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Abstract

Background: The intensive care unit (ICU) is a crucial component of the hospital. Allocating resources according to the needs
of patients in the ICU is vital for the quality of care. Predicting mortality in this unit can assist nurses and doctors in allocating
optimal resources for patients.

Objectives: The present study aims to compare the performance of bagging and boosting methods in predicting the mortality
of patients admitted to the ICU using demographic, clinical, and laboratory information.

Methods: Starting in February 2020, we conducted a study analyzing the demographic, clinical, and laboratory characteristics
of 2,055 adult patients admitted to the ICU of a selected hospital over one year. We employed Random Forest (RF), LightGBM
(LGBM), and XGBoost (XG) models to compare their accuracy in predicting outcomes. To ensure data integrity, we utilized the
interquartile range (IQR) to identify and remove outliers and excluded rows with missing values. Our study also highlighted the
significance of various patient characteristics on mortality rates and utilized logistic regression to calculate odds ratios with a
95% confidence interval.

Results: The study indicated that the accuracy of the RF model is 0.91, while LGBM and XG both achieved an accuracy of 0.93.
We also compared them using the receiver operating characteristic (ROC) curve, with RF (area = 0.91), LGBM (area = 0.94), and XG
(area=0.94). It can be concluded that LGBM and XG had almost the same performance.

Conclusions: Based on the accuracy of traditional scoring methods in past studies, we found that machine learning methods
have higher accuracy. In this study, the performance of ensemble models was reported to be better than individual models used
in previous studies. Furthermore, when comparing ensemble methods (bagging and boosting), boosting techniques (LGBM,
XG) demonstrated similar performance and were superior to the bagging strategy (RF).
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1. Background

Intensive care units (ICUs) house patients with poor
health who often have at least one life-threatening
condition (1). An intensive care unit (ICU) provides
specialized equipment and medical and nursing care,
resulting in high healthcare expenditure within this
unit (2, 3). Allocating resources according to the needs
of patients in the ICU is essential for the quality of care

(4). The prediction of mortality in the ICU has been a
critical issue in medicine for decades, as it is used to
prioritize patients and make critical decisions (5, 6).
Most researchers predict mortality using severity of
illness scoring systems designed for risk estimation 24
hours after ICU admission or data-mining algorithms
(7). The three major predictive scoring systems used to
predict mortality in general ICU patients are the Acute
Physiologic and Chronic Health Evaluation (APACHE)
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scoring system, the Simplified Acute Physiologic Score
(SAPS), and the Mortality Prediction Model (MPMO) (8). A
study comparing traditional scoring models for
mortality prediction showed that the performance of
the APACHE II/III scoring systems was higher than that
of other systems (9). Overall, previous studies have
indicated that the accuracy of machine learning models
is higher than traditional scoring models, and clinicians
should select models that have been more validated (10).
Several studies have shown that ensemble models like
Random Forest (RF) and Gradient Boosting for mortality
prediction are more accurate (11, 12). The novel proposed
algorithm is based on the generalization stacking
ensemble model (also called the stacking ensemble
model) and has presented a heterogeneous ensemble
classifier for ICU mortality prediction (13). A machine
learning model was developed to predict patients
admitted to the ICU for acute gastrointestinal (GI)
bleeding with a 2% - 10% mortality risk (14). A developed
predictive model to predict patients with sepsis in the
ICU can help physicians make optimal clinical decisions,
thereby reducing the mortality rate (15). Some previous
studies have demonstrated that deep-learning models
can identify novel temporal data patterns predictive of
ICU mortality and achieve higher accuracy in
identifying patients at high risk of death (16, 17).
Therefore, predicting mortality in the ICU is very
important, and using machine learning models is
associated with better performance.

2. Objectives

The present study aims to use ensemble models to
reduce the prediction error of mortality in the ICU. We
intend to compare the performance of bagging and
boosting methods and predict the mortality of patients
admitted to the ICU using demographic, clinical, and
laboratory information.

