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Abstract

Background: Oxygen saturation is a vital parameter for evaluating the severity of COVID-19 in hospitalized patients, with
levels below 90% indicating respiratory distress and a potential need for intensive care.

Objectives: This study develops machine learning (ML) models that integrate computed tomography (CT)-based features with
clinical and laboratory data to predict binary oxygen saturation outcomes in COVID-19 patients.

Patients and Methods: We conducted a retrospective study of 1,008 COVID-19 patients admitted between October 2020 and
May 2021, utilizing 70% of the data for training and 30% for testing. The classifiers used were linear support vector machine
(SVM), SVM with radial basis function (RBF) kernels, logistic regression, random forests (RFs), naive Bayes, and XGBoost.
Performance was assessed by validation area under the curve (AUC) and the range of AUC from 10-fold cross-validation. Features
were selected through a multi-step process integrating importance ranking and stability analysis, with the top three features
showing stability > 0.7 chosen for model development, yielding the highest AUC among tested combinations.

Results: Linear ML classifiers performed well in Clinical and Laboratory Models, while non-linear classifiers excelled in CT-
Based and Integrated Models. Logistic regression in the Clinical Model achieved an AUC of 0.82, with age, gender, and fever as
significant features. In the Laboratory Model, linear SVM (AUC = 0.82) identified white blood cell (WBC) count as key. Random
forest in the CT-Based Model (AUC = 0.87) highlighted mean lesion volume. The Integrated Model's top classifier, SVM with RBF
kernel (AUC = 0.89), found WBC and mean non-lesion lung volume (NLLV) critical.

Conclusion: Linear classifiers effectively predict oxygen saturation using clinical and laboratory data, while non-linear
classifiers excel with CT-based and integrated models, highlighting the need for tailored ML approaches to different data types
in COVID-19 patient care.
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1. Background

The COVID-19 pandemic has profoundly impacted
global healthcare systems, necessitating swift and
precise evaluations of disease severity. Critical in this

assessment is oxygen saturation, a vital indicator of
respiratory function, where levels below 90% suggest
severe respiratory compromise (1, 2). Computed
tomography (CT) scans play a crucial role in gauging the
severity of COVID-19 by offering prognostic insights not
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captured by standard methods. The extent of lung
lesions visible on CT scans correlates significantly with
disease severity, providing a measurable index of lung
involvement. Notably, specific radiographic patterns,
such as the "crazy-paving pattern," indicate advancing
severity towards substantial lung consolidation,
highlighting the transition phases within the
pulmonary structure affected by the infection (2-5). Non-
lesion lung volume (NLLV), defined as the volume of
aerated lung tissue not affected by visible lesions,
provides a marker of preserved lung function. The
‘crazy-paving’ pattern refers to ground-glass opacities
with superimposed interlobular septal thickening,
typically associated with disease progression and
increasing lung consolidation.

This evolving understanding underscores the
potential of advanced machine learning (ML) models
that integrate CT data with clinical and laboratory
assessments to enhance the prediction accuracy of
critical outcomes such as oxygen saturation. The
intersection of ML and radiomics has transformed
medical imaging analysis (4, 6-8). The development of
sophisticated algorithms facilitates deep explorations
into high-dimensional imaging data (9, 10), thus
broadening the horizon for improved diagnostic
precision and predictive capabilities in managing
COVID-19 outcomes. However, the adoption of these
advanced techniques in clinical practice is hampered by
challenges such as biases in feature extraction and
selection, which can undermine the reliability of
predictive models (11-14). Furthermore, without careful
management, feature selection processes might
prioritize computational artifacts over clinically
relevant data, necessitating a meticulous approach to
ensure the utility of CT-integrated ML models in clinical
settings.

