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Abstract

Background: Chest X-ray (CXR) images are important for diagnosing lung diseases such as pneumonia and tuberculosis. They
help medical professionals determine the functions of the heart and lungs. The lungs may change as a result of certain heart
issues, and specific disorders may cause anatomical alterations of the heart or lungs.

Objectives: To enhance the classification accuracy of CXR images, particularly for identifying eight types of abnormal lung
lesions, by applying advanced feature selection and fusion techniques in combination with deep learning models.

Materials and Methods: This study utilized a dataset of CXR images with normal and abnormal classes; however, we had only
eight lesions in the abnormal class. Initially, we preprocessed the images to improve their quality and suitability for further
analysis. We then modified two deep learning models, ResNet50 and DenseNet201. Transfer learning (TL) techniques were
employed for training. The features extracted from these models were retained separately. We utilized a parameter-optimized
ant colony optimization (ACO) algorithm to refine the feature selection, and the features from both models were fused into a
single feature set. Meanwhile, at the preprocessing step, we used five additional statistical methods, including the Kruskal-
Wallis test, ReliefF, analysis of variance (ANOVA), chi-square test, and minimum redundancy maximum relevance (MRMR), to
identify the most important features, separately from the above process. The fusion is then enforced after obtaining important
features from two different processes to enhance the efficiency of our architecture. We then utilized various machine learning
classifiers.

Results: The binary classification between normal and abnormal achieved 95.9% + 0.5% accuracy, 95.95% + 1.09% sensitivity,
93.91% + 0.34% specificity, 93.91% + 0.37% precision, and 94.85% + 0.56% F1 score on the hybrid approach. Multiple classifications of
the eight abnormality lesions revealed a promising average area under the curve (AUC) value of 0.872.

Conclusion: The combination of deep learning models with advanced feature selection methods is beneficial for not only
improving the classification outcomes but also ensuring accuracy and validity.

Keywords: ANOVA, Chest ~ X-Ray,Deep Learning, Feature
Fusion, Convolution Neural Networks (CNN)

Optimization, Transfer ~ Learning, Machine Learning, Feature
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1. Background

Chest X-ray (CXR), an imaging test, assesses the
tissues and structures in the chest using X-rays. It helps
medical professionals detect abnormalities in the heart
and lungs. The lungs may change as a result of certain
heart issues, and specific disorders may cause
anatomical alterations of the heart or lungs. In standard
clinical practice, a CXR or chest radiography is the initial

diagnostic tool applied for patients demonstrating non-
specific thoracic symptoms (e.g., chest pain, cough, or
shortness of breath). Most institutions can easily
perform chest radiography at a low cost and with
efficiency. Several studies have been conducted in this
area, and radiologists face a practical issue in
maintaining diagnostic quality due to the volume of
chest radiographs that require interpretation. Lesions
that were initially missed are often detected
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retrospectively, even when an experienced radiologist
performs the initial assessment.

Kang et al. (1) introduced a state-of-the-art encoder-
decoder-based network with an attentional decoder
explicitly designed to accurately detect small lesions in
images. Traditional networks with encoder-only
architectures frequently struggle with minor lesions, as
these can become vague during down-sampling or
within low-resolution feature maps. The proposed
network addressed this issue using an encoder-decoder
architecture comparable to the U-Net family, enabling it
to process images and classify lesions by globally
pooling high-resolution feature maps. Further, two
main challenges arose in adapting U-Net designs for
classification tasks in the same survey study (2). The first
challenge is the high computational costs for up-
sampling, and the second is finding a computationally
light pooling method that could improve object
localization. Deep residual learning can be applied to
shallow layers with high-resolution feature maps to
tackle these problems. Their proposed network includes
a harmonic magnitude transform and a lightweight
attentional decoder. By decoupling low-resolution
features from those at high resolution to be used as keys
and values, the attentional decoder up-samples the
characteristics. This multiscale interaction enables the
upsampled features to retain the characteristics of local
lesions, thereby helping to maintain the global context.
Furthermore, the spatial frequency representation is
used to extract high-resolution feature maps through
pooling via the harmonic magnitude transform (3-5).
This method reduces the parameters required for the
pooling layer with an efficient embedding scheme and
simultaneously retains the shift-invariance using the
shift theorem of the Fourier transform. The results of
the experiments on the three publicly available CXR
datasets, NIH (6), CheXpert (7), and MIMIC-CXR (8), show
that this network ranks at the state-of-the-art level in
terms of lesion classification. Hence, the encoder-
decoder network proposed in this paper provides great
support for solving the problem of automatically
classifying X-ray images with small lesions by achieving
performance improvements with both feature maps at
multiple resolutions upsampled back to the input
resolution through an attentive decoder and high-
resolution feature maps processed via the harmonic
magnitude transform.

Innat et al. (9) demonstrated Cardio-XAttentionNet, a
deep learning network that accurately categorizes and
detects the presence of cardiomegaly in CXR images
using convolutional attention mapping. The model
aims to help doctors and improve patient care through

knowledgeable disease categorization. Furthermore, it
assists in locating the illness. A weighting term was
appended to the conventional global average pooling
(GAP) system (10), whereas this simple attention
mapping mechanism was optimal. This innovation
enables Cardio-XAttentionNet to locally classify images
at the image level and locate cardiomegaly regionally at
the pixel level without requiring challenging pixel-level
annotations.

Cardio-XAttentionNet was trained with the ChestX-
rayl4 dataset, a publicly accessible collection of CXR
images, and is based on sophisticated convolutional
neural network (CNN) architectures. The model’s
performance metrics were remarkable. Cardiomegaly
classification achieved precision, recall, F1 score, and
area under the curve (AUC) scores of 0.87, 0.85, 0.86, and
0.89, respectively. The results indicate that Cardio-
XAttentionNet accurately determines the condition at
the pixel level in addition to classifying cardiomegaly at
the image level. Cardio-XAttentionNet exhibits state-of-
the-art performance in cardiomegaly diagnosis when
compared to current GAP-based models, highlighting its
potential as an effective tool in medical diagnostics.

