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Abstract

Background: Chest X-ray (CXR) images are important for diagnosing lung diseases such as pneumonia and tuberculosis. They

help medical professionals determine the functions of the heart and lungs. The lungs may change as a result of certain heart

issues, and specific disorders may cause anatomical alterations of the heart or lungs.

Objectives: To enhance the classification accuracy of CXR images, particularly for identifying eight types of abnormal lung

lesions, by applying advanced feature selection and fusion techniques in combination with deep learning models.

Materials and Methods: This study utilized a dataset of CXR images with normal and abnormal classes; however, we had only

eight lesions in the abnormal class. Initially, we preprocessed the images to improve their quality and suitability for further

analysis. We then modified two deep learning models, ResNet50 and DenseNet201. Transfer learning (TL) techniques were

employed for training. The features extracted from these models were retained separately. We utilized a parameter-optimized

ant colony optimization (ACO) algorithm to refine the feature selection, and the features from both models were fused into a

single feature set. Meanwhile, at the preprocessing step, we used five additional statistical methods, including the Kruskal-

Wallis test, ReliefF, analysis of variance (ANOVA), chi-square test, and minimum redundancy maximum relevance (MRMR), to

identify the most important features, separately from the above process. The fusion is then enforced after obtaining important

features from two different processes to enhance the efficiency of our architecture. We then utilized various machine learning

classifiers.

Results: The binary classification between normal and abnormal achieved 95.9% ± 0.5% accuracy, 95.95% ± 1.09% sensitivity,

93.91% ± 0.34% specificity, 93.91% ± 0.37% precision, and 94.85% ± 0.56% F1 score on the hybrid approach. Multiple classifications of

the eight abnormality lesions revealed a promising average area under the curve (AUC) value of 0.872.

Conclusion: The combination of deep learning models with advanced feature selection methods is beneficial for not only

improving the classification outcomes but also ensuring accuracy and validity.

Keywords: ANOVA, Chest X-Ray, Deep Learning, Feature Optimization, Transfer Learning, Machine Learning, Feature

Fusion, Convolution Neural Networks (CNN)

1. Background

Chest X-ray (CXR), an imaging test, assesses the

tissues and structures in the chest using X-rays. It helps
medical professionals detect abnormalities in the heart

and lungs. The lungs may change as a result of certain

heart issues, and specific disorders may cause

anatomical alterations of the heart or lungs. In standard

clinical practice, a CXR or chest radiography is the initial

diagnostic tool applied for patients demonstrating non-

specific thoracic symptoms (e.g., chest pain, cough, or

shortness of breath). Most institutions can easily

perform chest radiography at a low cost and with
efficiency. Several studies have been conducted in this

area, and radiologists face a practical issue in
maintaining diagnostic quality due to the volume of

chest radiographs that require interpretation. Lesions

that were initially missed are often detected
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retrospectively, even when an experienced radiologist

performs the initial assessment.

Kang et al. (1) introduced a state-of-the-art encoder-

decoder-based network with an attentional decoder

explicitly designed to accurately detect small lesions in

images. Traditional networks with encoder-only

architectures frequently struggle with minor lesions, as

these can become vague during down-sampling or

within low-resolution feature maps. The proposed

network addressed this issue using an encoder-decoder

architecture comparable to the U-Net family, enabling it

to process images and classify lesions by globally

pooling high-resolution feature maps. Further, two

main challenges arose in adapting U-Net designs for

classification tasks in the same survey study (2). The first

challenge is the high computational costs for up-

sampling, and the second is finding a computationally

light pooling method that could improve object

localization. Deep residual learning can be applied to

shallow layers with high-resolution feature maps to

tackle these problems. Their proposed network includes

a harmonic magnitude transform and a lightweight

attentional decoder. By decoupling low-resolution

features from those at high resolution to be used as keys

and values, the attentional decoder up-samples the

characteristics. This multiscale interaction enables the

upsampled features to retain the characteristics of local

lesions, thereby helping to maintain the global context.

Furthermore, the spatial frequency representation is

used to extract high-resolution feature maps through

pooling via the harmonic magnitude transform (3-5).

This method reduces the parameters required for the

pooling layer with an efficient embedding scheme and

simultaneously retains the shift-invariance using the

shift theorem of the Fourier transform. The results of

the experiments on the three publicly available CXR

datasets, NIH (6), CheXpert (7), and MIMIC-CXR (8), show

that this network ranks at the state-of-the-art level in

terms of lesion classification. Hence, the encoder-

decoder network proposed in this paper provides great

support for solving the problem of automatically

classifying X-ray images with small lesions by achieving

performance improvements with both feature maps at

multiple resolutions upsampled back to the input

resolution through an attentive decoder and high-

resolution feature maps processed via the harmonic

magnitude transform.

Innat et al. (9) demonstrated Cardio-XAttentionNet, a

deep learning network that accurately categorizes and

detects the presence of cardiomegaly in CXR images

using convolutional attention mapping. The model

aims to help doctors and improve patient care through

knowledgeable disease categorization. Furthermore, it

assists in locating the illness. A weighting term was

appended to the conventional global average pooling
(GAP) system (10), whereas this simple attention

mapping mechanism was optimal. This innovation
enables Cardio-XAttentionNet to locally classify images

at the image level and locate cardiomegaly regionally at

the pixel level without requiring challenging pixel-level
annotations.

Cardio-XAttentionNet was trained with the ChestX-

ray14 dataset, a publicly accessible collection of CXR

images, and is based on sophisticated convolutional

neural network (CNN) architectures. The model’s

performance metrics were remarkable. Cardiomegaly

classification achieved precision, recall, F1 score, and

area under the curve (AUC) scores of 0.87, 0.85, 0.86, and

0.89, respectively. The results indicate that Cardio-

XAttentionNet accurately determines the condition at

the pixel level in addition to classifying cardiomegaly at

the image level. Cardio-XAttentionNet exhibits state-of-

the-art performance in cardiomegaly diagnosis when

compared to current GAP-based models, highlighting its

potential as an effective tool in medical diagnostics.

Wang et al. (11) accentuated the serious effects of the

coronavirus disease 2019 (COVID-19) pandemic on world

health and stressed the importance of operational
screening techniques, especially those that use chest

radiography. Early examination revealed that CXR

images of patients with COVID-19 display specific

anomalies. An extensive open-access benchmark dataset

of 13,975 CXR images from 13,870 patient cases is
introduced in the review. At the time of its release, this

dataset contained the largest number of publicly

available cases that tested positive for COVID-19. The

scientists used a logical strategy to determine the

fundamental attributes associated with COVID-19 cases,

allowing them to further explore how coronavirus net

generates its predictions. This strategy ensures that

coronavirus net’s selections are based on significant

CXR image data and assists clinicians in improving their

screening techniques. Indeed, although coronavirus net

is not yet ready for production use, its open-access

design and the COVIDx dataset make it a significant tool

for resident data scientists and corresponding

researchers. This aims to facilitate the advancement of

highly accurate and useful learning techniques for

COVID-19 case detection, which will eventually enable

people in dire need to receive treatment quickly.

Nair et al. (12) revealed that the availability of
portable devices and the popularity of chest radiology

systems in healthcare facilities allow radiography exams

to be performed rapidly and broadly. This makes them a
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great addition to reverse transcription polymerase

chain reaction testing, especially since CXRs are a

frequent routine procedure for patients with

respiratory problems. Subsequently, de Hoop et al. (13)

focused on the commercially available CAD system,
Onguard 5.0 by Riverain in Miamisburg, Ohio, and

revealed no significant improvement in viewers’ ability

to determine malignancy in chest radiographs. This best

illustrated the limitations of the system in the absence

of deep learning, as observers found it challenging to
discern true lesions from false positives. A wide series of

consecutive chest radiographs indicated that a stand-

alone CAD system had a sensitivity of 71.0%, with 1.3 false

positives per image, according to a recent study by Li et

al. (14). However, the more recent nodule detection
computer-aided diagnosis system, ClearRead +Detect 5.2

(previously Onguard from Riverain Technologies),
performs better despite the absence of deep learning. Its

wide adaptation in clinical settings still requires higher

sensitivity and fewer false positives.

2. Objectives

The objective of this study is to enhance the

classification accuracy of CXR images, particularly for

identifying eight types of abnormal lung lesions, by

applying advanced feature selection and fusion

techniques in combination with deep learning models.