This study models peripheral oxygen saturation
(SpO2) measured at hospital admission — defined as the
earliest recorded oxygen saturation within two hours of
arrival — to anchor predictive learning on a
standardized, clinically meaningful outcome. While not
a substitute for direct measurement, modeling the
structural determinants of initial desaturation enables
retrospective triage modeling, reveals cross-modal
patterns of early respiratory compromise, and provides
a robust benchmark for evaluating classifier
generalizability and feature relevance in real-world
datasets

2. Objectives

This study aims to develop ML models that
incorporate CT-based interpretable features with
clinical and laboratory data to predict binary oxygen
saturation outcomes in COVID-19 patients. By evaluating
both linear and non-linear classifiers, this research seeks
to assess their effectiveness in forecasting oxygen
saturation levels, considering the evolution of CT scan
features from ground-glass opacities to complete lung
consolidation. We hypothesize that non-linear classifiers
will outperform linear ones in CT-based and integrated
models due to the complex spatial and textural patterns
present in radiological data, whereas linear classifiers
may suffice for clinical and laboratory variables.
Incorporating domain knowledge to distinguish
between clinically relevant features and computational
artifacts is crucial, ensuring that the models remain
applicable in real-world clinical settings, particularly
regarding decisions on intensive care unit (ICU)
admissions and mechanical ventilation requirements.

3.Patients and Methods

3.1. Study Design and Population

We conducted a retrospective cohort study of adults
(=18 years) with reverse transcription polymerase chain
reaction-confirmed COVID-19 admitted to Bagiyatallah
Hospital between October 2020 and May 2021. Inclusion
required a chest CT within one day of admission;
patients with incomplete clinical data or inter-hospital
transfers were excluded. The primary binary outcome
was peripheral oxygen saturation at first reading within
two hours of admission and prior to high-flow
oxygen/ventilatory support (SpO2 < 90% vs = 90%). After
applying criteria, 1,008 of 1,744 patients were included
(training n = 706; validation n = 302). The study was
approved by the institutional ethics committee
(IR.BMSU.BAQ.REC.1400.079); data were anonymized. A
participant flow diagram is presented in Figure 1.
(Details in Appendix 1in the Supplementary File.)

3.2. Data Collection and Preprocessing

Demographics, exposure history, comorbidities,
symptoms, laboratory values, and treatment records
were extracted from electronic health records.
Continuous clinical variables were standardized using z-
scores derived from the training set; categorical
variables were one-hot or binary encoded. Missing data
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Excluded: incomplete data (n =416}
-Missing CT scan (n=220)
labjclinical data (n=196)

Excluded: transfer or early discharge (n =320)
-Transferred from other hospitals (n =190)
-Discharged within 24h (n =130)

Included in stury cohort
{n=1008)

-

Training set
(n=706)

Validation set
(n=302)

Figure 1. Participant flow diagram. Of 1,744 patients initially assessed, 736 were excluded: 416 due to incomplete data (220 lacking CT scans; 196 missing laboratory or clinical
information), and 320 due to early discharge or inter-hospital transfers (190 transferred from other hospitals; 130 discharged within 24 hours). The final study cohort consisted

of 1,008 patients, split into a training set (n =706) and a validation set (n =302)

(<10% overall) were handled via multiple imputation by
chained equations. Symptom concordance with chart
documentation was assessed in a validation subset.
(Appendix 2 and 6 in the Supplementary File.)

3.3. Computed Tomography Acquisition, Segmentation, and
Features

Non-contrast chest CT scans were acquired on a GE
Revolution EVO 64-slice scanner within one day of
admission using a standardized protocol. A 2D U-Net
segmented lungs and lesions; outputs underwent
radiologist review, with excellent agreement and high
Dice coefficients. Volumetric (e.g., lesion volume; NLLV;
%NLLV) and texture features were computed per image
biomarker standardization initiative recommendations
after intensity normalization and isotropic resampling.
(Appendix 3, 4 and 5 in the Supplementary File.)