Wang et al. (11) accentuated the serious effects of the
coronavirus disease 2019 (COVID-19) pandemic on world
health and stressed the importance of operational
screening techniques, especially those that use chest
radiography. Early examination revealed that CXR
images of patients with COVID-19 display specific
anomalies. An extensive open-access benchmark dataset
of 13,975 CXR images from 13,870 patient cases is
introduced in the review. At the time of its release, this
dataset contained the largest number of publicly
available cases that tested positive for COVID-19. The
scientists used a logical strategy to determine the
fundamental attributes associated with COVID-19 cases,
allowing them to further explore how coronavirus net
generates its predictions. This strategy ensures that
coronavirus net’s selections are based on significant
CXR image data and assists clinicians in improving their
screening techniques. Indeed, although coronavirus net
is not yet ready for production use, its open-access
design and the COVIDx dataset make it a significant tool
for resident data scientists and corresponding
researchers. This aims to facilitate the advancement of
highly accurate and useful learning techniques for
COVID-19 case detection, which will eventually enable
people in dire need to receive treatment quickly.

Nair et al. (12) revealed that the availability of
portable devices and the popularity of chest radiology
systems in healthcare facilities allow radiography exams
to be performed rapidly and broadly. This makes them a
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great addition to reverse transcription polymerase
chain reaction testing, especially since CXRs are a
frequent routine procedure for patients with
respiratory problems. Subsequently, de Hoop et al. (13)
focused on the commercially available CAD system,
Onguard 5.0 by Riverain in Miamisburg, Ohio, and
revealed no significant improvement in viewers’ ability
to determine malignancy in chest radiographs. This best
illustrated the limitations of the system in the absence
of deep learning, as observers found it challenging to
discern true lesions from false positives. A wide series of
consecutive chest radiographs indicated that a stand-
alone CAD system had a sensitivity of 71.0%, with 1.3 false
positives per image, according to a recent study by Li et
al. (14). However, the more recent nodule detection
computer-aided diagnosis system, ClearRead +Detect 5.2
(previously Onguard from Riverain Technologies),
performs better despite the absence of deep learning. Its
wide adaptation in clinical settings still requires higher
sensitivity and fewer false positives.

2. Objectives

The objective of this study is to enhance the
classification accuracy of CXR images, particularly for
identifying eight types of abnormal lung lesions, by
applying advanced feature selection and fusion
techniques in combination with deep learning models.
Our study significantly contributes to the realm of
medical image analysis by introducing a detailed
methodology for the accurate classification of CXR
images by harnessing the capabilities of two
sophisticated deep learning architectures, ResNet50 and
DenseNet201. Furthermore, using transfer learning (TL),
we develop robust feature representations of CXR
images.

The proposed work introduces a novel and efficient
framework for classification, which is as follows:

- Initially, in our workflow, the crucial step is the
preprocessing of data, which is meticulously designed
to refine and improve the raw data, ensuring it is clean,
consistent/reliable, and properly organized for optimal
performance when fed into the deep learning models.

- For the extraction of features, we used two deep
learning models (ResNet50 and DenseNet201) and then
trained them using TL separately.

- We utilized the output and fetched separately under
two feature vectors and applied the parameter-
optimized ant colony optimization (ACO) algorithm for
optimal feature selection.

-In the meantime, five additional statistical methods,
which include the Kruskal-Wallis test, ReliefF, analysis of
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variance (ANOVA), chi-square test, and minimum
redundancy maximum relevance (MRMR) for the most
important features, are used at the preprocessing step,
separate from the above process.

The fusion process is enforced after obtaining
important features from two different processes to
improve the efficiency of our architecture. The
optimized deep features (ACO) and the statistically
selected handcrafted features were fused at the feature
level via horizontal concatenation, producing a
comprehensive hybrid vector. We then used various
machine learning classifiers.

3. Materials and Methods

3.1. Preprocessing

The dataset (15) includes eight lesions, namely
cardiomegaly, effusion, infiltrate, mass, nodule,
atelectasis, pneumonia, and pneumothorax, as
illustrated in Figure 1.

Cardiomegaly can be identified by an enlarged
cardiac silhouette on an X-ray. More clearly, it indicates
that the heart appears larger than it usually is, may
occupy more than half of the thoracic width, and
enables more prominent heart border visualization.
Pneumonia can be determined by the presence of dense
lobar, segmental, or patchy opacities. Effusion can be
identified by the presence of fluid in the pleural space;
briefly, the fluid curves upward sideways on the lung
edges. Infiltration is identified as increased opacity due
to fluid, pus, blood, or cells within lung tissues. A nodule
is a small, round opacity that is less than 3 cm in
diameter, with sharp margins. A mass is larger than a
nodule and has comparable properties; thus, an opacity
greater than 3 cm is considered a mass. Pneumothorax
is identified by the presence of air in the pleural space,
causing the affected lung to appear darker and retracted
from the chest wall, where the lung is collapsed.
Atelectasis is  determined by compensatory
overinflation of the adjacent lung, and the affected area
appears opaque.

We used the NIH ChestX-rayl4 dataset, which
comprises 112,120 frontal-view X-ray images from 30,805
unique patients, each image categorized with one or
more of 14 thoracic disease categories such as
atelectasis, cardiomegaly, effusion, infiltration, mass,
nodule, pneumonia, pneumothorax, consolidation,
edema, emphysema, fibrosis, pleural thickening, and
hernia. The images are provided in JPEG format with a
resolution of 1024 x 1024 pixels. In our case, we used
only eight thoracic disease classes: Atelectasis,
cardiomegaly, effusion, infiltration, mass, nodule,
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Figure 1. Representation samples of chest X-ray (CXR) images from the open-source repositories

pneumonia, and pneumothorax. The total number of
images used was 66,392, and the splitting ratio carried
through our experiment was 70:10:20. We used 70% for
training purposes, 10% for validation, and 20% for
testing. For training purposes, we used 42,042 X-ray
images, followed by 6,006 X-ray images for validation
purposes, and lastly, for testing, we used 12,012 X-ray
images. For binary classification, the data were grouped
into normal images labeled as "No Finding" and
abnormal images with one or more pathologies,
resulting in 60,361 normal and 51,759 abnormal images.

3.2. Feature Fusion and Classification

In our study, we utilized a CXR dataset comprising
normal and abnormal classes. We precisely
preprocessed the images, and subsequently, deep
learning models required fixed-size inputs. All images in
the dataset were resized to a uniform dimension,
ensuring consistency and allowing the model to learn
representative features efficiently. The original images
were of size 1024 x 1024 pixels, and after augmentation,
the image dimensions were adjusted to 948 x 948 pixels
to optimize the dataset for deep learning models. For
model compatibility, all images were resized to 224 x
224 pixels. This step ensures consistent data

distribution, which helps accelerate the training
process and improves model efficiency.