Our study significantly contributes to the realm of

medical image analysis by introducing a detailed

methodology for the accurate classification of CXR

images by harnessing the capabilities of two

sophisticated deep learning architectures, ResNet50 and

DenseNet201. Furthermore, using transfer learning (TL),

we develop robust feature representations of CXR

images.

The proposed work introduces a novel and efficient

framework for classification, which is as follows:

- Initially, in our workflow, the crucial step is the

preprocessing of data, which is meticulously designed

to refine and improve the raw data, ensuring it is clean,

consistent/reliable, and properly organized for optimal

performance when fed into the deep learning models.

- For the extraction of features, we used two deep

learning models (ResNet50 and DenseNet201) and then

trained them using TL separately.

- We utilized the output and fetched separately under
two feature vectors and applied the parameter-

optimized ant colony optimization (ACO) algorithm for

optimal feature selection.

- In the meantime, five additional statistical methods,

which include the Kruskal-Wallis test, ReliefF, analysis of

variance (ANOVA), chi-square test, and minimum

redundancy maximum relevance (MRMR) for the most

important features, are used at the preprocessing step,

separate from the above process.

The fusion process is enforced after obtaining

important features from two different processes to

improve the efficiency of our architecture. The

optimized deep features (ACO) and the statistically

selected handcrafted features were fused at the feature

level via horizontal concatenation, producing a

comprehensive hybrid vector. We then used various

machine learning classifiers.

3. Materials and Methods

3.1. Preprocessing

The dataset (15) includes eight lesions, namely

cardiomegaly, effusion, infiltrate, mass, nodule,

atelectasis, pneumonia, and pneumothorax, as

illustrated in Figure 1.

Cardiomegaly can be identified by an enlarged
cardiac silhouette on an X-ray. More clearly, it indicates

that the heart appears larger than it usually is, may

occupy more than half of the thoracic width, and
enables more prominent heart border visualization.

Pneumonia can be determined by the presence of dense
lobar, segmental, or patchy opacities. Effusion can be

identified by the presence of fluid in the pleural space;

briefly, the fluid curves upward sideways on the lung
edges. Infiltration is identified as increased opacity due

to fluid, pus, blood, or cells within lung tissues. A nodule
is a small, round opacity that is less than 3 cm in

diameter, with sharp margins. A mass is larger than a

nodule and has comparable properties; thus, an opacity

greater than 3 cm is considered a mass. Pneumothorax

is identified by the presence of air in the pleural space,

causing the affected lung to appear darker and retracted

from the chest wall, where the lung is collapsed.

Atelectasis is determined by compensatory

overinflation of the adjacent lung, and the affected area

appears opaque.

We used the NIH ChestX-ray14 dataset, which

comprises 112,120 frontal-view X-ray images from 30,805

unique patients, each image categorized with one or

more of 14 thoracic disease categories such as

atelectasis, cardiomegaly, effusion, infiltration, mass,

nodule, pneumonia, pneumothorax, consolidation,

edema, emphysema, fibrosis, pleural thickening, and

hernia. The images are provided in JPEG format with a

resolution of 1024 × 1024 pixels. In our case, we used

only eight thoracic disease classes: Atelectasis,

cardiomegaly, effusion, infiltration, mass, nodule,
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Figure 1. Representation samples of chest X-ray (CXR) images from the open-source repositories

pneumonia, and pneumothorax. The total number of

images used was 66,392, and the splitting ratio carried

through our experiment was 70:10:20. We used 70% for

training purposes, 10% for validation, and 20% for
testing. For training purposes, we used 42,042 X-ray

images, followed by 6,006 X-ray images for validation

purposes, and lastly, for testing, we used 12,012 X-ray

images. For binary classification, the data were grouped

into normal images labeled as "No Finding" and
abnormal images with one or more pathologies,

resulting in 60,361 normal and 51,759 abnormal images.

3.2. Feature Fusion and Classification

In our study, we utilized a CXR dataset comprising
normal and abnormal classes. We precisely

preprocessed the images, and subsequently, deep

learning models required fixed-size inputs. All images in

the dataset were resized to a uniform dimension,

ensuring consistency and allowing the model to learn
representative features efficiently. The original images

were of size 1024 × 1024 pixels, and after augmentation,

the image dimensions were adjusted to 948 × 948 pixels

to optimize the dataset for deep learning models. For

model compatibility, all images were resized to 224 ×
224 pixels. This step ensures consistent data

distribution, which helps accelerate the training

process and improves model efficiency.

Various augmentation techniques were applied,

including cropping, which focused on critical regions of

the images, ensuring only relevant areas are used for

training. Random rotation was applied, with images

randomly rotated between 30° to 60°, enhancing the

model's ability to generalize across various orientations.

Zoom transformation was applied randomly within a

range of ± 20% to simulate varying scales, and lastly,

horizontal and vertical flipping were performed

randomly to diversify the dataset and increase

robustness. The resolution of the images was

maintained for both horizontal and vertical resolutions

to preserve image clarity and feature details.

To improve generalizability and prevent overfitting,

data augmentation techniques were applied to enhance

model robustness by artificially increasing the diversity

of the training set. Pixel intensity values were

normalized to a range of 0 - 1 or standardized (zero

mean, unit variance) based on the model’s requirement.

ResNet and DenseNet require input images to be

normalized to a range of 0 - 1 or standardized using

mean subtraction and standard deviation (SD) division.

This step ensures faster convergence during training

and prevents numerical instability by keeping the

https://brieflands.com/articles/ijradiology-163605
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Figure 2. Proposed flow diagram of chest X-ray (CXR) classification using a hybrid approach

values within a manageable range. Therefore, the

preprocessing includes resizing, normalization, and

augmentation to improve the model’s robustness and

accuracy. Our approach involves preprocessing the data

to ensure that it is optimal while feeding it to deep

learning models using two deep learning architectures,

ResNet50 and DenseNet201, tailored to our specific

classification task. Through TL, we fine-tuned these

pretrained models on our CXR dataset, extracting

features that serve as rich representations of the images,

capturing crucial patterns and characteristics.

We used a two-step feature selection and fusion

approach to improve classification performance and

efficiency. In the initial step, we utilized two modified

deep learning models to extract deep features from the
CXR images. The extracted feature sets were stored

separately as feature vectors [FV1 (ResNet50) and FV2

(DenseNet201)]. To refine the extracted features, we

applied a parameter-optimized ACO algorithm to each

feature set separately. We have not changed the core

structure of ACO; instead, we used the term "parameter-

optimized ACO" to denote the parameter optimization

executed on the standard ACO algorithm. The

mechanics of ACO were well-maintained, but numerous

key control parameters, including the number of ants

(N), heuristic factor (β), pheromone influence (α),

pheromone evaporation rate (ρ), and the number of

selected features (Nf), were carefully adjusted. The ACO

helps in selecting the most relevant and discriminative

features while reducing dimensionality, thereby

ensuring that only essential features contribute to

classification.

In parallel, we applied five statistical methods
(Kruskal-Wallis test, ReliefF, ANOVA, chi-square test, and

MRMR) to select the most significant features from the

dataset. This statistical feature selection process was

performed independently from the ACO to provide an

additional level of refinement. After obtaining the
crucial features from both ACO-selected deep features

and statistically selected features, we performed feature

fusion by combining these refined feature vectors into a

single feature set. This fusion technique ensures that the

final feature set retains both deep learning-based high-

level patterns and statistically significant handcrafted

features. The fused feature set was then used as input to

various machine learning classifiers, which improves

https://brieflands.com/articles/ijradiology-163605
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Figure 3. Convolutional neural network (CNN) architecture for the chest X-ray (CXR) dataset

both the classification accuracy and efficiency. Figure 2

illustrates the proposed flow diagram of our CXR

classification using a hybrid approach.

The CNNs, which perform well in tasks such as image
recognition (16, 17), image classification (18), and object

detection (19), are among the most important types of
deep neural networks. Compared to other classification

techniques, CNNs require less preprocessing. This

network categorizes an image into distinct classes based
on its input. Convolutional, pooling, ReLU, fully-

connected, and softmax layers are among the many
layers that the images travel through in both the

training and testing stages. Using convolutional filters,

image pixels are transformed into features in the
convolutional layer, whereas the softmax layer assigns

probabilities to these features, ranging from 0 to 1, for
classification.

ResNet exhibits superior performance due to its

ability to establish a more direct information

propagation path across the network. Its design

effectively mitigates the vanishing gradient issue

encountered in backpropagation. By introducing

shortcut connections, ResNet facilitates the passage of

relevant information throughout the training process,

thereby circumventing unhelpful layer interactions.