3.4. Feature Selection and Model Development

Clinical, laboratory, and CT-derived variables were
considered alongside a priori covariates (age, sex, Body
Mass Index, comorbidities, presenting symptoms).
Classifiers included linear support vector machine
(SVM), SVM with radial basis function (RBF), logistic
regression, random forests (RFs), naive Bayes, and
XGBoost. Feature selection used recursive feature
elimination, embedded importances (RF/XGBoost),
correlation/y?> tests, and minimum redundancy
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maximum relevance; stability analyses guided final sets
(typically 8 - 22 features). Hyperparameters were tuned
via Bayesian optimization with stratified cross-
validation; class imbalance was addressed with
synthetic minority over-sampling technique/adaptive
synthetic sampling and cost-sensitive learning.
(Appendix 7 and 8 in the Supplementary File)

3.5.Validation and Interpretability

We used 10-fold stratified cross-validation and an
independent validation split to assess area under the
curve (AUC), balanced accuracy, sensitivity, specificity,
precision, and F1. Feature importance was examined via
model coefficientsfembedded scores, permutation
importance, and Shapley additive explanations for
global and local effects. We used principal component
analysis to visualize the distribution and separation of
classes in the feature space (Appendix 9 and 10 in the
Supplementary File).

3.6. Use of Artificial Intelligence Assistance

Specialized GPT-4 configurations assisted in
optimization setup, literature review, and language
editing, while all methodological decisions and analyses
were conducted by the authors. All artificial intelligence
assistance in writing, literature review, and other
technical aspects was carefully checked and supervised
by the authors.
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Figure 2. A and B, The radiographic progression of lung involvement in COVID-19 pneumonia, beginning with ground-glass opacity (GGO), an early radiographic finding
representing alveolar damage and fluid accumulation; C, As the disease advances, GGO may increase in distribution, exhibiting peripheral predominance; C and D, The crazy
paving pattern, characterized by thickened interlobular septa superimposed on ground-glass opacity, indicates deeper lung parenchyma involvement; E and F, Further
progression leads to consolidation; where dense opacities obscure the underlying vasculature, signaling severe alveolar damage.

Table 1. Classifier Performance for Oxygen Saturation Prediction: Validation Area Under the Curve and Training Folds Range

Classifier Clinical Model Laboratory Model CT-Based Model Integrated Model
Linear classifiers

Logistic regression 0.82(0.80-0.85) 0.81(0.78-0.94) 0.76 (0.78 - 0.85) 0.84(0.83-0.87)
Linear SVM 0.80(0.77-0.83) 0.82(0.80-0.84) 0.71(0.63-0.88) 0.78(0.76-0.90)
Naive Bayes 0.76 (0.72-0.78) 0.74(0.71- 0.76) 0.79(0.66 - 0.82) 0.81(0.78 - 0.83)

Non-linear classifiers

SVM (RBF Kernel) 0.75(0.72-0.78)
RF 0.78 (0.74 - 0.81)
XGBoost 0.77(0.63- 0.80)

0.76 (0.74- 0.79)
0.79 (0.76 - 0.82)
0.78 (0.71- 0.81)

0.85(0.86-0.91) 0.89(0.92-0.97)

0.87(0.78-0.93) 0.86 (0.81-0.96)

0.81(0.77-0.92) 0.85(0.80-0.95)

Abbreviation: SVM, support vector machine; RBF, radial basis function; RF, random forest.

4.Results

4.1. Patients’ Characteristics

The characteristics of COVID-19 patients with oxygen
saturation levels below and above 90% were examined in
two distinct cohorts, each with training and validation
groups. The first cohort includes patients with oxygen
saturation below 90%, comprising 224 in the training

group and 96 in the validation group. The second cohort
involves patients with oxygen saturation equal to or
above 90%, with 482 in the training group and 206 in the
validation group. A detailed breakdown of clinical
characteristics, biological measures, symptoms, and CT
features is provided in Appendix 12, 13 and 14 in the
Supplementary File. Figure 2 depicts the typical
progression of lung damage in COVID-19, from ground-
glass opacity to consolidation, reflecting the increasing
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severity of the disease. Appendix 15 in the
Supplementary File provides a complete list of features
selected in each model by the top-performing classifier,
along with their importance and stability scores.