3.Methods

3.1. Data Collection and Design

From February 2020, the demographic, clinical, and
laboratory characteristics of 2,055 adult patients
admitted to the ICU in one of the selected hospitals were
recorded for one year (Table 1). Data were initially
entered into a paper form and then into the spreadsheet
of SPSS software. This study was conducted by the
Critical Care Quality Improvement Research Center,
Shahid Modarres Hospital. The present study was
approved by medical science review boards
(IR.SBMU.RETECH.REC.1402.350).

3.2. Data Preprocessing

The data collected from 2,055 patients had no
missing or duplicate values. The target variable in this
problem has two values: Class 0 refers to discharged,
and class 1 refers to expired. Due to the removal of
outliers, the frequency of the target variable changed,
necessitating the use of oversampling. Class imbalance
is a serious problem for classification problems. The
SMOTE algorithm can generate random sample points,
improving the imbalance rate (18). We utilized the
interquartile range (IQR) to identify and remove outliers
and excluded rows with missing values. The data were
separated into training and testing sets by 80% and 20%,
respectively. We used a label encoder for binary columns
and one-hot encoding for columns with more than two
values.

3.3. Models

The ensemble learning structure is a combination of
two or more classifiers instead of an individual
classifier, aiming to increase prediction accuracy. In
addition to being highly accurate, we aim to reduce
biases or high variance, as one of the problems of
individual classifier learners is that they can be high
bias, highly variant, or both (19). The popular ensemble
techniques are bagging, boosting, and stacking (20):

- Bagging involves fitting many decision trees on
different samples of the same dataset and averaging the
predictions.

- Boosting involves adding ensemble members
sequentially that correct the predictions made by prior
models and output a weighted average of the
projections.

- Stacking involves fitting many different model types
on the same data and using another model to learn how
to best combine the predictions.

A RF algorithm is a supervised machine learning
algorithm that is extremely popular and is used for
classification and regression problems in machine
learning. It is a classifier that contains several decision
trees on various subsets of the given dataset and takes
the average to improve the predictive accuracy of that
dataset, which refers to the bagging definition. A
previous study has shown that the RF classifier has a
higher classification rate than single classifiers and
takes less training time than decision tree and support
vector machine (21). Light GBM (LGBM) is a high-
performance gradient-boosting framework that uses a
tree-based learning algorithm. The LGBM splits the tree
leaf-wise with the best fit, whereas other boosting
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Figure 1. The importance of features for mortality prediction with Random Forest (RF) feature selection

algorithms like XGBoost (XG) separate the tree depth-
wise or level-wise rather than leaf-wise. In other words,
LGBM grows trees vertically, while different algorithms
grow trees horizontally. Previous studies have
concluded that LGBM can significantly outperform XG
in terms of computational speed, memory
consumption, and accuracy (22, 23). To develop the
models, we employed the default parameter settings of
the RF, XG, and LGBM libraries, ensuring a standard
approach to model training and evaluation.

3.4. Feature Selection and Modeling

Feature selection is a necessary stage of data analysis
for selecting a small set of relevant features. The RF
classifier is an instrumental base for the wrapper
algorithms solving all relevant problems because it
provides the variable importance measure (24). We used
RF feature selection to avoid overfitting the model
(Figure 1). Based on expert opinion, we removed the
features whose importance was less than 0.00237 and
then proceeded to build the models. Additionally, we
used the logistic regression model to report the
individual ratio measure with a confidence level of 95%,
making its interpretation suitable for doctors.

3.5. Software

In this study, we used SPSS version 22 software for
statistical analysis and machine learning models
implemented by Python libraries of Scikit-learn, XG, and
LGBM. Regarding the hardware, our CPU was an Intel i5
2.53 GHz with 8 GB installed memory.