Mathematically:

Equation 1.

Equation 2.

Both Equations signify signify the residual mapping

mechanism in ResNet. The primary idea behind ResNet

is to reformulate learning as learning residual

functions, which helps preserve relevant information

across layers. Specifically, Equation (1) describes how a

transformation function T(i) can be modeled as a

residual function R(i), where the identity mapping i is

subtracted. In Equation (2), it expresses the inverse

relation, thereby reinforcing how residual learning

captures essential variations while maintaining identity

connections. These Equations are are decisive in

understanding how ResNet shortcut connections enable

effective gradient flow and mitigate vanishing

gradients.

We utilized 64 kernels with a 7 × 7 convolutional

layer, a stride of 2, a 3 × 3 max pooling layer, a 7 × 7
average pooling layer with a stride of 7, 16 residual

building blocks, and a fully connected (FC) layer in our

research using the ResNet-50 pretrained model. This
network design exhibits extraordinary versatility with

over 23 million trainable parameters. The model was
then adapted by eliminating its final FC layer. Initially,

this layer encompassed 1000 object classes. However, to

align with our selected CXR dataset, consisting of only
two classes, we introduced a new FC layer

accommodating only two classes. This modified
configuration underwent training using deep TL

techniques, as elaborated in the subsequent section.

After the TL process, we derived a refined model.
Subsequently, from the GAP layer, this refined model

was employed to extract features, and N times 2048 is

the dimensionality of the extracted features. Figure 3

illustrates the CNN architecture for the CXR dataset.

Ti = R(i)   ̵ i
(1)

Ri = T (i)   ̵ i
(2)
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This network involves 201 deep layers. It was initially

trained on a thousand object classes, and the ResNet

model introduced the idea of bypassing layers, in

contrast to other deep networks where layers are

connected progressively, making the system more

complex and difficult to use. Subsequently, the

DenseNet network improved upon this strategy by

using sequential concatenation in place of the output

feature summation from previous layers (20). Further,

mathematically, it can be defined as follows.

Equation 3.

In this Equation, the the features of the ɭth layer are

represented by Zɭ, the Layer Index is denoted by ɭ, and Hɭ
is a nonlinear transformation. Dense blocks are

established in the architecture for down-sampling.
These blocks are then isolated by layers called transition

layers, which include batch normalization. A 1 × 1
convolution layer and a 2 × 2 average pooling layer

follow the transition layers. The DenseNet-201

architecture uses pooling blocks, which are designed to
reduce the size of the feature maps. Each layer within

DenseNet has direct access to the original input image
and the gradients from the loss function, resulting in a

notable reduction in computational speed.

DenseNet201 was modified for CXR classification in

this study. The FC layer, initially designed for 1000 object

classes, was eliminated and replaced with a novel FC

layer accommodating only two classes. The modified

model then underwent training using TL. During

training, the model ran for 100 epochs, with a learning

rate set at 0.00001. We employed stochastic gradient

descent for optimization, and the batch size was set to

64. After training, the newly distinguished model was

saved for subsequent feature extraction. Finally, features

were extracted from the GAP layer, which was then used

for chest abnormality classification purposes.

3.3. Deep Feature Extraction

The TL in the domain of deep learning involves

repurposing a model for a specific task (21). TL primarily

aims to exploit a preexisting model instead of

constructing a new one from scratch. Throughout this

process, base models, alongside their corresponding

labels and data, are considered. Subsequently, the

knowledge is transferred to the adapted model, which is

trained for the new task. The training process required

certain parameters, including 100 epochs, a learning

rate of 0.00001, and stochastic gradient descent, with

the batch size set to 64. The modified models that have

undergone training were saved for deployment in the

intended task.

TL encompasses leveraging the knowledge gained

from pretrained models on a source task and applying it

to a related target task. Mathematically, TL can be

represented as follows.

Equation 4.

In this Equation, let let fs represent the pretrained

model on the source task, and let ft represent the target

task model. Feature extraction involves extracting

informative features from the input data, which can

then be utilized for classification or other tasks.

Figure 4 illustrates the TL process. Furthermore, the

source models in this figure have a total of 1000 object

classes. Knowledge is transferred, and modified models

are trained in TL. After the training of both models, the

features are extracted from the final layers (global

average pool) and applied to the subsequent step. The

retrieved feature vectors from each layer have sizes of N

times 2048.

3.4. Statistical Feature Selection

In this section, we discuss the mathematical

representation of some of the statistical methods used

to rank the importance of features. The methods include

the Kruskal-Wallis test, ReliefF, ANOVA, chi-square test,

and MRMR.

Kruskal-Wallis test: The Kruskal-Wallis test is the

nonparametric version of ANOVA used to compare the

distribution of features across classes, which will be

referred to as normal and abnormal in our case. The test

statistic can be calculated as follows.

Equation 5.

Where Ri is the sum of the ranks for the ith group

(which are normal and abnormal), ni is the number of

observations in the ith group, and N is the total number

of observations.

Degree of freedom: Mathematically, it can be defined

as follows.

Equation 6.

Z1 = Zɭ (Z0,  Z1, .  .  . ,  Zɭ   ̵1) (3)

ft = TransferLearning (fs) (4)

H =(
2

∑
i=1

)−3(N + 1)
12

N(N + 1)

R2
i

ni
(5)

df = k − 1 (6)
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Figure 4. Transfer learning (TL) process for chest X-ray (CXR) classification

Where k is the number of groups (there are two in
our case: Normal and abnormal). A higher value would

indicate a greater difference between normal and
abnormal classes.

ReliefF: This is an instance-based method that

primarily aims to assign weights to features based on

their ability to distinguish between normal and

abnormal instances. For each instance Xi, finding the

nearest hit means the same class, and the nearest miss

indicates a different class. Afterward, the weight for

feature X is updated. Mathematically, it can be defined

as follows.

Equation 7.

Where Δ(X, hit) and Δ(X, miss) are the differences

between the feature values of X and its nearest hit and

miss, respectively. Higher weights denote more

important features for distinguishing between normal

and abnormal classes.

The ANOVA: This method is used to determine any

statistically significant variances between the means of

the normal and abnormal classes. The main
mathematical equation for this method is defined as the

F-statistic as follows.

Equation 8.

Where mathematically, mean square between groups

(MSB) is defined as follows.

Equation 9.

For mean square within groups (MSW), it can be

defined as follows.

Equation 10.

Degree of freedom: Here, we can describe it by two

Equations: One One would be considered as between the

W [X]= W [X]
m

∑
i=1

(Δ(x,hit)−Δ(x,miss))
1

m (7)

F =
Mean Square Between groups (MSB)

Mean Square Within groups (MSW) (8)

Mean Square Between groups (MSB) 

=
SSB

ⅆfbetween

(9)

Mean Square Within groups (MSW)=
SSW

ⅆfwithin (10)
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groups and the other would be within the groups.

Mathematically, we express it as follows.

Equation 11.

Equation 12.

In Equation 11 and Equation 12, k is the number of

classes, and in our case, it is 2 (normal and abnormal),

and n can be described as the number of samples. Now

we know the standard equation for SSB, which is defined

as the sum of squares between the groups, and SSW,

which is the sum of squares within the group. A clear

mathematical representation is presented as follows.

Equation 13.

Now, as we have two classes, according to our

requirements, the above SSB and SSW mathematical
representation would be defined as in the below two

Equations (15) and (16).

Equation 15.

Where n1 and n2 are the number of samples, and C1

and C2 are classes, respectively.  and  are the means

of feature X in classes C1 and C2, and  is the overall

mean of feature X.

Equation 16.

Where  and  are the values of features X for

samples in classes C1 and C2, respectively. After obtaining

the values from Equations 15 which are of SSB and SSW,

respectively, we will substitute those values into

Equations 9 with the values of respective degrees of

freedom. Finally, the MSB and MSW values are

substituted into the F-statistic Equation (8). A higher F-

statistic indicates that the feature is more likely to

demonstrate significant differences between the means

of the normal and abnormal classes.

The five filter-based statistical feature selection

methods used in our study — Kruskal-Wallis, ANOVA, chi-

square, ReliefF, and MRMR — were implemented using

MATLAB’s classificationLearner and fsc functions. Each

method ranked features based on its respective scoring

metric. The non-parametric one-way ANOVA, based on

the H-statistic, used MATLAB's kruskalwallis ranking

function to score each feature. For ANOVA, features were

scored based on their F-statistic, reflecting between-

group vs. within-group variance, and top features with

the highest F-values were retained using MATLAB’s

fscAnova function. For the chi-square test, we evaluated

statistical independence between each feature and the

class label using MATLAB’s fscchi2 to score features.