4.2. Outperformance of Linear Machine Learning Classifiers
in Clinical and Laboratory Models

The performance of the ML classifiers in predicting
oxygen saturation outcomes (below or above 90%) in
COVID-19 patients was assessed, with the validation AUC
values and training folds range detailed in Table 1, with
validation AUC values and the range of AUC from 10-fold
cross-validation (in parenthesis) for each model type:
Clinical, Laboratory, CT-based, and Integrated. Classifiers
are grouped into linear and non-linear categories.
Tighter cross-validation ranges indicate greater
consistency across training folds, suggesting a more
reliable and generalizable model. In addition to
validation AUC, we evaluated clinical utility metrics —
sensitivity, specificity, positive predictive value, and
negative predictive value — for the best-performing
classifier in each model type. The Clinical Model's
logistic regression (AUC = 0.82 [95% CI: 0.80 - 0.85])
achieved a sensitivity of 0.798, specificity of 0.801,
positive predictive value (PPV) of 0.776, and negative
predictive value (NPV) of 0.823. The Laboratory Model's
top classifier, linear SVM (AUC = 0.82 [95% CI: 0.80 -
0.84]), showed a sensitivity of 0.812 and specificity of
0.809, with PPV and NPV values of 0.788 and 0.832,
respectively. In addition to discrimination metrics,
calibration analyses were conducted for all top-
performing classifiers. The Clinical Model (logistic
regression) demonstrated acceptable calibration
(Hosmer-Lemeshow x2 = 6.77, df = 8, P = 0.56; Brier score
= 0.118), as did the Laboratory Model (linear SVM; x? =
7.92, P =0.44; Brier = 0.105).

4.3. Non-linear Classifiers Excelled in
Tomography-Based and Integrated Models

Computed

In the Computed Tomography-Based Model, RF (AUC
= 0.87 [95% CI: 0.78 - 0.93]) achieved 0.845 sensitivity,
0.827 specificity, 0.806 positive predictive value, and
0.865 negative predictive value. The Integrated Model’s
SVM with RBF kernel (AUC = 0.89 [95% CI: 0.92 - 0.97])
reached the highest overall performance, with
sensitivity of 0.861, specificity of 0.824, PPV of 0.794, and
NPV of 0.884.

The Computed Tomography-Based Model (RF)
showed strong alignment (x> = 9.35, P = 0.31; Brier =
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0.098). The Integrated Model’s SVM with RBF achieved
the best calibration (}*> = 7.38, P = 0.50; Brier = 0.092),
supporting the reliability of its predicted probabilities.
Figure 3 illustrates the SVM with RBF decision
boundaries in a two-dimensional space, derived from
the first two principal components, revealing distinct
patterns of separability in the clinical, laboratory, CT-
based, and integrated models.

4.4. Key Features for Oxygen Saturation Prediction

The Clinical Model's logistic regression classifier
achieved an AUC of 0.82, with age emerging as the most
important predictor of oxygen saturation in COVID-19
patients (Table 2). It had a feature importance of 0.51 and
a stability of 0.89. Gender followed with an importance
of 0.33 and a stability of 0.81. Fever, with an importance
of 031 and stability of 0.73, also contributed
significantly, highlighting the role of clinical symptoms
in oxygen saturation prediction. In the Laboratory
Model, linear SVM (AUC = 0.82) identified white blood
cell (WBC) count as the most significant predictor, with
an importance of 0.53 and stability of 0.88. The
lymphocyte count, with an importance of 0.35 and
stability of 0.83, and platelet count, with an importance
of 0.32 and stability of 0.80, indicate the potential link
between coagulation and respiratory outcomes in
COVID-19.

For the Computed Tomography-Based Model, RF
achieved an AUC of 0.87, with mean lesion volume
showing a high feature importance of 0.24 and stability
of 0.90. Lower zone predominance achieved an
importance of 0.20 and stability of 0.85, and NLLV
skewness, an importance of 0.16 and stability of 0.80. In
the Integrated Model, the SVM with RBF kernel (AUC =
0.89) led the way with WBC as the most significant
predictor, having an importance of 0.31 and stability of
0.88. The mean NLLV followed with an importance of
0.30 and stability of 0.85, reinforcing the importance of
CT-based lung volume metrics. Crazy paving, with an
importance of 0.22 and stability of 0.72, highlights the
role of specific CT patterns in the model's predictive
accuracy. Table 2 displays the top features for predicting
oxygen saturation in each model type, based on the
classifier with the highest AUC in the validation dataset.
The feature importance values are normalized,
reflecting the relative significance of each feature
within its respective model, while feature stability
measures the consistency of importance across
subsampling runs.
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Figure 3. Two-Dimensional Support Vector Machine (SVM) Decision Boundaries and Heatmaps derived from Principal Component Analysis across four datasets: Clinical,
laboratory, computed tomography-based (CT-based), and integrated features. The first two principal components explain a significant portion of the variance: 81.5% in the
clinical dataset, 88.8% in the laboratory dataset, 71.7% in the CT-based dataset, and 79.3% in the integrated model. The SVM with radial basis function (RBF) decision boundaries in
the two-dimensional space demonstrate non-linear separability patterns, particularly within the CT-based and integrated feature sets.