Various augmentation techniques were applied,
including cropping, which focused on critical regions of
the images, ensuring only relevant areas are used for
training. Random rotation was applied, with images
randomly rotated between 30° to 60°, enhancing the
model's ability to generalize across various orientations.
Zoom transformation was applied randomly within a
range of £ 20% to simulate varying scales, and lastly,
horizontal and vertical flipping were performed
randomly to diversify the dataset and increase
robustness. The resolution of the images was
maintained for both horizontal and vertical resolutions
to preserve image clarity and feature details.

To improve generalizability and prevent overfitting,
data augmentation techniques were applied to enhance
model robustness by artificially increasing the diversity
of the training set. Pixel intensity values were
normalized to a range of 0 - 1 or standardized (zero
mean, unit variance) based on the model’s requirement.
ResNet and DenseNet require input images to be
normalized to a range of 0 - 1 or standardized using
mean subtraction and standard deviation (SD) division.
This step ensures faster convergence during training
and prevents numerical instability by keeping the
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Figure 2. Proposed flow diagram of chest X-ray (CXR) classification using a hybrid approach

values within a manageable range. Therefore, the
preprocessing includes resizing, normalization, and
augmentation to improve the model’s robustness and
accuracy. Our approach involves preprocessing the data
to ensure that it is optimal while feeding it to deep
learning models using two deep learning architectures,
ResNet50 and DenseNet201, tailored to our specific
classification task. Through TL, we fine-tuned these
pretrained models on our CXR dataset, extracting
features that serve as rich representations of the images,
capturing crucial patterns and characteristics.

We used a two-step feature selection and fusion
approach to improve classification performance and
efficiency. In the initial step, we utilized two modified
deep learning models to extract deep features from the
CXR images. The extracted feature sets were stored
separately as feature vectors [FV1 (ResNet50) and FV2
(DenseNet201)]. To refine the extracted features, we
applied a parameter-optimized ACO algorithm to each
feature set separately. We have not changed the core
structure of ACO; instead, we used the term "parameter-
optimized ACO" to denote the parameter optimization
executed on the standard ACO algorithm. The

[] Radiol. 2025; 22(3): e163605

mechanics of ACO were well-maintained, but numerous
key control parameters, including the number of ants
(N), heuristic factor (B), pheromone influence (a),
pheromone evaporation rate (p), and the number of
selected features (Nf), were carefully adjusted. The ACO
helps in selecting the most relevant and discriminative
features while reducing dimensionality, thereby
ensuring that only essential features contribute to
classification.

In parallel, we applied five statistical methods
(Kruskal-Wallis test, ReliefF, ANOVA, chi-square test, and
MRMR) to select the most significant features from the
dataset. This statistical feature selection process was
performed independently from the ACO to provide an
additional level of refinement. After obtaining the
crucial features from both ACO-selected deep features
and statistically selected features, we performed feature
fusion by combining these refined feature vectors into a
single feature set. This fusion technique ensures that the
final feature set retains both deep learning-based high-
level patterns and statistically significant handcrafted
features. The fused feature set was then used as input to
various machine learning classifiers, which improves
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Figure 3. Convolutional neural network (CNN) architecture for the chest X-ray (CXR) dataset

both the classification accuracy and efficiency. Figure 2
illustrates the proposed flow diagram of our CXR
classification using a hybrid approach.

The CNNs, which perform well in tasks such as image
recognition (16, 17), image classification (18), and object
detection (19), are among the most important types of
deep neural networks. Compared to other classification
techniques, CNNs require less preprocessing. This
network categorizes an image into distinct classes based
on its input. Convolutional, pooling, RelU, fully-
connected, and softmax layers are among the many
layers that the images travel through in both the
training and testing stages. Using convolutional filters,
image pixels are transformed into features in the
convolutional layer, whereas the softmax layer assigns
probabilities to these features, ranging from 0 to 1, for
classification.

ResNet exhibits superior performance due to its
ability to establish a more direct information
propagation path across the network. Its design
effectively mitigates the vanishing gradient issue
encountered in backpropagation. By introducing
shortcut connections, ResNet facilitates the passage of
relevant information throughout the training process,
thereby circumventing unhelpful layer interactions.
Mathematically:

Equation 1.

T, = R(i) -i "

Equation 2.

Both Equations signify signify the residual mapping
mechanism in ResNet. The primary idea behind ResNet
is to reformulate learning as learning residual
functions, which helps preserve relevant information
across layers. Specifically, Equation (1) describes how a
transformation function T(i) can be modeled as a
residual function R(i), where the identity mapping i is
subtracted. In Equation (2), it expresses the inverse
relation, thereby reinforcing how residual learning
captures essential variations while maintaining identity
connections. These Equations are are decisive in
understanding how ResNet shortcut connections enable
effective gradient flow and mitigate vanishing
gradients.

We utilized 64 kernels with a 7 x 7 convolutional
layer, a stride of 2, a 3 x 3 max pooling layer, a 7 x 7
average pooling layer with a stride of 7, 16 residual
building blocks, and a fully connected (FC) layer in our
research using the ResNet-50 pretrained model. This
network design exhibits extraordinary versatility with
over 23 million trainable parameters. The model was
then adapted by eliminating its final FC layer. Initially,
this layer encompassed 1000 object classes. However, to
align with our selected CXR dataset, consisting of only
two classes, we introduced a new FC layer
accommodating only two classes. This modified
configuration underwent training using deep TL
techniques, as elaborated in the subsequent section.
After the TL process, we derived a refined model.
Subsequently, from the GAP layer, this refined model
was employed to extract features, and N times 2048 is
the dimensionality of the extracted features. Figure 3
illustrates the CNN architecture for the CXR dataset.
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This network involves 201 deep layers. It was initially
trained on a thousand object classes, and the ResNet
model introduced the idea of bypassing layers, in
contrast to other deep networks where layers are
connected progressively, making the system more
complex and difficult to use. Subsequently, the
DenseNet network improved upon this strategy by
using sequential concatenation in place of the output
feature summation from previous layers (20). Further,
mathematically, it can be defined as follows.

Equation 3.

Zy =2 (%, 21, - ., Z}4) )

In this Equation, the the features of the [th layer are
represented by Z, the Layer Index is denoted by [, and Hy
is a nonlinear transformation. Dense blocks are
established in the architecture for down-sampling.
These blocks are then isolated by layers called transition
layers, which include batch normalization. A 1 x 1
convolution layer and a 2 x 2 average pooling layer
follow the transition layers. The DenseNet-201
architecture uses pooling blocks, which are designed to
reduce the size of the feature maps. Each layer within
DenseNet has direct access to the original input image
and the gradients from the loss function, resulting in a
notable reduction in computational speed.