ReliefF, a nearest-neighbor-based method, assigns

weights based on a feature’s ability to distinguish

between similar instances from different classes using

relieff with default settings. For MRMR, which balances

relevance (via mutual information with class labels) and

redundancy (via correlation with other features), we

used MATLAB’s fscmrmr to rank the features and select

the top features per method. These subsets were later

merged via union, combining all unique features to

form the handcrafted statistical feature set used in

fusion.

The selection of these five methods was due to their
diverse selection criteria and wide usage in biomedical

research. The ANOVA and chi-square offer simple,

univariate tests that are statistically robust for large
feature sets, whereas Kruskal-Wallis adds a non-

parametric alternative to ANOVA, helpful when
normality expectations are not satisfied. ReliefF brings a

local, instance-based perspective, which captures

interactions better than purely statistical tests, and

MRMR ensures a balance between relevance and low

redundancy, important for avoiding correlated features.
Their grouping provides a comprehensive selection

framework that leverages both global and local

relevance of features, ensuring robustness across

feature types in medical datasets.

4. Results

This study aimed to investigate the performance of

different feature selection methods and classifiers on a
CXR radiography dataset containing normal and

abnormal classes. The X-ray dataset was managed, and
features were extracted using the pretrained deep

learning models, DenseNet-201 and ResNet-50. Five

statistical feature selection techniques were then
applied to the extracted features. These five feature

ⅆfbetween = k − 1
(11)

ⅆfwithin = n − k
(12)

SSB =
k

∑
i=1

 ni(
−
X i −  

−
X)

2

(13)

SSW =
k

∑
i=1

 

ni

∑
j=1

 (Xij −
−
X i)

2

(14)

 SSB =  n1(
−
X 1 −  

−
X)

2

+   n2(
−
X 2 −  

−
X)

2

(15)

−
X1

−
X2

−
X

SSW =

n1

∑
i=1

  (Xi1 −
−
X 1)

2 n2

∑
i=1

 (Xi2 −
−
X 2)

2

(16)

Xi1 Xi2
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selection techniques are ANOVA, chi-square test, MRMR,

ReliefF, and Kruskal-Wallis, used to determine the most

informative features for distinguishing between the

normal and abnormal X-ray images.

After feature selection, the most appropriate features

were utilized to train and assess the performance of five

classifiers: Linear support vector machine (LSVM),

quadratic support vector machine (QSVM), cubic

support vector machine (CSVM), medium Gaussian

support vector machine (MGSVM), and ensemble

subspace discriminant (ESD) model. The dataset was

then divided into training, validation, and test sets with

a 70:10:20 ratio to ensure robust model assessment. The

classifiers were trained on the training set, and

hyperparameter tuning was conducted using the

validation set. The final performance assessment was

conducted on the test set, focusing on metrics of the

classifiers, such as accuracy, sensitivity rate, specificity

rate, misclassification rate, F1 score, precision rate, and

area under the receiver operating characteristic curve

(AUC-ROC), individually.

The test outcomes were carefully examined to

identify the best feature selection strategies and

classifier combinations for detecting CXR

abnormalities. The results demonstrate how various

methods of machine learning may assist radiologists

with diagnostic duties, as long as important new

information regarding the use of machine learning in

medical image analysis is gained. To ensure viable

reproduction, the experiments were conducted with

MATLAB2020a on a PC equipped with an Intel i7 CPU, 32

GB RAM, and an NVIDIA GeForce GTX 750 TI graphics

card. Furthermore, the Matconvnet deep learning

toolbox was used to perform deep feature extraction,

which enhanced the system’s ability to recognize subtle

patterns and attributes within the CXR data.

To determine the functional level of machine
learning models in solving certain problems, their

performance needs to be measured. We use certain

predominantly utilized machine learning parameter

metrics to assess our CXR classification system’s

performance in a broad sense. These measures, along
with the model’s accuracy in classifying cases of chest

anomalies, provide insightful information about
numerous facets of the model’s performance. Here, we

discuss the parameter metrics that were used to

compute performance: The AUC-ROC, F1 score, sensitivity
rate, precision rate, specificity rate, and

misclassification rate.

Sensitivity, also known as recall or true positive rate,

assesses how well the model correctly identifies positive

instances among all actual positive instances, calculated

using Equation (17). Specificity, also known as the true

negative rate, evaluates how well the model correctly

recognizes negative instances among all actual negative

instances. It is calculated using Equation (18). The

misclassification rate, also identified as the error rate,

measures the proportion of all instances (both positive

and negative) that are incorrectly classified by the

model. It is calculated using Equation (19). Precision,

often denoted as a positive predictive value, estimates

the proportion of accurate positive predictions out of all

positive predictions made by the model, as calculated

using Equation (21). The F1 score, a combination of

precision and recall, provides a balanced measure of the

model’s overall performance, accounting for both false

positives and false negatives. It is calculated using

Equation (22). The AUC-ROC measures the model’s

ability to distinguish between positive and negative
classes across various threshold settings. A higher AUC

value signifies better discrimination capability, with 1

indicating perfect classification.

Equation 17.

Equation 18.

Equation 19.

Or simply by the equation:

Equation 20.

Equation 21.

Equation 22.

This study investigated the performance of different

feature selection methods and classifiers on a CXR

radiography dataset. Performance evaluation was

conducted on the test set, focusing on metrics such as

accuracy, sensitivity rate, specificity rate,

misclassification rate, F1 score, precision rate, and AUC-

ROC of the classifiers. The outcomes were carefully

Sensitivity =
TP

(TP + FN) (17)

Specificity =
TN

(TN + FP) (18)

Misclassification rate =
FP + FN

Total Instances (19)

Misclassification rate = 1 − Accuracy
(20)

Precision =
TP

(TP + FP) (21)

F1 Score =
2 × (Precision × Recall)

(Precision + Recall) (22)
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Table 1. Results for Chest X-Rays

Variables; Classifier
Sensitivity rate

(%)
Precision rate

(%)
Specificity rate

(%)
F1 score

(%) AUC
Misclassification rate

(%)
Accuracy

(%)
Time

(s)

M-ResNet50-IACO (M-R50-IACO)

LSVM 91.64 89.73 89.97 90.67 0.96 9.291 90.7 30.599

QSVM 92.33 88.11 87.98 90.17 0.95 9.61 90.4 32.112

CSVM 91.71 88.81 89.16 90.24 0.95 9.601 90.4 36.864

MGSVM 91.65 88.11 88.55 89.85 0.95 9.960 90.0 38.216

ESD 90.59 87.95 88.29 89.25 0.93 10.59 89.4 192.68

M-DenseNet201-IACO (M-D201-
IACO)

LSVM 92.65 89.29 89.67 90.89 0.96 8.893 91.1 107.09

QSVM 92.64 89.13 89.53 90.85 0.95 8.980 91.0 22.671

CSVM 92.19 89.21 89.55 90.78 0.95 9.171 90.8 24.536

MGSVM 92.42 88.35 88.83 91.35 0.95 9.455 90.6 25.401

ESD 93.05 88.58 89.11 90.76 0.95 9.015 91.0 20.489

Abbreviations: AUC, area under the curve; IACO, improved ant colony optimization; M-ResNet50, modified ResNet-50; LSVM, linear support vector machine; QSVM, quadratic
support vector machine; CSVM, cubic support vector machine; MGSVM, medium Gaussian support vector machine; ESD, ensemble subspace discriminant; M-DenseNet201,
modified DenseNet-201.

analyzed to identify the best feature selection strategies

and classifier combinations for determining

abnormalities in CXRs. Table 1 shows various machine

learning classifiers, including LSVM, QSVM, CSVM,

MGSVM, and ESD models, which were used to classify

abnormalities in CXRs. LSVM achieved the highest

accuracy of 90.7% and 91.1% on ResNet-50 and DenseNet-

201, respectively.

Figure 5 presents the confusion matrix

corresponding to the highest accuracy achieved,

providing further insight into the model’s performance.

The confusion matrix offers a detailed breakdown of the

classifier’s predictions compared with the actual classes,

thereby enabling a comprehensive assessment of the

classifier’s classification accuracy. Figure 6 presents a

graph comparing the AUC values that illustrate the

performance of the five classifiers applied to features

derived from the ResNet-50 and DenseNet-201 deep

learning models.