4.Results

] Crit Care Excell. 2024; 1(1): e138141

4.1. Participants

In the data of 2,055 patients, 983 cases were women,
and 1,072 cases were men, with a mean (SD) age of 55.93
(15.7) and 54.14 (15.4), respectively. In general, 865
patients died, and 1,190 were discharged. The results of
Figure 1 show that the number of days of hospitalization
before entering the ICU has the most substantial impact
on the construction of the models. Table 1 shows that
the difference between the two groups (expired and
discharged) is significant, with the quartile difference
between the first and third patients who died being five
days, with a mean of 3.3 (3.1); for the discharge group, it
is two days, with a mean of 1.6 (2.5). Table 1 shows the
characteristics of patients in the ICU in two groups:
Death and survival. Statistical tests were performed for
each of the factors, which include: Age, number of days
receiving antibiotics (AB), blood pressure (BP),
minimum respiration rate [RR (min)], maximum blood
sodium [Na (max)], blood sugar (BG), blood creatinine
(Cr), blood urea nitrogen (BUN), urine volume [UA (vol)],
blood hematocrit level (Hct), white blood cell count
(WBC), percentage of inspiratory oxygen (FiO,), hospital
infection, surgery, diabetes, chronic kidney disease, liver
failure, metastasis, immunodeficiency, readmission,
heart attack, chronic obstructive pulmonary disease,
leukemia, tracheostomy, and reason for ICU admission.
These tests separately show that there is a significant
difference.

4.2. Models Validation

We developed three mortality ensemble models:
Model t: Light GBM, model 2: XGBoost, and model 3:
Random forest. After adjusting the hyperparameters, we
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Table 2. Evaluation Indicators

Models Accuracy F-Score Recall Precision Specificity
LGBM 0.937 0.937 0.919 0.955 0.956
XG 0.937 0.936 0.923 0.950 0.951
RF 0.911 0.912 0.880 0.945 0.944
Abbreviations: LGBM, LightGBM; XG, XGBoost; RF, Random Forest.
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Figure 2. The ROC curve

considered 100 estimators for RF and 150 estimators for
LGBM and XG. The research indicated that the accuracy
of the RF model is 0.91, while LGBM and XG both
achieved an accuracy of 0.93. Other evaluation criteria
are reported in Table 2. We also compared them using
the receiver operating characteristic (ROC) curve, with
RF (area = 0.91), LGBM (area = 0.94), and XG (area = 0.94),
leading to the conclusion that LGBM and XG had almost
the same performance (Figure 2).

5. Discussion

Based on past studies conducted in the field of
mortality in the ICU and the differences between
ensemble models and individual models, this study
aimed to compare the performance of ensemble
models, particularly the bagging and boosting methods,
to improve the prediction of mortality in the ICU. The
study demonstrated that the performance of boosting

methods is superior to bagging. One of the attractions
of using ensemble models is the stacking method, as
different results can be obtained by combining different
classifiers. This method can be used for future studies
and offers innovation. In this study, in addition to
highlighting the importance of each patient’s
characteristics in mortality, we used logistic regression
to report the odds ratio criterion with a confidence level
of 95%. The odds ratio is a statistical measure of the
association between binary variables across two
different groups, where one group is referred to as the
independent group, while the other is the dependent
group (25). This criterion is widely used in the medical
community and is suitable for the interpretation of
predictors (Table 3).

This study identified which characteristics of
patients in the ICU have a significant relationship with
mortality. Patients whose reason for referral was trauma

] Crit Care Excell. 2024;1(1): e138141
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Table 3. The Odds Ratio for Predictors of Mortality
95% CI