DenseNet201 was modified for CXR classification in
this study. The FC layer, initially designed for 1000 object
classes, was eliminated and replaced with a novel FC
layer accommodating only two classes. The modified
model then underwent training using TL. During
training, the model ran for 100 epochs, with a learning
rate set at 0.00001. We employed stochastic gradient
descent for optimization, and the batch size was set to
64. After training, the newly distinguished model was
saved for subsequent feature extraction. Finally, features
were extracted from the GAP layer, which was then used
for chest abnormality classification purposes.

3.3. Deep Feature Extraction

The TL in the domain of deep learning involves
repurposing a model for a specific task (21). TL primarily
aims to exploit a preexisting model instead of
constructing a new one from scratch. Throughout this
process, base models, alongside their corresponding
labels and data, are considered. Subsequently, the
knowledge is transferred to the adapted model, which is
trained for the new task. The training process required
certain parameters, including 100 epochs, a learning
rate of 0.00001, and stochastic gradient descent, with

[] Radiol. 2025;22(3): 163605

the batch size set to 64. The modified models that have
undergone training were saved for deployment in the
intended task.

TL encompasses leveraging the knowledge gained
from pretrained models on a source task and applying it
to a related target task. Mathematically, TL can be
represented as follows.

Equation 4.
ft = TransferLearning (fs) (4)

In this Equation, let let f; represent the pretrained
model on the source task, and let f; represent the target

task model. Feature extraction involves extracting
informative features from the input data, which can
then be utilized for classification or other tasks.

Figure 4 illustrates the TL process. Furthermore, the
source models in this figure have a total of 1000 object
classes. Knowledge is transferred, and modified models
are trained in TL. After the training of both models, the
features are extracted from the final layers (global
average pool) and applied to the subsequent step. The
retrieved feature vectors from each layer have sizes of N
times 2048.

3.4. Statistical Feature Selection

In this section, we discuss the mathematical
representation of some of the statistical methods used
to rank the importance of features. The methods include
the Kruskal-Wallis test, ReliefF, ANOVA, chi-square test,
and MRMR.

Kruskal-Wallis test: The Kruskal-Wallis test is the
nonparametric version of ANOVA used to compare the
distribution of features across classes, which will be
referred to as normal and abnormal in our case. The test
statistic can be calculated as follows.

Equation 5.

2 R?

12 i
H_<N(N+1) .Zn_i>_3(N+l) (5)

i=1

Where R; is the sum of the ranks for the ith group
(which are normal and abnormal), n; is the number of
observations in the it group, and N is the total number
of observations.

Degree of freedom: Mathematically, it can be defined
as follows.

Equation 6.
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Figure 4. Transfer learning (TL) process for chest X-ray (CXR) classification

Where k is the number of groups (there are two in
our case: Normal and abnormal). A higher value would
indicate a greater difference between normal and
abnormal classes.

ReliefF: This is an instance-based method that
primarily aims to assign weights to features based on
their ability to distinguish between normal and
abnormal instances. For each instance X;, finding the
nearest hit means the same class, and the nearest miss
indicates a different class. Afterward, the weight for
feature X is updated. Mathematically, it can be defined
as follows.

Equation 7.
1 « . )
WX]= W[X]— ;(A(x, hit)—A(z, miss)) -

Where A(X, hit) and A(X, miss) are the differences
between the feature values of X and its nearest hit and
miss, respectively. Higher weights denote more
important features for distinguishing between normal
and abnormal classes.

The ANOVA: This method is used to determine any
statistically significant variances between the means of

the normal and abnormal classes. The main
mathematical equation for this method is defined as the
F-statistic as follows.

Equation 8.

Mean Square Between groups (M SB)
"~ Mean Square Within groups (MSW) (®)

Where mathematically, mean square between groups
(MSB) is defined as follows.

Equation 9.

Mean Square Between groups <M SB)

SSB 9
B dfbetween
For mean square within groups (MSW), it can be
defined as follows.
Equation 10.

SSW
df within (10)

Degree of freedom: Here, we can describe it by two
Equations: One One would be considered as between the

Mean Square Within groups (MSW)=
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groups and the other would be within the groups.
Mathematically, we express it as follows.

Equation 11.

dfbetween =k-1 (11)
Equation 12.

dfwithin =n—k (12)

In Equation 11 and Equation 12, k is the number of
classes, and in our case, it is 2 (normal and abnormal),
and n can be described as the number of samples. Now
we know the standard equation for SSB, which is defined
as the sum of squares between the groups, and SSW,
which is the sum of squares within the group. A clear
mathematical representation is presented as follows.

Equation 13.
_ N2

k n§ N2

Now, as we have two classes, according to our
requirements, the above SSB and SSW mathematical
representation would be defined as in the below two
Equations (15) and (16).

Equation 15.

_ N2 _ N2
SSB = n1<X1— X> + n2<X2— X) (15)
Where n,; and n, are the number of samples, and C;

and G, are classes, respectively. X1 and X» are the means

of feature X in classes C; and C,, and X is the overall
mean of feature X.
Equation 16.

! —\2™ —\2
Where X;; and X;, are the values of features X for
samples in classes C, and C,, respectively. After obtaining

the values from Equations 15 which are of SSB and SSW,
respectively, we will substitute those values into
Equations 9 with the values of respective degrees of
freedom. Finally, the MSB and MSW values are
substituted into the F-statistic Equation (8). A higher F-
statistic indicates that the feature is more likely to

] Radiol. 2025;22(3): 163605

demonstrate significant differences between the means
of the normal and abnormal classes.

The five filter-based statistical feature selection
methods used in our study — Kruskal-Wallis, ANOVA, chi-
square, ReliefF, and MRMR — were implemented using
MATLAB’s classificationLearner and fsc functions. Each
method ranked features based on its respective scoring
metric. The non-parametric one-way ANOVA, based on
the H-statistic, used MATLAB's kruskalwallis ranking
function to score each feature. For ANOVA, features were
scored based on their F-statistic, reflecting between-
group vs. within-group variance, and top features with
the highest F-values were retained using MATLAB’s
fscAnova function. For the chi-square test, we evaluated
statistical independence between each feature and the
class label using MATLAB’s fscchi2 to score features.
ReliefF, a nearest-neighbor-based method, assigns
weights based on a feature’s ability to distinguish
between similar instances from different classes using
relieff with default settings. For MRMR, which balances
relevance (via mutual information with class labels) and
redundancy (via correlation with other features), we
used MATLAB’s fscmrmr to rank the features and select
the top features per method. These subsets were later
merged via union, combining all unique features to
form the handcrafted statistical feature set used in
fusion.