Table 2 shows that the fusion of both models and the

ESD model achieved the highest accuracy of 95.9%, with

a sensitivity of 97.70%, precision rate of 93.94%,

specificity of 94.16%, F1 score of 95.78%, AUC-ROC of 0.99,

and a misclassification rate of 4.13%, which was the

lowest among all classifiers. Figure 7 illustrates the

confusion matrix that provides a detailed breakdown of

the classifier’s predictions compared with the actual

classes, thereby enabling a comprehensive assessment

of the classifier’s classification accuracy.

Table 3 shows the top 10 features using the above five

methods, and these are after the fusion of two deep

learning pretrained models, ResNet-50 and DenseNet-

201, which were modified. The Kruskal-Wallis test, a

nonparametric approach, assesses differences in feature

distributions across classes, producing an H-statistic to

identify feature relevance. ReliefF assesses features

iteratively according to their capacity to differentiate

between nearby instances of differing classes, assigning

weights to features where higher weights indicate

greater importance. The ANOVA examines variances

between classes and identifies features that significantly

contribute to class differentiation, calculating an F-

statistic for each feature, with higher values indicating

greater importance. The chi-square test evaluates the

independence between features and the target variable,

with higher chi-square values representing a stronger

association with class labels and, thus, higher

importance. The MRMR selects features that are highly

relevant to the target variable while minimizing

redundancy among features. This is achieved by

balancing relevance and redundancy, maximizing

mutual information with the target, and minimizing

mutual information among selected features. We

presented the top 10 features determined using the five

feature selection methods, all of which were applied

after the fusion of both models. Figure 8 illustrates the

bar chart representations of the five methods.

Figure 9A presents a graph comparing AUC values

that illustrate the performance of the five classifiers

applied to features derived from the fusion of the two

models. These results underscore the proficiency of the

fusion in extracting valuable features that improve the

effectiveness of various machine learning classifiers.

Figure 9B presents a graph that compares AUC-ROC
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Figure 5. Confusion matrix of linear SVM proposed for chest X-ray (CXR) classification for A, ResNet-50, and B, DenseNet-201

values, illustrating the performance of the three best

classifiers applied to features derived from ResNet-50,

DenseNet-201, and the combination of both models. The

LSVM classifiers from ResNet-50 and DenseNet-201

demonstrated strong performance, each with an AUC

value of 0.96. Meanwhile, from the fusion of both

models, ESD achieved the highest AUC-ROC value of

0.99. Figure 9C presents the ROC curve of eight lesions

on the CXR dataset: Cardiomegaly, effusion, infiltrate,

mass, nodule, atelectasis, pneumonia, and

pneumothorax.

To comprehensively investigate the performance of

our classifiers, we computed several key metrics across

various experiments. To summarize the performance

attributes, we identified the mean and SD of these

metrics for different classifiers. Table 4 presents the

mean ± SD values of each metric across all the evaluated

classifiers in this study. The 95% confidence intervals (CI)

indicate the statistical range in which the true metric

value is expected to lie, based on 10-fold cross-validation

results, providing a more robust understanding of

model performance than a single average value. The

relatively small SD across cross-validation folds (e.g., F1

score = 94.85 ± 0.56) further indicates stable and robust

performance, reducing the likelihood of overfitting.

Additionally, training and validation losses were

monitored during model optimization. Both curves

showed smooth convergence without divergence,

suggesting proper generalization.

Table 5 represents the individual comparison of the

computational speed across all the classifiers with the

relevant models. Computational speed plays a crucial

role in deep learning-based medical image analysis. The

table emphasizes the computational times of the

different models, demonstrating their efficiency in

handling image classification. Some models exhibit

higher accuracy but require longer processing times.

Our proposed hybrid method balances computational

efficiency and classification performance, ensuring

optimal results.

Table 6 shows a comparison of some previous and

recent state-of-the-art models and their performance

metrics. Wang et al. utilized a CXR image dataset to

classify the images and achieved 93.40% accuracy, 93.30%

sensitivity, and 95.76% specificity. Furthermore, Wang et

al. (22) modified an inception TL model to establish an

AI algorithm and used a binary dataset, achieving

89.50% accuracy. Subsequently, Song et al. (23) obtained

93.0% accuracy. Perumal et al. (24) proposed a deep

learning model named Inception Nasnet that achieved

94.3% accuracy. Furthermore, another study applied a

deep learning-based image analysis called cardio-

XAttentionNet, performing binary classification and

achieving 85% accuracy. Moreover, Benmalek et al. (25)

used CXR images from ResNet-18, InceptionV3, and

MobileNetV2 for the experimental process and achieved

87.70% accuracy. In our work, we proposed a hybrid-

based approach consisting of the fusion of features

from the modified DL model that achieved a state-of-the-

art accuracy of 95.9%.

Table 7 compares eight lesions (cardiomegaly,

effusion, infiltrate, mass, nodule, atelectasis,
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Figure 6. Comparison of the area under the receiver operating characteristic curve (AUC-ROC) values of five classifiers for A, ResNet-50, and B, DenseNet-201

Table 2. Hybrid-Based Classification for the Chest X-Ray Dataset

Classifier Sensitivity rate (%) Precision rate (%) Specificity rate (%) F1 score (%) AUC Misclassification rate (%) Accuracy (%) Time (s)

LSVM 95.76 93.39 93.54 94.56 0.99 5.43 94.6 31.825

QSVM 95.53 94.22 94.29 94.87 0.99 5.01 95.0 35.337

CSVM 96.03 93.39 93.57 94.69 0.99 4.79 95.3 24.291

MGSVM 94.72 93.94 93.99 94.33 0.98 5.60 94.4 26.924

ESD 97.70 93.94 94.16 95.78 0.99 4.13 95.9 16.511

Abbreviations: AUC, area under the curve; LSVM, linear support vector machine; QSVM, quadratic support vector machine; CSVM, cubic support vector machine; MGSVM,
medium Gaussian support vector machine; ESD, ensemble subspace discriminant.

pneumonia, and pneumothorax) from previous state-of-

the-art models. We achieved better AUC values than the

previous results (26-31). The most recent results were

those of Kufel et al. (32), who achieved an AUC of 0.817

for atelectasis, whereas we achieved 0.881. For

cardiomegaly lesions, Kufel et al. (32) achieved an AUC of

0.911, whereas we achieved 0.947. Considering all results,

we have average AUC scores, and a recent study achieved

an AUC of 0.843, whereas we achieved 0.889.

Figure 10 presents the confusion matrix for the eight

lesions, showing the misclassification rates for each

class separately. Overall, the model demonstrated high

precision across most classes, with particularly strong

performance for cardiomegaly (85.86%), pneumothorax

(93.43%), and mass (90.4%). However, certain confusions
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Figure 7. Confusion matrix of ensemble subspace discriminant (ESD) using hybrid-based classification

Table 3. Highest 10 Features Using the Five Statistical Methods on the Hybrid-based Approach

Features Kruskal-Wallis Features ReliefF Features ANOVA Features Chi-square Features MRMR

Fused11900 165.2481 Fused177 0.0864 Fused12219 201.1342 Fused11900 150.9365 Fused12219 0.2498

Fused12219 160.3268 Fused11203 0.0849 Fused177 184.9144 Fused12219 144.0698 Fused11504 0.0610

Fused11203 150.9511 Fused11653 0.0794 Fused12864 180.2693 Fused177 137.9733 Fused198 0.0472

Fused177 149.7770 Fused1592 0.0773 Fused11478 173.3106 Fused11478 137.7815 Fused11535 0.0410

Fused11478 148.3421 Fused166 0.0766 Fused11203 166.3991 Fused12864 136.4281 Fused1109 0.0400

Fused12864 147.6531 Fused11411 0.0745 Fused11653 163.1985 Fused11203 133.8647 Fused12409 0.0376

Fused11653 138.9938 Fused11478 0.0739 Fused12701 162.3664 Fused11653 131.8460 Fused13813 0.0343

Fused12701 138.0561 Fused12081 0.0717 Fused13097 157.8783 Fused12701 125.0469 Fused12482 0.0308

Fused13097 135.4667 Fused1943 0.0710 Fused12520 153.3335 Fused1943 123.2746 Fused1229 0.0292

Fused11189 133.5194 Fused12520 0.0703 Fused12081 152.3343 Fused11189 121.2380 Fused13479 0.0276

Abbreviations: ANOVA, analysis of variance; MRMR, minimum redundancy maximum relevance.

were observed: Infiltrate was occasionally misclassified

as cardiomegaly (12.12%) and pneumonia (2.02%), and

effusion showed noticeable confusion with infiltrate

(10.10%) and pneumothorax (6.57%), whereas nodule and

atelectasis had minor misclassifications across multiple

classes.