Predictors P-Value (0.05) 0dd Ratio

Lower Upper
Age 0.000 0.963 0.951 0.975
Brain surgery 0304 1355 0.759 2.421
Trauma surgery 0.046 1.870 1.012 3.456
Other surgeries 0.842 1.041 0.704 1.537
Respiratory 0.000 0.394 0.264 0.590
AB (d) 0.000 1101 1.064 1140
GCS 0.001 1185 1.073 1308
Nosocomial infection 0.030 1537 1.044 2.264
Emergency surgery 0.001 2.501 1.467 4.263
Diabetes 0.000 5.492 3.506 8.604
Intubation 0.008 0.414 0.215 0.796
Metastasis 0.000 0.224 0.128 0.394
Immunosuppression 0.000 2.916 1.915 4.441
MI 0.010 1.679 1130 2494
CVLine 0.000 1.671 1.256 2224
Tracheostomy 0.000 9.987 5.406 18.450
CoPD 0.000 4159 2.760 6.268
Anesthetic 0.000 4.124 2.909 5.847
TPN 0.000 4357 2.660 7139
Gender (male) 0.872 1.027 0.744 1.417
BP (max) 0.016 0.987 0.976 0.997
Before ICU (d) 0.000 0.879 0.837 0.923
FiO, 0.368 1.005 0.994 1.018
Bili 0.001 1194 1.074 1328
Readmission 0.007 1.615 1142 2.284
Hct (max) 0.047 0.950 0.903 0.999
T (min) 0306 1236 0.824 1.853
Alb 0.272 0.878 0.696 1108
BUN (min) 0.016 0.974 0.954 0.995
BG (min) 0.768 1.001 0.995 1.007
Na (min) 0.465 0.984 0.943 1.027
Na (max) 0.292 0.980 0.944 1.017
PR (min) 0.172 0.994 0.985 1.003
Cr (min) 0.154 1.950 0.779 4.880

Abbreviations: AB, antibiotics; GCS, Glasgow Coma Scale; BP, blood pressure; ICU, intensive care unit; FiO,, percentage of inspiratory oxygen; Bili, bilirubin; Hct (max), maximum
blood hematocrit level; T, temperature; Alb, albumin; BUN, blood urea nitrogen; BG, blood glucose; Na (min), minimum blood sodium; Na (max), maximum blood sodium; PR

(min), minimum pulse rate; Cr, blood creatinine.

surgery had a lower mortality risk, whereas patients
with respiratory problems were at higher risk of
mortality. Factors such as age, high blood pressure,
blood urea nitrogen, the number of days receiving
antibiotics, readmission to the ICU, and the number of
days of hospital stay before entering the ICU were
directly related to increased mortality risk. This study
also showed that although intubated patients were less
prone to mortality, they were more inclined to mortality
under tracheostomy. Among other factors influencing

] Crit Care Excell. 2024; 1(1): e138141

the death rate in the ICU is nosocomial infection, which
has a direct relationship with mortality. The GCS
criterion has an inverse relationship with mortality;
these relationships are clinically acceptable. Our sample
size was only sufficient to find statistically significant
large associations. The purpose of developing predictive
models in machine learning is to aid in decision-
making, and the more accurate the model’s
performance, the more reliable it is. This study sought


https://brieflands.com/articles/jcce-138141

Moosavi Kashani S et al.

Brieflands

to improve the prediction performance of mortality in
the ICU by using ensemble models.

5.1. Conclusions

Based on the accuracy of traditional scoring methods
in past studies, we found that machine learning
methods have higher accuracy. In this study, the
performance of ensemble models was reported to be
better than individual models used in previous studies.
Furthermore, when comparing ensemble methods
(bagging and boosting), boosting techniques (LGBM,
XG) demonstrated similar performance and were
superior to the bagging strategy (RF).
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Table 1. Patients’ Features