The selection of these five methods was due to their
diverse selection criteria and wide usage in biomedical
research. The ANOVA and chi-square offer simple,
univariate tests that are statistically robust for large
feature sets, whereas Kruskal-Wallis adds a non-
parametric alternative to ANOVA, helpful when
normality expectations are not satisfied. ReliefF brings a
local, instance-based perspective, which captures
interactions better than purely statistical tests, and
MRMR ensures a balance between relevance and low
redundancy, important for avoiding correlated features.
Their grouping provides a comprehensive selection
framework that leverages both global and local
relevance of features, ensuring robustness across
feature types in medical datasets.

4. Results

This study aimed to investigate the performance of
different feature selection methods and classifiers on a
CXR radiography dataset containing normal and
abnormal classes. The X-ray dataset was managed, and
features were extracted using the pretrained deep
learning models, DenseNet-201 and ResNet-50. Five
statistical feature selection techniques were then
applied to the extracted features. These five feature
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selection techniques are ANOVA, chi-square test, MRMR,
ReliefF, and Kruskal-Wallis, used to determine the most
informative features for distinguishing between the
normal and abnormal X-ray images.

After feature selection, the most appropriate features
were utilized to train and assess the performance of five
classifiers: Linear support vector machine (LSVM),
quadratic support vector machine (QSVM), cubic
support vector machine (CSVM), medium Gaussian
support vector machine (MGSVM), and ensemble
subspace discriminant (ESD) model. The dataset was
then divided into training, validation, and test sets with
a 70:10:20 ratio to ensure robust model assessment. The
classifiers were trained on the training set, and
hyperparameter tuning was conducted using the
validation set. The final performance assessment was
conducted on the test set, focusing on metrics of the
classifiers, such as accuracy, sensitivity rate, specificity
rate, misclassification rate, F1 score, precision rate, and
area under the receiver operating characteristic curve
(AUC-ROC), individually.

The test outcomes were carefully examined to
identify the best feature selection strategies and
classifier =~ combinations  for  detecting  CXR
abnormalities. The results demonstrate how various
methods of machine learning may assist radiologists
with diagnostic duties, as long as important new
information regarding the use of machine learning in
medical image analysis is gained. To ensure viable
reproduction, the experiments were conducted with
MATLAB2020a on a PC equipped with an Intel i7 CPU, 32
GB RAM, and an NVIDIA GeForce GTX 750 TI graphics
card. Furthermore, the Matconvnet deep learning
toolbox was used to perform deep feature extraction,
which enhanced the system’s ability to recognize subtle
patterns and attributes within the CXR data.

To determine the functional level of machine
learning models in solving certain problems, their
performance needs to be measured. We use certain
predominantly utilized machine learning parameter
metrics to assess our CXR classification system’s
performance in a broad sense. These measures, along
with the model’s accuracy in classifying cases of chest
anomalies, provide insightful information about
numerous facets of the model’s performance. Here, we
discuss the parameter metrics that were used to
compute performance: The AUC-ROC, F1 score, sensitivity
rate, precision rate, specificity rate, and
misclassification rate.

Sensitivity, also known as recall or true positive rate,
assesses how well the model correctly identifies positive
instances among all actual positive instances, calculated
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using Equation (17). Specificity, also known as the true
negative rate, evaluates how well the model correctly
recognizes negative instances among all actual negative
instances. It is calculated using Equation (18). The
misclassification rate, also identified as the error rate,
measures the proportion of all instances (both positive
and negative) that are incorrectly classified by the
model. It is calculated using Equation (19). Precision,
often denoted as a positive predictive value, estimates
the proportion of accurate positive predictions out of all
positive predictions made by the model, as calculated
using Equation (21). The F1 score, a combination of
precision and recall, provides a balanced measure of the
model’s overall performance, accounting for both false
positives and false negatives. It is calculated using
Equation (22). The AUC-ROC measures the model’s
ability to distinguish between positive and negative
classes across various threshold settings. A higher AUC
value signifies better discrimination capability, with 1
indicating perfect classification.

Equation 17.
TP
Sensitivity = —————
(TP+ FN) (17)
Equation 18.
TN
Speci ficity = —————
(TN + FP) (18)
Equation 19.
FP+FN
Misclassification rate = _ v 1
Total Instances (19)

Or simply by the equation:

Equation 20.
Misclassification rate = 1 — Accuracy (20)
Equation 21.
. TP
Precision = ————
(TP + FP) (21)
Equation 22.
2 X (Precision x Recall)
F1 Score = (22)

(Precision + Recall)

This study investigated the performance of different
feature selection methods and classifiers on a CXR
radiography dataset. Performance evaluation was
conducted on the test set, focusing on metrics such as
accuracy, sensitivity rate, specificity rate,
misclassification rate, F1 score, precision rate, and AUC-
ROC of the classifiers. The outcomes were carefully
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Table 1. Results for Chest X-Rays
Variables; Classifier Sensit?oéity rate Precision rate Specififﬂity rate F1 ?;())re AUC Misclassif(io/i?tion rate Acc(u%r)acy Ti(rsr)le
M-ResNet50-IACO (M-R50-IACO)
LSVM 91.64 89.73 89.97 90.67 0.96 9.291 90.7 30.599
QSVM 92.33 88.11 87.98 90.17 0.95 9.61 90.4 32.112
CSVM 91.71 88.81 89.16 90.24 0.95 9.601 90.4 36.864
MGSVM 91.65 88.11 88.55 89.85 0.95 9.960 90.0 38.216
ESD 90.59 87.95 88.29 89.25 0.93 10.59 89.4 192.68
M-DenseNet201-IACO (M-D201-
I1ACO)
LSVM 92.65 89.29 89.67 90.89 0.96 8.893 91.1 107.09
QSVM 92.64 89.13 89.53 90.85 0.95 8.980 91.0 22.671
CSVM 92.19 89.21 89.55 90.78 0.95 9.171 90.8 24.536
MGSVM 92.42 88.35 88.83 91.35 0.95 9.455 90.6 25.401
ESD 93.05 88.58 89.11 90.76 0.95 9.015 91.0 20.489

Abbreviations: AUC, area under the curve; IACO, improved ant colony optimization; M-ResNet50, modified ResNet-50; LSVM, linear support vector machine; QSVM, quadratic
support vector machine; CSVM, cubic support vector machine; MGSVM, medium Gaussian support vector machine; ESD, ensemble subspace discriminant; M-DenseNet201,

modified DenseNet-201.

analyzed to identify the best feature selection strategies
and classifier combinations for determining
abnormalities in CXRs. Table 1 shows various machine
learning classifiers, including LSVM, QSVM, CSVM,
MGSVM, and ESD models, which were used to classify
abnormalities in CXRs. LSVM achieved the highest
accuracy of 90.7% and 91.1% on ResNet-50 and DenseNet-
201, respectively.