5. Discussion

In our study, we performed two types of experiments

on two different datasets. The first dataset consists of

only two classes: Normal and abnormal. The second

dataset includes CXR images with eight lesions of

abnormality, namely, cardiomegaly, effusion, infiltrate,

mass, nodule, atelectasis, pneumonia, and

pneumothorax. For diagnosis and classification, we

developed a hybrid approach, which consists of more

than one deep learning pretrained modified model.

These models were trained using TL after separately

applying the optimization technique, and several

statistical analyses were used, including the Kruskal-

Wallis test, ReliefF, ANOVA, chi-square test, and MRMR.

The deep learning models used in this study included

ResNet-50 and DenseNet-201, which were trained using

TL and achieved the best accuracy after these
implementations. As presented in the experimental

section above, we used various classifiers such as LSVM,
QSVM, CSVM, MGSVM, and ESD models. The fusion of
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Figure 8. Bar chart representation of five methods

deep features and statistically selected handcrafted

features was performed using feature-level horizontal

concatenation. More explicitly, the deep features,

extracted using fine-tuned deep learning models, were

first optimized using the ACO algorithm, selecting a

fixed number of relevant features. Meanwhile, the

handcrafted features were selected by applying five

statistical methods (MRMR, ANOVA, chi-square, Kruskal-

Wallis, ReliefF). The union of the top-ranked features,

based on repeated overlap, was extracted, resulting in a

fixed-size statistical feature vector. Prior to fusion, both

feature sets were converted to numerical matrix form

and aligned row-wise per sample. The two feature

matrices were then concatenated horizontally using

MATLAB’s horzcat function to create a single composite

feature vector.

While it is true that our approach builds upon

existing models and selection techniques, which are

based on ResNet-50, DenseNet-201, ACO, and statistical

methods, the novelty of our work lies in the way we have

strategically integrated these components into a unified

and diagnostically meaningful framework, specifically

optimized for CXR classification. We combine optimized

deep features (via ACO) and statistically significant

handcrafted features selected across five methods. To

our knowledge, such a balanced and explainable hybrid

fusion for CXR diagnosis has not been extensively

explored. By fusing interpretable statistical features

with deep features optimized through ACO, we improve

both interpretability and classification accuracy, which

is crucial in medical diagnostics. Last but not least,

despite using multiple layers of processing, our method

exhibits competitive or even reduced computational

time compared to using single deep models alone, as

demonstrated in Table 5.

For instance, the strength of our work is that we have

achieved better results on both separate datasets and

better accuracy than previous work on these datasets.

We have also separately compared the achievements

and used a proposed hybrid approach for both tasks. For

the binary class of the CXR, we achieved the best

accuracy at 95.9%, along with 97.70% sensitivity, 94.16%

specificity, 93.94% precision, and 95.78% F1 score

compared with other evaluation metrics. Our findings

are higher after the comparison of eight abnormalities

compared to the previous study, with an average AUC of

0.872 and higher for every individual class. Our hybrid

model achieved 95.9% with a lower classification time of

16.511 seconds in ESD compared to baseline models. The

proposed fusion pipeline can be generalized to other

imaging domains where both interpretability and

performance are essential.
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Figure 9. A, Area under the receiver operating characteristic curve (AUC-ROC) values of five classifiers on hybrid-based classification; B, Area under the curve (AUC) graph of
modified ResNet-50 (M-ResNet50), DenseNet-201, and hybrid-based classification; C, AUC graph of the eight abnormal lesions.

Table 4. Mean ± Standard Deviation Values of Each Metric Across All Evaluated Classifiers a

Algorithms Sensitivity rate (%) Precision rate (%) Specificity rate (%) F1 score (%) Computational time (s)

M-ResNet50 92.59 ± 0.32 89.91 ± 0.42 89.39 ± 0.35 90.93 ± 0.24 66.09 ± 70.83

M-DenseNet201 91.58 ± 0.63 88.54 ± 0.74 88.79 ± 0.79 90.04 ± 0.53 40.04 ± 37.53

Hybrid MR50 + MD201
95.95 ± 1.09 93.91 ± 0.37 93.91 ± 0.34 94.85± 0.56 26.98 ± 7.25

[95.27, 96.63] [93.68, 94.14] [93.70, 94.12] [94.50, 95.20] [22.49, 31.47]

Abbreviations: M-ResNet50, modified ResNet-50; M-DenseNet201, modified DenseNet-201.

a Values are expressed as mean ± standard deviation (SD) or 95% confidence intervals.

The proposed method can be used for various other

detection and classification tasks using magnetic

resonance imaging and other types of datasets

consisting of images. As previously mentioned, we have

mapped different figures to provide a good

representation of our results. First, we mapped the AUC

curves of different classifiers in the first task and created

a bar chart of the top 10 features selected based on the

statistical analysis methods mentioned above. Second,

we mapped the AUC curves of the eight lesions to better
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Table 5. Comparison of Computational Speed

Classifiers
Computational Speed (s)

M-ResNet50 M-DenseNet201 Hybrid proposed model

LSVM 30.599 107.09 31.825

QSVM 32.112 22.671 35.337

CSVM 36.864 24.536 24.291

MGSVM 38.216 25.401 26.924

ESD 192.68 20.489 16.511

Abbreviations: M-ResNet50, modified ResNet-50; M-DenseNet201, modified DenseNet-201; LSVM, linear support vector machine; QSVM, quadratic support vector machine; CSVM,
cubic support vector machine; MGSVM, medium Gaussian support vector machine; ESD, ensemble subspace discriminant.

Table 6. Performance Results for the Previous and Proposed Models a

Reference Accuracy Sensitivity rate Specificity rate Precision rate F1 score

Wang et al. ( 11) 89.50 87.0 88.0 - -

Benmalek et al. ( 25) 87.70 92.30 88.80 93.40 -

Song et al. ( 23) 93.0 93.0 88.80 93.40 -

Wang et al. ( 22) 93.40 93.30 95.76 - -

Perumal et al. ( 24) 94.3 94.0 - 94.0 -

Innat et al. ( 9) 85.0 85.0 - 87 86.0

Our proposed hybrid approach 95.9 97.70 94.16 93.94 95.78

a Values are expressed as percentage.

Table 7. Comparison of the Eight Abnormal Chest Lesions Area Under the Receiver Operating Characteristic Curve Values

Pathology Label Yao et al. (26) Wang et al. (27) Shen and Gao (28) Guendel et al. (29) Yan et al. (30) Baltruschat et al. (31) Kufel et al. (32) Ours

Atelectasis 0.733 0.700 0.766 0.767 0.792 0.763 0.817 0.831

Cardiomegaly 0.856 0.810 0.801 0.883 0.881 0.875 0.911 0.947

Effusion 0.806 0.759 0.797 0.828 0.842 0.822 0.879 0.880

Infiltration 0.673 0.661 0.751 0.709 0.710 0.694 0.716 0.863

Mass 0.777 0693 0.760 0.821 0.847 0.820 0.853 0.843

Nodule 0.724 0.669 0.741 0.758 0.811 0.747 0.771 0.810

Pneumonia 0.684 0.658 0.778 0.731 0.740 0.714 0.769 0.885

Pneumothorax 0.805 0.799 0.800 0.846 0.876 0.840 0.898 0.919

Average 0.7614 0.745 0.775 0.807 0.830 0.727 0.843 0.872

understand the outcomes of our hybrid approach on

the CXR dataset (33, 34).

Unlike previous studies that solely depend on CNN

feature extraction, our approach refines the feature set

before classification, thereby improving both accuracy

and interpretability. By fusing these optimized feature

sets, our model effectively captures complex patterns in

medical images, addressing challenges such as small

lesion detection. Furthermore, traditional encoder–

decoder networks involve high computational costs for

up-sampling, but our method remains computationally

efficient.

In conclusion, our research introduces a

comprehensive approach for accurately classifying CXR

images using the capabilities of deep learning models,

specifically ResNet-50 and DenseNet-201, along with

sophisticated feature selection techniques, which

include the improved ACO algorithm and the five

statistical analysis methods discussed in detail. The

results were easier to interpret due to the thorough

assessment of the importance of features provided by
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Figure 10. Confusion matrix of the eight abnormal lesions

the systematic statistical analysis employing five

different methodologies.

