basis function (RBF) decision boundaries in
the two-dimensional space demonstrate non-linear separability patterns, particularly within the CT-based and integrated feature sets.

5. Discussion

Our study explored the comparative performance of

ML classifiers across four model types, focusing on the

top-performing classifiers and their key features for

predicting binary oxygen saturation outcomes in

COVID-19 patients, to guide resource allocation in

healthcare settings, such as deciding when to admit

patients to ICU or administer high-flow oxygen therapy.

The models incorporated a diverse set of features,

including clinical, laboratory, CT-based, and integrated

data to offer a comprehensive understanding of the

outcomes. The best-performing classifiers for each

model align with the underlying patterns of the data,

reflecting the linearity or non-linearity of the feature

sets. The feature importance values and stability metrics

provide insights into the robustness and reliability of

each model.

The ability to predict oxygen saturation levels in

COVID-19 patients is crucial for assessing disease severity

and guiding clinical decisions. In the Clinical Model,

where the logistic regression classifier achieved an AUC

of 0.82, age emerged as the most significant predictor,

with a feature importance of 0.51 and a stability of 0.89.

This finding underscores the well-documented

correlation between advanced age and severe

respiratory distress in COVID-19. Gender, with a feature

importance of 0.33 and stability of 0.81, indicates

possible gender-related differences in disease

progression. Fever, a common symptom of COVID-19,

also contributed significantly to the model, suggesting

that clinical symptoms play a vital role in predicting

oxygen saturation (2, 3).

The Laboratory Model, with an AUC of 0.82 for linear

SVM, identified WBC count as the primary predictor. This

strong importance points to the role of the immune

response in the progression of COVID-19. The

lymphocyte count, with an importance of 0.35 and

stability of 0.83, further supports the idea that immune

system markers are critical in understanding disease

severity. Platelet count, with an importance of 0.32 and

stability of 0.80, suggests that coagulation factors may

also have a role in predicting oxygen saturation

outcomes, emphasizing the broader systemic impact of

COVID-19.

The Computed Tomography-Based Model, where the

RF classifier achieved an AUC of 0.87, brought attention

to the radiological features of COVID-19. Mean lesion

volume was the top predictor, highlighting the

significance of lung lesion volume in assessing disease

severity. Lower zone predominance and NLLV skewness

suggest that spatial distribution and volume

consistency of lung tissue are essential factors in

determining oxygen saturation (15). Finally, the

https://brieflands.com/journals/ijradiology/articles/162426
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Table 2.  Top Features for Predicting Oxygen Saturation in COVID-19 Patients

Model Type Best Classifier (AUC)
Top Feature 1 (Importance,

Stability)
Top Feature 2 (Importance,

Stability)
Top Feature 3 (Importance,

Stability)

Clinical model
Logistic Regression (AUC =

0.82) Age (0.51, 0.89) Gender (0.33, 0.81) Fever (0.31, 0.73)

Laboratory
model

Linear SVM (AUC = 0.82) WBC (0.53, 0.88) Lymphocyte (0.35, 0.83) Platelet Count (0.32, 0.80)

CT-Based model RF (AUC = 0.87) Mean LV (0.24, 0.90) Lower Zone Predominance (0.20, 0.85) NLLV skewness (0.16, 0.80)

Integrated model SVMRBF (AUC = 0.89) WBC (0.31, 0.88) Mean NLLV (0.30, 0.85) Crazy paving (0.22, 0.72)

Abbreviation: AUC, Area under the curve; SVM, Support vector machine; RF, Random Forest; WBC, White blood cell; NLLV, Non-lesion lung volume; RBF, Radial basis function; LV,
lesion volume.

Integrated Model, which combined clinical, laboratory,

and CT-based features, demonstrated a broader range of

significant predictors. The SVM with RBF kernel achieved

an AUC of 0.89, with WBC count and mean NLLV as the

leading predictors, suggesting that combining immune

response markers with radiological data provides a

more comprehensive view of disease severity. Crazy

paving, a specific CT pattern, further contributes to the

predictive power of the integrated approach. The

integration of these diverse features emphasizes the

critical role of radiology and underscores the need for

ongoing research to improve predictive accuracy and

clinical outcomes (2, 3, 15).

In a clinical setting, these models could be deployed

as triage support tools at admission. Given that all input

features are routinely available within hours, real-time

prediction of oxygen saturation status could inform ICU

referrals, high-flow oxygen initiation, or monitoring

intensity. Probability thresholds (e.g., ≥ 0.70 from the

Integrated Model) could be defined for actionable

interventions, optimized to institutional capacity and

risk tolerance. The model’s high NPV (NPV = 0.884)

suggests that patients classified as low risk could be

safely managed in general wards, aiding in resource

allocation during surges. A limitation of this study is its

retrospective design, which may inherently carry biases

due to reliance on existing hospital records. The

inclusion of only admitted patients with confirmed

COVID-19 could lead to selection bias, potentially

excluding milder cases not requiring hospitalization.

The study's cohort focused on a single hospital, which

may not represent broader demographic or regional

variations. Data standardization techniques such as z-

score and one-hot encoding may also introduce

inconsistencies in the processed data, affecting model

robustness. Finally, the CT-based features, while

comprehensive, may not capture all relevant variables

contributing to disease progression. The reliance on

specific ML classifiers, though effective, could be

restricted by their inherent assumptions and

limitations, impacting the broader applicability of the

findings.

Demographic imbalance — particularly in age and

sex — may influence model predictions, as these

variables were among the most influential features in

the Clinical and Integrated models. While covariates

were included to mitigate bias, subgroup-specific

calibration or fairness analysis was not performed and

should be addressed in future work. Institutional bias

may also be present due to consistent imaging protocols

and treatment pathways at a single site. Although

preprocessing techniques and feature selection were

designed to reduce dependency on institutional

artifacts, generalizability must be confirmed through

multi-center validation.

Although external validation was not performed,

methodological safeguards were applied to enhance

generalizability. These included stratified 10-fold cross-

validation, a separate 30% test set, and robust feature

selection pipelines incorporating recursive elimination,

redundancy filtering, and stability subsampling. All

models maintained consistent AUC performance across

folds (standard deviation ≤ 0.03), and calibration

metrics demonstrated reliable probability estimates.

Input features were restricted to routinely available

clinical, laboratory, and semantic CT variables to ensure

practical transferability across settings. While external

datasets remain necessary for prospective

transportability testing, this study establishes internal

generalization under a rigorously controlled technical

design.

In conclusion, our analytical framework highlights

the strengths and limitations of various classifiers

across different models, emphasizing the underlying

https://brieflands.com/journals/ijradiology/articles/162426
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linearity or non-linearity in their feature sets. The study

contributes to the field of COVID-19 research by

demonstrating the importance of CT scans in assessing

disease severity and predicting patient outcomes. The

findings are expected to guide clinical decision-making,

such as ICU admissions and the need for high-flow

oxygen therapy. Additionally, the study highlights the

potential of ML models to integrate various data types,

leading to more accurate severity assessments and

enhanced patient care.

These insights provide a detailed comparative

analysis that guides the selection of the most

appropriate classifiers for predicting oxygen saturation

outcomes in COVID-19 patients. The intertwined and

multi-level approach to the discussion underscores the

importance of understanding the unique

characteristics of each model type and the complex

interactions among various features in determining the

best-performing classifiers. The results may inform

future research directions, focusing on developing

quantitative analysis tools for CT scans and integrating

them with clinical algorithms for improved predictive

accuracy and reproducibility.

Supplementary Material

Supplementary material(s) is available here [To read
supplementary materials, please refer to the journal
website and open PDF/HTML].
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