Features Outcomes P-Value
Expired (n = 865) Discharged (n=1190)
Age (y) 61.6+143 50.1£14.7 <o0.001”
Receiving AB (d) 8.6%6.1 73+4.5 <0.001°
Before ICU (d) 33£31 16425 <o0.001°
T (min) 36.9+03 36.9+03 0.96
T (max) 38.7£0.7 38.6+0.6 o1
BP (min) 993185 9244192 <0.001"
BP (max) 12674214 118.6+21.8 <o0.001°
PR (min) 73.6 £14.0 72.4%14.0 0.054
PR (max) 1023+12.4 101.6 £12.6 0.18
RR (min) 19.0£5.3 19.6+5.4 0.019 "
RR (max) 283+6.4 28.8+6.5 0.079
pH 73101 73101 0.071
Pao, 69.1+22.7 69.2+22.8 0.94
PaCo, 39.8+11.3 39.8+11.4 0.935
Na (min) 129.4+3.0 129.6 £2.9 0.293
Na (max) 138.8+3.8 139.4+33 0.001P
BG (min) 120.9+ 455 9344214 <o0.001°
BG (max) 2141£86.0 161.6 +49.7 <0.001"
Cr (min) 1.0£0.2 0.9+0.2 <o0.001°
Cr(max) 15407 13+0.4 <0.001P
BUN (min) 310497 271+8.4 <o0.001°
BUN (max) 5594283 47.7+15.8 <0.001?
UA (vol) 2181.8 +740.7 2366.8 +577.8 <0.001°
Alb 3.3+0.54 3.3%0.55 0.88
Bili 1711 18+14 0.067
Hct (min) 32.0+4.8 303451 <0.001P
Hct (max) 408+48 39345.0 <o0.001P
WBC 9120.143319.5 8735.6 £3008.4 0.007°
GCS 10.7+£2.5 10.7+2.4 0.965
FiO , 45.6+19.5 477£20.6 0.017°
Gender 0.842
Female 416 567
Male 449 623
Nosocomial <0.001°
Positive 201 106
Negative 664 1084
Surgery <o0.001°
Positive 340 794
Negative 526 396
Emergency surgery <0.001°
Positive 191 432
Negative 674 758
Diabetes <0.001P
Positive 446 185
Negative 419 1005
Chronic kidney disease <0.001P
Positive 108 33
Negative 757 157
Liver failure o0.02P
Positive 12 37
Negative 853 153
Intubation 0.06
Positive 355 538
Negative 510 652
HIV 0.316
Positive 1 4
Negative 864 186
Lymphoma 0.429
Positive 14 25
Negative 851 1165
Metastasis <0.001?
Positive 59 143
Negative 806 1047
Leukemia 0.036°
8 ] Crit Care Excell. 2024; 1(1): e138141


https://brieflands.com/articles/jcce-138141

Moosavi Kashani S et al. Brieflands

Features Outcomes P-Value
Positive 0 6
Negative 865 1184

Immunosuppression <0.001°
Positive 175 120
Negative 690 1070

Readmission <0.001?
Positive 329 222
Negative 536 968

Myocardial infarction <0.001°
Positive 292 99
Negative 573 1091

Central venous catheter line <0.001?
Positive 601 545
Negative 264 645

Tracheostomy <o0.001°
Positive 154 37
Negative 711 1153

Nasogastric tube <0.001P
Positive 856 1053
Negative 9 137

Packed cell 0.288
Positive 216 322
Negative 649 868

Chronic obstructive pulmonary disease <0.001°
Positive 221 61
Negative 644 129

Anesthetic <0.001P
Positive 754 872
Negative 111 318

Total parenteral nutrition <0.001P
Positive 221 43
Negative 644 1147

Alcohol 0.113
Positive 41 40
Negative 824 150

site <o0.001°
Blood 16 4
Wound 9 7
Urine 65 40
Sputum 111 55
Not infected 664 1084

Pathogen <o0.001°
Candidia 6 0
Escherichia coli 39 32
Acinetobacter 44 30
Staphylococcus aureus 47 17
Pseudomonas 13 4
Klebsiella 52 23
Not infected 664 1084

Ward <o0.001°
surgery 142 409
Internal 328 123
Emergency 395 658

The main AB used <0.001°
AB1 - -
AB2 o o

Reason for admission <0.001°
Others 238 299
Respiratory 287 99
Other surgeries 140 296
Trauma surgery 92 337
Brain surgery 108 159

Abbreviations: AB, antibiotics; ICU, intensive care unit; T, temperature; BP, blood pressure; PR (min), minimum pulse rate; PR (max), maximum pulse rate; RR (min),
minimum respiration rate; RR (max), maximum respiration rate; Na (min), minimum blood sodium; Na (max), maximum blood sodium; BG, blood glucose; Cr, blood
creatinine; BUN, blood urea nitrogen; UA (vol), urine volume; Alb, albumin; Bili, bilirubin; Hct (min), minimum blood hematocrit level; Hct (max), maximum blood hematocrit
level; WBC, white blood cell count; GCS, Glasgow Coma Scale; FiO,, percentage of inspiratory oxygen; HIV, human immunodeficiency virus.

@ Values are expressed as No. or mean + SD.

b Statistically significant.
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