We have two primary classes in our dataset, normal

and abnormal; however, for the abnormal class, we only

have eight lesions to classify. Therefore, we also used the

CXR dataset called CXR8 separately for mapping those

lesions, namely, cardiomegaly, effusion, infiltrate, mass,

nodule, atelectasis, pneumonia, and pneumothorax.

Our proposed hybrid approach was trained on this type

of dataset, which was a fine-tuned model for high

sensitivity and specificity in detecting these conditions.

Considering all aspects, this approach exhibits promise

for improving medical imaging diagnostic capabilities

by providing a reliable way to differentiate between

normal and abnormal CXR images. This study has

certain limitations despite the encouraging outcomes.

The extent to which the conclusions can be applied

broadly may be limited because the dataset used may

not accurately represent the range of CXR images

encountered in actual practice. To improve the model’s

robustness and generalizability, future research is

warranted to address these constraints by expanding

the dataset to include a greater variety of CXR images

from other sources. Moreover, realizing the full

potential of deep learning models may require

operating on larger datasets. Furthermore, the

computational efficiency of the suggested method

needs to be enhanced to make it more practicable for

application in diverse clinical scenarios. In conclusion,

its practical use would be greatly improved by

incorporating the classification approach into multi-

class classification for certain lung disorders, e.g.,

differentiating between different kinds of pneumonia

or identifying other lung diseases such as COVID-19 and

lung cancer. A comparison with an end-to-end fine-

tuned CNN (e.g., CNN+FC+Softmax) will be explored as

part of future work to further validate the advantage of

our hybrid strategy.

Acknowledgements

We would like to thank the Department of Computer

Science and Engineering, Soonchunhyang University,

https://brieflands.com/articles/ijradiology-163605


Aziz A et al. Brieflands

I J Radiol. 2025; 22(3): e163605 19

and the Department of ICT Convergence,

Soonchunhyang University in the Republic of Korea for

supporting this research.

Footnotes

Authors' Contribution: A. A. contributed to

developing the proposed model and preparing the

manuscript. A. K. contributed to revising the

manuscript. Y. C. and Y. N. supervised and reviewed the

manuscript. All authors have read and agreed to the

published version of the manuscript.

Conflict of Interests Statement: The authors declare

no conflict of interest.

Data Availability: The dataset presented in the study

is available on request from the corresponding author

during submission or after publication.

Funding/Support: This work was supported by the

Ministry of Education of the Republic of Korea, the

National Research Foundation of Korea (RS-2023-

00239603, RS-2023-00218176), and the Soonchunhyang

University Research Fund.

References

1. Kang H, Kim N, Ryu J. Attentional decoder networks for chest X-ray

image recognition on high-resolution features. Comput Methods

Programs Biomed. 2024;251:108198. [PubMed ID: 38718718].

https://doi.org/10.1016/j.cmpb.2024.108198.

2. Azad R, Aghdam EK, Rauland A, Jia Y, Avval AH, Bozorgpour A, et al.

Medical Image Segmentation Review: The Success of U-Net. IEEE Trans

Pattern Anal Mach Intell. 2024;46(12):10076-95. [PubMed ID: 39167505].

https://doi.org/10.1109/TPAMI.2024.3435571.

3. Costa FB, Häselbarth S, Yanchenko S, Oliveira AM, Strunz K. Wavelet-

Based Harmonic Magnitude Measurement in the Presence of

Interharmonics. IEEE Transactions Power Delivery. 2023;38(3):2072-87.

https://doi.org/10.1109/TPWRD.2022.3233583.

4. Liu Y, Hui H, Liu S, Li G, Zhang B, Zhong J, et al. Weighted sum of

harmonic signals for direct imaging in magnetic particle imaging.

Phys Med Biol. 2022;68(1). [PubMed ID: 36573436].

https://doi.org/10.1088/1361-6560/aca9b9.

5. Fouad M, Ghany M, Schmitz G. A Single-Shot Harmonic Imaging

Approach Utilizing Deep Learning for Medical Ultrasound. IEEE Trans

Ultrason Ferroelectr Freq Control. 2023;70(3):237-52. [PubMed ID:

37018250]. https://doi.org/10.1109/TUFFC.2023.3234230.

6. Kim GY, Kim JY, Kim CH, Kim SM. Evaluation of deep learning for

COVID-19 diagnosis: Impact of image dataset organization. J Appl Clin

Med Phys. 2021;22(7):297-305. [PubMed ID: 34159697]. [PubMed Central

ID: PMC8292699]. https://doi.org/10.1002/acm2.13320.

7. Chambon P, Delbrouck JB, Sounack T, Huang S, Chen Z, Varma M, et al.

Chexpert plus: Augmenting a large chest x-ray dataset with text

radiology reports, patient demographics and additional image

formats. arXiv. 2024;Preprint.

8. Johnson A, Pollard T, Mark R, Berkowitz S, Horng S. Mimic-cxr

database. PhysioNet10. 2024;13026:C2JT1Q.

9. Innat M, Hossain MF, Mader K, Kouzani AZ. A convolutional attention

mapping deep neural network for classification and localization of

cardiomegaly on chest X-rays. Sci Rep. 2023;13(1):6247. [PubMed ID:

37069168]. [PubMed Central ID: PMC10110554].

https://doi.org/10.1038/s41598-023-32611-7.

10. Khan A, Kim C, Kim J, Aziz A, Nam Y. Sleep Posture Classification Using

RGB and Thermal Cameras Based on Deep Learning Model. Comput

Mod Engin Sci. 2024;140(2):1729-55.

https://doi.org/10.32604/cmes.2024.049618.

11. Wang L, Lin ZQ, Wong A. COVID-Net: a tailored deep convolutional

neural network design for detection of COVID-19 cases from chest X-

ray images. Sci Rep. 2020;10(1):19549. [PubMed ID: 33177550]. [PubMed

Central ID: PMC7658227]. https://doi.org/10.1038/s41598-020-76550-z.

12. Nair A, Procter A, Halligan S, Parry T, Ahmed A, Duncan M, et al. Chest

radiograph classification and severity of suspected COVID-19 by

different radiologist groups and attending clinicians: multi-reader,

multi-case study. Eur Radiol. 2023;33(3):2096-104. [PubMed ID:

36282308]. [PubMed Central ID: PMC9592875].

https://doi.org/10.1007/s00330-022-09172-w.

13. de Hoop B, De Boo DW, Gietema HA, van Hoorn F, Mearadji B, Schijf L,

et al. Computer-aided detection of lung cancer on chest radiographs:

effect on observer performance. Radiology. 2010;257(2):532-40.

[PubMed ID: 20807851]. https://doi.org/10.1148/radiol.10092437.

14. Li F, Engelmann R, Armato SG, MacMahon H. Computer-aided nodule

detection system: results in an unselected series of consecutive chest

radiographs. Acad Radiol. 2015;22(4):475-80. [PubMed ID: 25592026].

https://doi.org/10.1016/j.acra.2014.11.008.

15. Irvin J, Rajpurkar P, Ko M, Yu Y, Ciurea-Ilcus S, Chute C, et al. CheXpert:

A Large Chest Radiograph Dataset with Uncertainty Labels and

Expert Comparison. Proceed AAAI Conference Artificial Intelligence.

2019;33(1):590-7. https://doi.org/10.1609/aaai.v33i01.3301590.

16. Yadav SS, Jadhav SM. Deep convolutional neural network based

medical image classification for disease diagnosis. Journal of Big Data.

2019;6(1). https://doi.org/10.1186/s40537-019-0276-2.

17. Kamal U, Zunaed M, Nizam NB, Hasan T. Anatomy-XNet: An Anatomy

Aware Convolutional Neural Network for Thoracic Disease

Classification in Chest X-Rays. IEEE J Biomed Health Inform.

2022;26(11):5518-28. [PubMed ID: 35976847].

https://doi.org/10.1109/JBHI.2022.3199594.

18. Zhang Y, Wang X, Xu Z, Yu Q, Yuille A, Xu D. When radiology report

generation meets knowledge graph. Proceedings of the AAAI

conference on artificial intelligence. 2020. p. 12910-7.

19. Kermany D. Labeled optical coherence tomography (oct) and chest x-

ray images for classification. Mendeley data. 2018;2(2).

20. Wang S, Zhang Y. DenseNet-201-Based Deep Neural Network with

Composite Learning Factor and Precomputation for Multiple

Sclerosis Classification. ACM Transact Multimedia Comput,

Communications, Appl. 2020;16(2s):1-19.

https://doi.org/10.1145/3341095.

