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For decades, radiotherapy has been considered
primarily as a cytotoxic tool to eradicate cancer by

inducing DNA damage and subsequent death of cancer

cells. However, the current understanding of tumor

immunology has challenged this traditional perception

of radiation therapy. In addition to killing malignant
cells, radiotherapy reshapes the tumor

microenvironment (TME) and the dynamic balance

between immune activation and immune suppression,

potentially via regulating the function of natural killer

(NK) cells and platelets, two crucial components of the
tumor immune repertoire. Among the most intriguing

yet underappreciated interactions lies a three-way

relationship between tumor cells, platelets, and NK

cells, a triad that may determine whether radiotherapy

enhances or hinders anti-tumor immunity.

The NK cells, as frontline defenders of the innate

immune system, play a decisive role in identifying and
eliminating malignant cells in circulation. However,

tumor cells have evolved highly sophisticated

mechanisms for escape. One such mechanism is using

platelets as a biological shield, thus preventing NK cells

from interacting with malignant cells. By cloaking
themselves in platelet membranes, tumor cells not only

evade NK cell surveillance but also acquire a “pseudo-

self” phenotype through the transfer of platelet-derived

MHC class I molecules (1). These platelet-mediated

alterations suppress NK cell cytotoxicity, thereby

facilitating the metastasis process. Moreover, platelet-

derived transforming growth factor-β (TGF-β) further

dampens NK cell function by downregulating NKG2D

receptors, undermining the “induced-self” recognition
critical for NK activation (2).

Radiotherapy, while a cornerstone of modern

oncology, can inadvertently intensify these dynamics.

Ionizing radiation triggers a cascade of cellular stress

responses, including cytokine secretion, reactive oxygen

species generation, and latent TGF-β activation, all of

which contribute to immunosuppressive, pro-

inflammatory, and fibrotic signaling within the TME (3,

4). Beyond its well-known genotoxic effects, radiation-

induced DNA damage may also engage HIF-1- and TGF-

β/Smad-dependent pathways that promote epithelial-

mesenchymal transition (EMT), stromal remodeling,

and enhanced metastatic potential (5, 6). In this sense,

radiotherapy functions as a double-edged sword:

Capable of sensitizing tumors to immune attack or,

conversely, of reinforcing tumor survival and

dissemination through platelet-mediated and cytokine-
driven protection.

Nevertheless, radiotherapy also offers an

immunological opportunity. Controlled low-dose

irradiation, typically within the range of 0.1 to 2 Gy per

fraction, has been shown to upregulate NK-activating

ligands such as MICA/B and ULBPs on tumor cells and to
induce stress molecules like Hsp70, thereby enhancing

NK recognition and cytotoxicity (7, 8). Moreover, the

radiation-induced release of damage-associated

molecular patterns (DAMPs) can recruit and activate

immune effector cells, while radiogenic chemokines,
such as CXCL16, facilitate NK cells migration toward

irradiated tumor sites (9). Thus, depending on the

radiation dose and timing, exposure may either
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potentiate or suppress NK cell immunity, a delicate

balance critically influenced by platelet-tumor

interactions.

Given this complexity, the concept of combinatorial

therapy emerges as both logical and necessary. Studies

combining low-dose chemoradiotherapy with NK cell

infusion have shown promising synergistic effects,

where radiation primes tumor cells for NK-mediated

killing (10). Simultaneously, deactivating platelets by

targeting platelet activation pathways, through P2Y12

inhibitors, thrombin blockers, or CXCR4 antagonists,

may dismantle the protective “platelet cloak”, exposing

circulating tumor cells to NK attack (11). The intersection

of these approaches could redefine

immunoradiotherapy as a precisely tuned strategy

rather than a purely destructive one.

In addition, platelets, being a rich source of TGFβ,

play a pivotal role in post-radiation fibrosis and chronic

inflammation, further underscoring the need for an

integrated view. By driving TGFβ-mediated fibrotic

remodeling, platelets contribute not only to local tissue
toxicity but also to systemic immune suppression (12).

Blocking the platelet-TGFβ axis, for instance, using

bifunctional molecules such as M7824 (anti-PD-L1/TGFβ),

has demonstrated superior tumor control and

prevention of metastasis in preclinical models (13).
Ultimately, the next generation of radiotherapy should

be defined not by how much DNA it destroys, but by

how effectively it orchestrates anti-tumor immunity.

Future Directions

Understanding the radiotherapy-platelet-NK cell axis

invites a paradigm shift in oncology. Instead of viewing

platelets solely as bystanders in hemostasis, they must

be recognized as dynamic regulators of tumor–immune

crosstalk. Future translational efforts should focus on:

- Combining radiotherapy with NK cell-based

immunotherapy to enhance tumor clearance and

prevent recurrence.

- Developing selective anti-platelet or anti-TGFβ
strategies to restore NK cell function without increasing

bleeding risk.

- Exploring the SDF-1/CXCR4 axis as a therapeutic

target for mitigating radiation-induced injury and

fibrosis while amplifying NK-driven immunity.

Ultimately, the true success of radiotherapy will
depend not only on its physical precision but also on its

biological harmony — its capacity to destroy tumor cells

while simultaneously preserving and empowering the
body’s natural defenses, specifically via upregulating

the NK cell function. Integrating immune, vascular, and

cellular insights into the design of radiotherapy

protocols represents the next frontier in achieving

durable, metastasis-resistant cancer control.
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