Figure 5 presents the confusion matrix
corresponding to the highest accuracy achieved,
providing further insight into the model’s performance.
The confusion matrix offers a detailed breakdown of the
classifier’s predictions compared with the actual classes,
thereby enabling a comprehensive assessment of the
classifier’s classification accuracy. Figure 6 presents a
graph comparing the AUC values that illustrate the
performance of the five classifiers applied to features
derived from the ResNet-50 and DenseNet-201 deep
learning models.

Table 2 shows that the fusion of both models and the
ESD model achieved the highest accuracy of 95.9%, with
a sensitivity of 97.70%, precision rate of 93.94%,
specificity of 94.16%, F1 score of 95.78%, AUC-ROC of 0.99,
and a misclassification rate of 4.13%, which was the
lowest among all classifiers. Figure 7 illustrates the
confusion matrix that provides a detailed breakdown of
the classifier’s predictions compared with the actual
classes, thereby enabling a comprehensive assessment
of the classifier’s classification accuracy.

Table 3 shows the top 10 features using the above five
methods, and these are after the fusion of two deep
learning pretrained models, ResNet-50 and DenseNet-

] Radiol. 2025;22(3): 163605

201, which were modified. The Kruskal-Wallis test, a
nonparametric approach, assesses differences in feature
distributions across classes, producing an H-statistic to
identify feature relevance. ReliefF assesses features
iteratively according to their capacity to differentiate
between nearby instances of differing classes, assigning
weights to features where higher weights indicate
greater importance. The ANOVA examines variances
between classes and identifies features that significantly
contribute to class differentiation, calculating an F-
statistic for each feature, with higher values indicating
greater importance. The chi-square test evaluates the
independence between features and the target variable,
with higher chi-square values representing a stronger
association with class labels and, thus, higher
importance. The MRMR selects features that are highly
relevant to the target variable while minimizing
redundancy among features. This is achieved by
balancing relevance and redundancy, maximizing
mutual information with the target, and minimizing
mutual information among selected features. We
presented the top 10 features determined using the five
feature selection methods, all of which were applied
after the fusion of both models. Figure 8 illustrates the
bar chart representations of the five methods.

Figure 9A presents a graph comparing AUC values
that illustrate the performance of the five classifiers
applied to features derived from the fusion of the two
models. These results underscore the proficiency of the
fusion in extracting valuable features that improve the
effectiveness of various machine learning classifiers.
Figure 9B presents a graph that compares AUC-ROC
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Figure 5. Confusion matrix of linear SYM proposed for chest X-ray (CXR) classification for A, ResNet-50, and B, DenseNet-201

values, illustrating the performance of the three best
classifiers applied to features derived from ResNet-50,
DenseNet-201, and the combination of both models. The
LSVM classifiers from ResNet-50 and DenseNet-201
demonstrated strong performance, each with an AUC
value of 0.96. Meanwhile, from the fusion of both
models, ESD achieved the highest AUC-ROC value of
0.99. Figure 9C presents the ROC curve of eight lesions
on the CXR dataset: Cardiomegaly, effusion, infiltrate,
mass, nodule, atelectasis, pneumonia, and
pneumothorax.

To comprehensively investigate the performance of
our classifiers, we computed several key metrics across
various experiments. To summarize the performance
attributes, we identified the mean and SD of these
metrics for different classifiers. Table 4 presents the
mean * SD values of each metric across all the evaluated
classifiers in this study. The 95% confidence intervals (CI)
indicate the statistical range in which the true metric
value is expected to lie, based on 10-fold cross-validation
results, providing a more robust understanding of
model performance than a single average value. The
relatively small SD across cross-validation folds (e.g., F1
score = 94.85 * 0.56) further indicates stable and robust
performance, reducing the likelihood of overfitting.
Additionally, training and validation losses were
monitored during model optimization. Both curves
showed smooth convergence without divergence,
suggesting proper generalization.

Table 5 represents the individual comparison of the
computational speed across all the classifiers with the

12

relevant models. Computational speed plays a crucial
role in deep learning-based medical image analysis. The
table emphasizes the computational times of the
different models, demonstrating their efficiency in
handling image classification. Some models exhibit
higher accuracy but require longer processing times.
Our proposed hybrid method balances computational
efficiency and classification performance, ensuring
optimal results.

Table 6 shows a comparison of some previous and
recent state-of-the-art models and their performance
metrics. Wang et al. utilized a CXR image dataset to
classify the images and achieved 93.40% accuracy, 93.30%
sensitivity, and 95.76% specificity. Furthermore, Wang et
al. (22) modified an inception TL model to establish an
Al algorithm and used a binary dataset, achieving
89.50% accuracy. Subsequently, Song et al. (23) obtained
93.0% accuracy. Perumal et al. (24) proposed a deep
learning model named Inception Nasnet that achieved
94.3% accuracy. Furthermore, another study applied a
deep learning-based image analysis called cardio-
XAttentionNet, performing binary classification and
achieving 85% accuracy. Moreover, Benmalek et al. (25)
used CXR images from ResNet-18, InceptionV3, and
MobileNetV2 for the experimental process and achieved
87.70% accuracy. In our work, we proposed a hybrid-
based approach consisting of the fusion of features
from the modified DL model that achieved a state-of-the-
art accuracy of 95.9%.