5. Discussion

Our study explored the comparative performance of
ML classifiers across four model types, focusing on the
top-performing classifiers and their key features for
predicting binary oxygen saturation outcomes in
COVID-19 patients, to guide resource allocation in
healthcare settings, such as deciding when to admit
patients to ICU or administer high-flow oxygen therapy.
The models incorporated a diverse set of features,
including clinical, laboratory, CT-based, and integrated
data to offer a comprehensive understanding of the
outcomes. The best-performing classifiers for each
model align with the underlying patterns of the data,
reflecting the linearity or non-linearity of the feature
sets. The feature importance values and stability metrics
provide insights into the robustness and reliability of
each model.

The ability to predict oxygen saturation levels in
COVID-19 patients is crucial for assessing disease severity
and guiding clinical decisions. In the Clinical Model,
where the logistic regression classifier achieved an AUC
of 0.82, age emerged as the most significant predictor,
with a feature importance of 0.51 and a stability of 0.89.
This finding underscores the
correlation between advanced age and severe
respiratory distress in COVID-19. Gender, with a feature

well-documented

importance of 0.33 and stability of 0.81, indicates
possible  genderrelated differences in disease
progression. Fever, a common symptom of COVID-19,
also contributed significantly to the model, suggesting
that clinical symptoms play a vital role in predicting
oxygen saturation (2, 3).

The Laboratory Model, with an AUC of 0.82 for linear
SVM, identified WBC count as the primary predictor. This
strong importance points to the role of the immune
response in the progression of COVID-19. The
lymphocyte count, with an importance of 0.35 and
stability of 0.83, further supports the idea that immune
system markers are critical in understanding disease
severity. Platelet count, with an importance of 0.32 and
stability of 0.80, suggests that coagulation factors may
also have a role in predicting oxygen saturation
outcomes, emphasizing the broader systemic impact of
COVID-19.

The Computed Tomography-Based Model, where the
RF classifier achieved an AUC of 0.87, brought attention
to the radiological features of COVID-19. Mean lesion
volume was the top predictor, highlighting the
significance of lung lesion volume in assessing disease
severity. Lower zone predominance and NLLV skewness
suggest that spatial distribution and volume
consistency of lung tissue are essential factors in
determining oxygen saturation (15). Finally, the
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Table 2. Top Features for Predicting Oxygen Saturation in COVID-19 Patients

Model Type Best Classifier (AUC)

Stability)

Top Feature 1 (Importance,

Top Feature 2 (Importance,
Stability)

Top Feature 3 (Importance,
Stability)

Logistic Regression (AUC =

Clinical model Age (0.51,0.89)

0.82)
Laboratory Linear SVM (AUC = 0.82) WBC (0.53, 0.88)
model
CT-Based model RF (AUC=0.87) Mean LV (0.24, 0.90)

Integrated model SVMggp (AUC=0.89) WBC (0.31,0.88)

Gender (0.33, 0.81) Fever (0.31,0.73)

Lymphocyte (0.35, 0.83) Platelet Count (0.32, 0.80)

Lower Zone Predominance (0.20, 0.85) NLLV skewness (0.16, 0.80)

Mean NLLV (0.30, 0.85) Crazy paving (0.22, 0.72)

Abbreviation: AUC, Area under the curve; SVM, Support vector machine; RF, Random Forest; WBC, White blood cell; NLLV, Non-lesion lung volume; RBF, Radial basis function; LV,

lesion volume.