21. Khan MA, Kadry S, Alhaisoni M, Nam Y, Zhang Y, Rajinikanth V, et al.

Computer-Aided Gastrointestinal Diseases Analysis From Wireless

Capsule Endoscopy: A Framework of Best Features Selection. IEEE

Access. 2020;8:132850-9. https://doi.org/10.1109/access.2020.3010448.

22. Wang S, Kang B, Ma J, Zeng X, Xiao M, Guo J, et al. A deep learning

algorithm using CT images to screen for Corona virus disease

(COVID-19). Eur Radiol. 2021;31(8):6096-104. [PubMed ID: 33629156].

[PubMed Central ID: PMC7904034]. https://doi.org/10.1007/s00330-

021-07715-1.

23. Song Y, Zheng S, Li L, Zhang X, Zhang X, Huang Z, et al. Deep Learning

Enables Accurate Diagnosis of Novel Coronavirus (COVID-19) With CT

Images. IEEE/ACM Trans Comput Biol Bioinform. 2021;18(6):2775-80.

[PubMed ID: 33705321]. [PubMed Central ID: PMC8851430].

https://doi.org/10.1109/TCBB.2021.3065361.

https://brieflands.com/articles/ijradiology-163605
http://www.ncbi.nlm.nih.gov/pubmed/38718718
https://doi.org/10.1016/j.cmpb.2024.108198
http://www.ncbi.nlm.nih.gov/pubmed/39167505
https://doi.org/10.1109/TPAMI.2024.3435571
https://doi.org/10.1109/TPWRD.2022.3233583
http://www.ncbi.nlm.nih.gov/pubmed/36573436
https://doi.org/10.1088/1361-6560/aca9b9
http://www.ncbi.nlm.nih.gov/pubmed/37018250
https://doi.org/10.1109/TUFFC.2023.3234230
http://www.ncbi.nlm.nih.gov/pubmed/34159697
https://www.ncbi.nlm.nih.gov/pmc/PMC8292699
https://doi.org/10.1002/acm2.13320
http://www.ncbi.nlm.nih.gov/pubmed/37069168
https://www.ncbi.nlm.nih.gov/pmc/PMC10110554
https://doi.org/10.1038/s41598-023-32611-7
https://doi.org/10.32604/cmes.2024.049618
http://www.ncbi.nlm.nih.gov/pubmed/33177550
https://www.ncbi.nlm.nih.gov/pmc/PMC7658227
https://doi.org/10.1038/s41598-020-76550-z
http://www.ncbi.nlm.nih.gov/pubmed/36282308
https://www.ncbi.nlm.nih.gov/pmc/PMC9592875
https://doi.org/10.1007/s00330-022-09172-w
http://www.ncbi.nlm.nih.gov/pubmed/20807851
https://doi.org/10.1148/radiol.10092437
http://www.ncbi.nlm.nih.gov/pubmed/25592026
https://doi.org/10.1016/j.acra.2014.11.008
https://doi.org/10.1609/aaai.v33i01.3301590
https://doi.org/10.1186/s40537-019-0276-2
http://www.ncbi.nlm.nih.gov/pubmed/35976847
https://doi.org/10.1109/JBHI.2022.3199594
https://doi.org/10.1145/3341095
https://doi.org/10.1109/access.2020.3010448
http://www.ncbi.nlm.nih.gov/pubmed/33629156
https://www.ncbi.nlm.nih.gov/pmc/PMC7904034
https://doi.org/10.1007/s00330-021-07715-1
https://doi.org/10.1007/s00330-021-07715-1
http://www.ncbi.nlm.nih.gov/pubmed/33705321
https://www.ncbi.nlm.nih.gov/pmc/PMC8851430
https://doi.org/10.1109/TCBB.2021.3065361


Aziz A et al. Brieflands

20 I J Radiol. 2025; 22(3): e163605

24. Perumal M, Nayak A, Sree RP, Srinivas M. INASNET: Automatic

identification of coronavirus disease (COVID-19) based on chest X-ray

using deep neural network. ISA Trans. 2022;124:82-9. [PubMed ID:

35300854]. [PubMed Central ID: PMC8892361].

https://doi.org/10.1016/j.isatra.2022.02.033.

25. Benmalek E, Elmhamdi J, Jilbab A. Comparing CT scan and chest X-ray

imaging for COVID-19 diagnosis. Biomed Eng Adv. 2021;1:100003.

[PubMed ID: 34786568]. [PubMed Central ID: PMC7992299].

https://doi.org/10.1016/j.bea.2021.100003.

26. Yao L, Poblenz E, Dagunts D, Covington B, Bernard D, Lyman K.

Learning to diagnose from scratch by exploiting dependencies

among labels. arXiv. 2017;Preprint.

27. Wang X, Peng Y, Lu L, Lu Z, Bagheri M, Summers RM. ChestX-Ray8:

Hospital-Scale Chest X-Ray Database and Benchmarks on Weakly-

Supervised Classification and Localization of Common Thorax

Diseases. 2017 IEEE Conference on Computer Vision and Pattern

Recognition (CVPR). 2017. p. 3462-71.

28. Shen Y, Gao M. Dynamic routing on deep neural network for thoracic

disease classification and sensitive area localization. International

workshop on machine learning in medical imaging. Springer; 2018. p.

389-97.

29. Guendel S, Grbic S, Georgescu B, Liu S, Maier A, Comaniciu D.

Learning to recognize abnormalities in chest x-rays with location-

aware dense networks. Iberoamerican Congress on Pattern Recognition.

Springer; 2018. p. 757-65.

30. Yan C, Yao J, Li R, Xu Z, Huang J. Weakly Supervised Deep Learning for

Thoracic Disease Classification and Localization on Chest X-rays.

Proceedings of the 2018 ACM International Conference on Bioinformatics,

Computational Biology, and Health Informatics. 2018. p. 103-10.

31. Baltruschat IM, Nickisch H, Grass M, Knopp T, Saalbach A.

Comparison of Deep Learning Approaches for Multi-Label Chest X-

Ray Classification. Sci Rep. 2019;9(1):6381. [PubMed ID: 31011155].

[PubMed Central ID: PMC6476887]. https://doi.org/10.1038/s41598-019-

42294-8.

32. Kufel J, Bielowka M, Rojek M, Mitrega A, Lewandowski P, Cebula M, et

al. Multi-Label Classification of Chest X-ray Abnormalities Using

Transfer Learning Techniques. J Pers Med. 2023;13(10). [PubMed ID:

37888037]. [PubMed Central ID: PMC10607847].

https://doi.org/10.3390/jpm13101426.

33. Hassan E, Talaat F, Adel S, Abdelrazek S, Aziz A, Nam Y, et al. Robust

Deep Learning Model for Black Fungus Detection Based on Gabor

Filter and Transfer Learning. Comput Syst Sci Engin. 2023;47(2):1507-

-1525. [PubMed ID: doi:10.32604/csse.2023.037493].

34. Khan A, Pin K, Aziz A, Han JW, Nam Y. Optical Coherence Tomography

Image Classification Using Hybrid Deep Learning and Ant Colony

Optimization. Sensors (Basel). 2023;23(15). [PubMed ID: 37571490].

[PubMed Central ID: PMC10422382].

https://doi.org/10.3390/s23156706.

https://brieflands.com/articles/ijradiology-163605
http://www.ncbi.nlm.nih.gov/pubmed/35300854
https://www.ncbi.nlm.nih.gov/pmc/PMC8892361
https://doi.org/10.1016/j.isatra.2022.02.033
http://www.ncbi.nlm.nih.gov/pubmed/34786568
https://www.ncbi.nlm.nih.gov/pmc/PMC7992299
https://doi.org/10.1016/j.bea.2021.100003
http://www.ncbi.nlm.nih.gov/pubmed/31011155
https://www.ncbi.nlm.nih.gov/pmc/PMC6476887
https://doi.org/10.1038/s41598-019-42294-8
https://doi.org/10.1038/s41598-019-42294-8
http://www.ncbi.nlm.nih.gov/pubmed/37888037
https://www.ncbi.nlm.nih.gov/pmc/PMC10607847
https://doi.org/10.3390/jpm13101426
http://www.ncbi.nlm.nih.gov/pubmed/doi:10.32604/csse.2023.037493
http://www.ncbi.nlm.nih.gov/pubmed/37571490
https://www.ncbi.nlm.nih.gov/pmc/PMC10422382
https://doi.org/10.3390/s23156706