Table 7 compares eight lesions (cardiomegaly,
effusion, infiltrate, mass, nodule, atelectasis,

] Radiol. 2025; 22(3): e163605
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Figure 6. Comparison of the area under the receiver operating characteristic curve (AUC-ROC) values of five classifiers for A, ResNet-50, and B, DenseNet-201

Table 2. Hybrid-Based Classification for the Chest X-Ray Dataset

Classifier Sensitivity rate (%) Precision rate (%) Specificity rate (%) Fiscore (%) AUC Misclassification rate (%) Accuracy (%)  Time(s)
LSVM 95.76 93.39 93.54 94.56 0.99 5.43 94.6 31.825
QSVM 95.53 94.22 94.29 94.87 0.99 5.01 95.0 35.337
CSVM 96.03 93.39 93.57 94.69 0.99 4.79 95.3 24.291
MGSVM 94.72 93.94 93.99 94.33 0.98 5.60 94.4 26.924
ESD 97.70 93.94 94.16 95.78 0.99 4.13 95.9 16.511

Abbreviations: AUC, area under the curve; LSVM, linear support vector machine; QSVM, quadratic support vector machine; CSVM, cubic support vector machine; MGSVM,
medium Gaussian support vector machine; ESD, ensemble subspace discriminant.

pneumonia, and pneumothorax) from previous state-of- we have average AUC scores, and a recent study achieved
the-art models. We achieved better AUC values than the an AUC of 0.843, whereas we achieved 0.889.
previous results (26-31). The most recent results were Figure 10 presents the confusion matrix for the eight

those of Kufel et al. (32), who achieved an AUC of 0.817 Jesjons, showing the misclassification rates for each
for atelectasis, whereas we achieved 0.881. For  class separately. Overall, the model demonstrated high
cardiomegaly lesions, Kufel et al. (32) achieved an AUCof  precision across most classes, with particularly strong
0.911, whereas we achieved 0.947. Considering all results,  performance for cardiomegaly (85.86%), pneumothorax
(93.43%), and mass (90.4%). However, certain confusions
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Figure 7. Confusion matrix of ensemble subspace discriminant (ESD) using hybrid-based classification
Table 3. Highest 10 Features Using the Five Statistical Methods on the Hybrid-based Approach
Features Kruskal-Wallis Features ReliefF Features ANOVA Features Chi-square Features MRMR
Fused11900 165.2481 Fused177 0.0864 Fused12219 2011342 Fused11900 150.9365 Fused12219 0.2498
Fused12219 160.3268 Fused11203 0.0849 Fused177 184.9144 Fused12219 144.0698 Fused11504 0.0610
Fused11203 150.9511 Fused11653 0.0794 Fused12864 180.2693 Fused177 137.9733 Fused198 0.0472
Fused177 149.7770 Fused1592 0.0773 Fused11478 173.3106 Fused11478 137.7815 Fused11535 0.0410
Fused11478 1483421 Fused166 0.0766 Fused11203 166.3991 Fused12864 136.4281 Fused1109 0.0400
Fused12864 147.6531 Fused11411 0.0745 Fused11653 163.1985 Fused11203 133.8647 Fused12409 0.0376
Fused11653 138.9938 Fused11478 0.0739 Fused12701 1623664 Fused11653 131.8460 Fused13813 0.0343
Fused12701 138.0561 Fused12081 0.0717 Fused13097 157.8783 Fused12701 125.0469 Fused12482 0.0308
Fused13097 135.4667 Fused1943 0.0710 Fusedi12520 153.3335 Fused1943 123.2746 Fusedi229 0.0292
Fused11189 133.5194 Fused12520 0.0703 Fused12081 1523343 Fused11189 121.2380 Fused13479 0.0276
Abbreviations: ANOVA, analysis of variance; MRMR, minimum redundancy maximum relevance.
were observed: Infiltrate was occasionally misclassified mass, nodule, atelectasis, pneumonia, and

as cardiomegaly (12.12%) and pneumonia (2.02%), and
effusion showed noticeable confusion with infiltrate
(10.10%) and pneumothorax (6.57%), whereas nodule and
atelectasis had minor misclassifications across multiple
classes.

5. Discussion

In our study, we performed two types of experiments
on two different datasets. The first dataset consists of
only two classes: Normal and abnormal. The second
dataset includes CXR images with eight lesions of
abnormality, namely, cardiomegaly, effusion, infiltrate,
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pneumothorax. For diagnosis and classification, we
developed a hybrid approach, which consists of more
than one deep learning pretrained modified model.
These models were trained using TL after separately
applying the optimization technique, and several
statistical analyses were used, including the Kruskal-
Wallis test, ReliefF, ANOVA, chi-square test,and MRMR.
The deep learning models used in this study included
ResNet-50 and DenseNet-201, which were trained using
TL and achieved the best accuracy after these
implementations. As presented in the experimental
section above, we used various classifiers such as LSVM,
QSVM, CSVM, MGSVM, and ESD models. The fusion of
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Figure 8. Bar chart representation of five methods

deep features and statistically selected handcrafted
features was performed using feature-level horizontal
concatenation. More explicitly, the deep features,
extracted using fine-tuned deep learning models, were
first optimized using the ACO algorithm, selecting a
fixed number of relevant features. Meanwhile, the
handcrafted features were selected by applying five
statistical methods (MRMR, ANOVA, chi-square, Kruskal-
Wallis, ReliefF). The union of the top-ranked features,
based on repeated overlap, was extracted, resulting in a
fixed-size statistical feature vector. Prior to fusion, both
feature sets were converted to numerical matrix form
and aligned row-wise per sample. The two feature
matrices were then concatenated horizontally using
MATLAB'’s horzcat function to create a single composite
feature vector.

While it is true that our approach builds upon
existing models and selection techniques, which are
based on ResNet-50, DenseNet-201, ACO, and statistical
methods, the novelty of our work lies in the way we have
strategically integrated these components into a unified
and diagnostically meaningful framework, specifically
optimized for CXR classification. We combine optimized
deep features (via ACO) and statistically significant
handcrafted features selected across five methods. To
our knowledge, such a balanced and explainable hybrid

[] Radiol. 2025; 22(3): e163605

fusion for CXR diagnosis has not been extensively
explored. By fusing interpretable statistical features
with deep features optimized through ACO, we improve
both interpretability and classification accuracy, which
is crucial in medical diagnostics. Last but not least,
despite using multiple layers of processing, our method
exhibits competitive or even reduced computational
time compared to using single deep models alone, as
demonstrated in Table 5.

For instance, the strength of our work is that we have
achieved better results on both separate datasets and
better accuracy than previous work on these datasets.
We have also separately compared the achievements
and used a proposed hybrid approach for both tasks. For
the binary class of the CXR, we achieved the best
accuracy at 95.9%, along with 97.70% sensitivity, 94.16%
specificity, 93.94% precision, and 95.78% F1 score
compared with other evaluation metrics. Our findings
are higher after the comparison of eight abnormalities
compared to the previous study, with an average AUC of
0.872 and higher for every individual class. Our hybrid
model achieved 95.9% with a lower classification time of
16.511 seconds in ESD compared to baseline models. The
proposed fusion pipeline can be generalized to other
imaging domains where both interpretability and
performance are essential.
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Figure 9. A, Area under the receiver operating characteristic curve (AUC-ROC) values of five classifiers on hybrid-based classification; B, Area under the curve (AUC) graph of
modified ResNet-50 (M-ResNet50), DenseNet-201, and hybrid-based classification; C, AUC graph of the eight abnormal lesions.

