h\ ] Adv Immunopharmacol. 2024 November; 4(4): 167357

https://doi.org/10.5812/jai-167357

Published Online: 2024 November 30

Editorial

Targeting Platelets and NK Cells to Improve Radiation Therapy
Outcomes

Abdolkarim Sheikhi ! '»2>" Rupak Pathak 3, Myron R. Szewczuk

1 Department of Biomedical and Molecular Sciences, Queen’s University, K7L 3N6, Kingston, Canada
2 pepartment of Immunology, School of Medicine, Dezful University of Medical Sciences, Dezful, Iran
3 Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, USA

*CorrespondingAuthor: Department of Biomedical and Molecular Sciences, Queen’s University, K7L 3N6, Kingston, Canada. Email: sheikhi@queensu.ca

Received: 26 November, 2024; Accepted: 28 November, 2024

Keywords: Platelets, Radiotherapy, NK Cells, Tumor Immunotherapy

For decades, radiotherapy has been considered
primarily as a cytotoxic tool to eradicate cancer by
inducing DNA damage and subsequent death of cancer
cells. However, the current understanding of tumor
immunology has challenged this traditional perception
of radiation therapy. In addition to killing malignant
cells, radiotherapy reshapes the tumor
microenvironment (TME) and the dynamic balance
between immune activation and immune suppression,
potentially via regulating the function of natural killer
(NK) cells and platelets, two crucial components of the
tumor immune repertoire. Among the most intriguing
yet underappreciated interactions lies a three-way
relationship between tumor cells, platelets, and NK
cells, a triad that may determine whether radiotherapy
enhances or hinders anti-tumor immunity.

The NK cells, as frontline defenders of the innate
immune system, play a decisive role in identifying and
eliminating malignant cells in circulation. However,
tumor cells have evolved highly sophisticated
mechanisms for escape. One such mechanism is using
platelets as a biological shield, thus preventing NK cells
from interacting with malignant cells. By cloaking
themselves in platelet membranes, tumor cells not only
evade NK cell surveillance but also acquire a “pseudo-
self” phenotype through the transfer of platelet-derived
MHC class I molecules (1). These platelet-mediated
alterations suppress NK cell cytotoxicity, thereby
facilitating the metastasis process. Moreover, platelet-
derived transforming growth factor-p (TGF-B) further
dampens NK cell function by downregulating NKG2D

receptors, undermining the “induced-self” recognition
critical for NK activation (2).

Radiotherapy, while a cornerstone of modern
oncology, can inadvertently intensify these dynamics.
Ionizing radiation triggers a cascade of cellular stress
responses, including cytokine secretion, reactive oxygen
species generation, and latent TGF-B activation, all of
which contribute to immunosuppressive, pro-
inflammatory, and fibrotic signaling within the TME (3,
4). Beyond its well-known genotoxic effects, radiation-
induced DNA damage may also engage HIF-1- and TGF-
B/Smad-dependent pathways that promote epithelial-
mesenchymal transition (EMT), stromal remodeling,
and enhanced metastatic potential (5, 6). In this sense,
radiotherapy functions as a double-edged sword:
Capable of sensitizing tumors to immune attack or,
conversely, of reinforcing tumor survival and
dissemination through platelet-mediated and cytokine-
driven protection.

Nevertheless, radiotherapy also offers an
immunological opportunity. Controlled low-dose
irradiation, typically within the range of 0.1 to 2 Gy per
fraction, has been shown to upregulate NK-activating
ligands such as MICA/B and ULBPs on tumor cells and to
induce stress molecules like Hsp70, thereby enhancing
NK recognition and cytotoxicity (7, 8). Moreover, the
radiation-induced release of damage-associated
molecular patterns (DAMPs) can recruit and activate
immune effector cells, while radiogenic chemokines,
such as CXCLi6, facilitate NK cells migration toward
irradiated tumor sites (9). Thus, depending on the
radiation dose and timing, exposure may either
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potentiate or suppress NK cell immunity, a delicate
balance critically influenced by platelet-tumor
interactions.

Given this complexity, the concept of combinatorial
therapy emerges as both logical and necessary. Studies
combining low-dose chemoradiotherapy with NK cell
infusion have shown promising synergistic effects,
where radiation primes tumor cells for NK-mediated
killing (10). Simultaneously, deactivating platelets by
targeting platelet activation pathways, through P2Y12
inhibitors, thrombin blockers, or CXCR4 antagonists,
may dismantle the protective “platelet cloak”, exposing
circulating tumor cells to NK attack (11). The intersection
of these approaches could redefine
immunoradiotherapy as a precisely tuned strategy
rather than a purely destructive one.

In addition, platelets, being a rich source of TGFp,
play a pivotal role in post-radiation fibrosis and chronic
inflammation, further underscoring the need for an
integrated view. By driving TGFp-mediated fibrotic
remodeling, platelets contribute not only to local tissue
toxicity but also to systemic immune suppression (12).
Blocking the platelet-TGFP axis, for instance, using
bifunctional molecules such as M7824 (anti-PD-L1/TGFB),
has demonstrated superior tumor control and
prevention of metastasis in preclinical models (13).
Ultimately, the next generation of radiotherapy should
be defined not by how much DNA it destroys, but by
how effectively it orchestrates anti-tumor immunity.

Future Directions

Understanding the radiotherapy-platelet-NK cell axis
invites a paradigm shift in oncology. Instead of viewing
platelets solely as bystanders in hemostasis, they must
be recognized as dynamic regulators of tumor-immune
crosstalk. Future translational efforts should focus on:

- Combining radiotherapy with NK cell-based
immunotherapy to enhance tumor clearance and
prevent recurrence.

- Developing selective anti-platelet or anti-TGFJ
strategies to restore NK cell function without increasing
bleeding risk.

- Exploring the SDF-1/CXCR4 axis as a therapeutic
target for mitigating radiation-induced injury and
fibrosis while amplifying NK-driven immunity.

Ultimately, the true success of radiotherapy will
depend not only on its physical precision but also on its
biological harmony — its capacity to destroy tumor cells
while simultaneously preserving and empowering the
body’s natural defenses, specifically via upregulating
the NK cell function. Integrating immune, vascular, and
cellular insights into the design of radiotherapy

protocols represents the next frontier in achieving
durable, metastasis-resistant cancer control.
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