Integrated Model, which combined clinical, laboratory,
and CT-based features, demonstrated a broader range of
significant predictors. The SYM with RBF kernel achieved
an AUC of 0.89, with WBC count and mean NLLV as the
leading predictors, suggesting that combining immune
response markers with radiological data provides a
more comprehensive view of disease severity. Crazy
paving, a specific CT pattern, further contributes to the
predictive power of the integrated approach. The
integration of these diverse features emphasizes the
critical role of radiology and underscores the need for
ongoing research to improve predictive accuracy and
clinical outcomes (2, 3,15).

In a clinical setting, these models could be deployed
as triage support tools at admission. Given that all input
features are routinely available within hours, real-time
prediction of oxygen saturation status could inform ICU
referrals, high-flow oxygen initiation, or monitoring
intensity. Probability thresholds (e.g., > 0.70 from the
Integrated Model) could be defined for actionable
interventions, optimized to institutional capacity and
risk tolerance. The model’s high NPV (NPV = 0.884)
suggests that patients classified as low risk could be
safely managed in general wards, aiding in resource
allocation during surges. A limitation of this study is its
retrospective design, which may inherently carry biases
due to reliance on existing hospital records. The
inclusion of only admitted patients with confirmed
COVID-19 could lead to selection bias, potentially
excluding milder cases not requiring hospitalization.
The study's cohort focused on a single hospital, which
may not represent broader demographic or regional
variations. Data standardization techniques such as z-
score and one-hot encoding may also introduce
inconsistencies in the processed data, affecting model
robustness. Finally, the CT-based features, while
comprehensive, may not capture all relevant variables

I] Radiol. 2025; 22(3): 162426

contributing to disease progression. The reliance on
specific ML classifiers, though effective, could be
restricted by their inherent assumptions and
limitations, impacting the broader applicability of the
findings.

Demographic imbalance — particularly in age and
sex — may influence model predictions, as these
variables were among the most influential features in
the Clinical and Integrated models. While covariates
were included to mitigate bias, subgroup-specific
calibration or fairness analysis was not performed and
should be addressed in future work. Institutional bias
may also be present due to consistent imaging protocols
and treatment pathways at a single site. Although
preprocessing techniques and feature selection were
designed to reduce dependency on institutional
artifacts, generalizability must be confirmed through
multi-center validation.

Although external validation was not performed,
methodological safeguards were applied to enhance
generalizability. These included stratified 10-fold cross-
validation, a separate 30% test set, and robust feature
selection pipelines incorporating recursive elimination,
redundancy filtering, and stability subsampling. All
models maintained consistent AUC performance across
folds (standard deviation < 0.03), and calibration
metrics demonstrated reliable probability estimates.
Input features were restricted to routinely available
clinical, laboratory, and semantic CT variables to ensure
practical transferability across settings. While external
datasets remain  necessary for  prospective
transportability testing, this study establishes internal
generalization under a rigorously controlled technical
design.

In conclusion, our analytical framework highlights
the strengths and limitations of various classifiers
across different models, emphasizing the underlying
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linearity or non-linearity in their feature sets. The study
contributes to the field of COVID-19 research by
demonstrating the importance of CT scans in assessing
disease severity and predicting patient outcomes. The
findings are expected to guide clinical decision-making,
such as ICU admissions and the need for high-flow
oxygen therapy. Additionally, the study highlights the
potential of ML models to integrate various data types,
leading to more accurate severity assessments and
enhanced patient care.

These insights provide a detailed comparative
analysis that guides the selection of the most
appropriate classifiers for predicting oxygen saturation
outcomes in COVID-19 patients. The intertwined and
multi-level approach to the discussion underscores the
importance  of  understanding the  unique
characteristics of each model type and the complex
interactions among various features in determining the
best-performing classifiers. The results may inform
future research directions, focusing on developing
quantitative analysis tools for CT scans and integrating
them with clinical algorithms for improved predictive
accuracy and reproducibility.

Supplementary Material

Supplementary material(s) is available here [To read
supplementary materials, please refer to the journal
website and open PDF/HTML)|.
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