Table 4. Mean + Standard Deviation Values of Each Metric Across All Evaluated Classifiers

Algorithms Sensitivity rate (%) Precision rate (%) Specificity rate (%) F1score (%) Computational time (s)
M-ResNet50 92.59+0.32 89.911£0.42 89.39+£0.35 90.93+0.24 66.09+70.83
M-DenseNet201 91.58 £ 0.63 88.54+0.74 88.79+0.79 90.04+0.53 40.04 £37.53
. 95.95+1.09 93.91+0.37 93.91+0.34 94.85% 0.56 26.98+7.25
Hybrid MR50 + MD201
[95.27,96.63] [93.68,94.14] [93.70, 94.12] [94.50,95.20] [22.49,31.47]

Abbreviations: M-ResNet50, modified ResNet-50; M-DenseNet201, modified DenseNet-201.

2Values are expressed as mean + standard deviation (SD) or 95% confidence intervals.

The proposed method can be used for various other
detection and classification tasks using magnetic
resonance imaging and other types of datasets
consisting of images. As previously mentioned, we have
mapped different figures to provide a good
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representation of our results. First, we mapped the AUC
curves of different classifiers in the first task and created
a bar chart of the top 10 features selected based on the
statistical analysis methods mentioned above. Second,
we mapped the AUC curves of the eight lesions to better
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Table 5. Comparison of Computational Speed

Computational Speed (s)

Classifiers
M-ResNet50 M-DenseNet201 Hybrid proposed model
LSVM 30.599 107.09 31.825
QSVM 32.112 22.671 35.337
CSVM 36.864 24.536 24.291
MGSVM 38.216 25.401 26.924
ESD 192.68 20.489 16.511

Abbreviations: M-ResNet50, modified ResNet-50; M-DenseNet201, modified DenseNet-201; LSVM, linear support vector machine; QSVM, quadratic support vector machine; CSVM,

cubic support vector machine; MGSVM, medium Gaussian support vector machine; ESD, ensemble subspace discriminant.

Table 6. Performance Results for the Previous and Proposed Models #

Reference Accuracy Sensitivity rate Specificity rate Precision rate F1score
Wangetal. (11) 89.50 87.0 88.0 -

Benmalek et al. ( 25) 87.70 9230 88.80 93.40

Song etal. (23) 93.0 93.0 88.80 93.40

Wang et al. (22) 93.40 9330 95.76 =

Perumal et al. (24) 94.3 94.0 - 94.0

Innatetal.(9) 85.0 85.0 - 87 86.0
Our proposed hybrid approach 95.9 97.70 94.16 93.94 95.78

Values are expressed as percentage.

Table 7. Comparison of the Eight Abnormal Chest Lesions Area Under the Receiver Operating Characteristic Curve Values

PathologyLabel Yaoetal.(26) Wangetal.(27) ShenandGao(28) Guendeletal.(29) Yanetal.(30) Baltruschatetal.(31) Kufeletal.(32) Ours
Atelectasis 0.733 0.700 0.766 0.767 0.792 0.763 0.817 0.831
Cardiomegaly 0.856 0.810 0.801 0.883 0.881 0.875 0.911 0.947
Effusion 0.806 0.759 0.797 0.828 0.842 0.822 0.879 0.880
Infiltration 0.673 0.661 0.751 0.709 0.710 0.694 0.716 0.863
Mass 0.777 0693 0.760 0.821 0.847 0.820 0.853 0.843
Nodule 0.724 0.669 0.741 0.758 0.811 0.747 0.771 0.810
Pneumonia 0.684 0.658 0.778 0.731 0.740 0.714 0.769 0.885
Pneumothorax 0.805 0.799 0.800 0.846 0.876 0.840 0.898 0.919
Average 0.7614 0.745 0.775 0.807 0.830 0.727 0.843 0.872

understand the outcomes of our hybrid approach on
the CXR dataset (33, 34).

Unlike previous studies that solely depend on CNN
feature extraction, our approach refines the feature set
before classification, thereby improving both accuracy
and interpretability. By fusing these optimized feature
sets, our model effectively captures complex patterns in
medical images, addressing challenges such as small
lesion detection. Furthermore, traditional encoder-
decoder networks involve high computational costs for

] Radiol. 2025;22(3): 163605

up-sampling, but our method remains computationally
efficient.

In conclusion, our research introduces a
comprehensive approach for accurately classifying CXR
images using the capabilities of deep learning models,
specifically ResNet-50 and DenseNet-201, along with
sophisticated feature selection techniques, which
include the improved ACO algorithm and the five
statistical analysis methods discussed in detail. The
results were easier to interpret due to the thorough
assessment of the importance of features provided by
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Figure 10. Confusion matrix of the eight abnormal lesions

the systematic statistical analysis employing five
different methodologies.

We have two primary classes in our dataset, normal
and abnormal; however, for the abnormal class, we only
have eight lesions to classify. Therefore, we also used the
CXR dataset called CXR8 separately for mapping those
lesions, namely, cardiomegaly, effusion, infiltrate, mass,
nodule, atelectasis, pneumonia, and pneumothorax.
Our proposed hybrid approach was trained on this type
of dataset, which was a fine-tuned model for high
sensitivity and specificity in detecting these conditions.
Considering all aspects, this approach exhibits promise
for improving medical imaging diagnostic capabilities
by providing a reliable way to differentiate between
normal and abnormal CXR images. This study has
certain limitations despite the encouraging outcomes.
The extent to which the conclusions can be applied
broadly may be limited because the dataset used may
not accurately represent the range of CXR images
encountered in actual practice. To improve the model’s
robustness and generalizability, future research is
warranted to address these constraints by expanding
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the dataset to include a greater variety of CXR images
from other sources. Moreover, realizing the full
potential of deep learning models may require
operating on larger datasets. Furthermore, the
computational efficiency of the suggested method
needs to be enhanced to make it more practicable for
application in diverse clinical scenarios. In conclusion,
its practical use would be greatly improved by
incorporating the classification approach into multi-
class classification for certain lung disorders, e.g.,
differentiating between different kinds of pneumonia
or identifying other lung diseases such as COVID-19 and
lung cancer. A comparison with an end-to-end fine-
tuned CNN (e.g., CNN+FC+Softmax) will be explored as
part of future work to further validate the advantage of
our hybrid strategy.
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