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Abstract

Background: The intensive care unit (ICU) is a crucial component of the hospital. Allocating resources according to the needs

of patients in the ICU is vital for the quality of care. Predicting mortality in this unit can assist nurses and doctors in allocating

optimal resources for patients.

Objectives: The present study aims to compare the performance of bagging and boosting methods in predicting the mortality

of patients admitted to the ICU using demographic, clinical, and laboratory information.

Methods: Starting in February 2020, we conducted a study analyzing the demographic, clinical, and laboratory characteristics

of 2,055 adult patients admitted to the ICU of a selected hospital over one year. We employed Random Forest (RF), LightGBM

(LGBM), and XGBoost (XG) models to compare their accuracy in predicting outcomes. To ensure data integrity, we utilized the

interquartile range (IQR) to identify and remove outliers and excluded rows with missing values. Our study also highlighted the

significance of various patient characteristics on mortality rates and utilized logistic regression to calculate odds ratios with a

95% confidence interval.

Results: The study indicated that the accuracy of the RF model is 0.91, while LGBM and XG both achieved an accuracy of 0.93.

We also compared them using the receiver operating characteristic (ROC) curve, with RF (area = 0.91), LGBM (area = 0.94), and XG

(area = 0.94). It can be concluded that LGBM and XG had almost the same performance.

Conclusions: Based on the accuracy of traditional scoring methods in past studies, we found that machine learning methods

have higher accuracy. In this study, the performance of ensemble models was reported to be better than individual models used

in previous studies. Furthermore, when comparing ensemble methods (bagging and boosting), boosting techniques (LGBM,

XG) demonstrated similar performance and were superior to the bagging strategy (RF).
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1. Background

Intensive care units (ICUs) house patients with poor

health who often have at least one life-threatening

condition (1). An intensive care unit (ICU) provides

specialized equipment and medical and nursing care,
resulting in high healthcare expenditure within this

unit (2, 3). Allocating resources according to the needs

of patients in the ICU is essential for the quality of care

(4). The prediction of mortality in the ICU has been a

critical issue in medicine for decades, as it is used to

prioritize patients and make critical decisions (5, 6).
Most researchers predict mortality using severity of

illness scoring systems designed for risk estimation 24

hours after ICU admission or data-mining algorithms
(7). The three major predictive scoring systems used to

predict mortality in general ICU patients are the Acute
Physiologic and Chronic Health Evaluation (APACHE)
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scoring system, the Simplified Acute Physiologic Score

(SAPS), and the Mortality Prediction Model (MPM0) (8). A

study comparing traditional scoring models for
mortality prediction showed that the performance of

the APACHE II/III scoring systems was higher than that
of other systems (9). Overall, previous studies have

indicated that the accuracy of machine learning models

is higher than traditional scoring models, and clinicians
should select models that have been more validated (10).

Several studies have shown that ensemble models like
Random Forest (RF) and Gradient Boosting for mortality

prediction are more accurate (11, 12). The novel proposed

algorithm is based on the generalization stacking

ensemble model (also called the stacking ensemble

model) and has presented a heterogeneous ensemble
classifier for ICU mortality prediction (13). A machine

learning model was developed to predict patients
admitted to the ICU for acute gastrointestinal (GI)

bleeding with a 2% - 10% mortality risk (14). A developed

predictive model to predict patients with sepsis in the
ICU can help physicians make optimal clinical decisions,

thereby reducing the mortality rate (15). Some previous
studies have demonstrated that deep-learning models

can identify novel temporal data patterns predictive of

ICU mortality and achieve higher accuracy in
identifying patients at high risk of death (16, 17).

Therefore, predicting mortality in the ICU is very
important, and using machine learning models is

associated with better performance.

2. Objectives

The present study aims to use ensemble models to

reduce the prediction error of mortality in the ICU. We

intend to compare the performance of bagging and

boosting methods and predict the mortality of patients

admitted to the ICU using demographic, clinical, and

laboratory information.

3. Methods

3.1. Data Collection and Design

From February 2020, the demographic, clinical, and

laboratory characteristics of 2,055 adult patients

admitted to the ICU in one of the selected hospitals were

recorded for one year (Table 1). Data were initially

entered into a paper form and then into the spreadsheet

of SPSS software. This study was conducted by the

Critical Care Quality Improvement Research Center,

Shahid Modarres Hospital. The present study was

approved by medical science review boards

(IR.SBMU.RETECH.REC.1402.350).

3.2. Data Preprocessing

The data collected from 2,055 patients had no
missing or duplicate values. The target variable in this

problem has two values: Class 0 refers to discharged,
and class 1 refers to expired. Due to the removal of

outliers, the frequency of the target variable changed,

necessitating the use of oversampling. Class imbalance
is a serious problem for classification problems. The

SMOTE algorithm can generate random sample points,
improving the imbalance rate (18). We utilized the

interquartile range (IQR) to identify and remove outliers

and excluded rows with missing values. The data were

separated into training and testing sets by 80% and 20%,

respectively. We used a label encoder for binary columns

and one-hot encoding for columns with more than two

values.

3.3. Models

The ensemble learning structure is a combination of

two or more classifiers instead of an individual

classifier, aiming to increase prediction accuracy. In

addition to being highly accurate, we aim to reduce

biases or high variance, as one of the problems of

individual classifier learners is that they can be high

bias, highly variant, or both (19). The popular ensemble

techniques are bagging, boosting, and stacking (20):

- Bagging involves fitting many decision trees on

different samples of the same dataset and averaging the

predictions.

- Boosting involves adding ensemble members
sequentially that correct the predictions made by prior

models and output a weighted average of the

projections.

- Stacking involves fitting many different model types

on the same data and using another model to learn how

to best combine the predictions.

A RF algorithm is a supervised machine learning

algorithm that is extremely popular and is used for

classification and regression problems in machine

learning. It is a classifier that contains several decision

trees on various subsets of the given dataset and takes

the average to improve the predictive accuracy of that

dataset, which refers to the bagging definition. A

previous study has shown that the RF classifier has a

higher classification rate than single classifiers and

takes less training time than decision tree and support

vector machine (21). Light GBM (LGBM) is a high-

performance gradient-boosting framework that uses a

tree-based learning algorithm. The LGBM splits the tree

leaf-wise with the best fit, whereas other boosting
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Figure 1. The importance of features for mortality prediction with Random Forest (RF) feature selection

algorithms like XGBoost (XG) separate the tree depth-

wise or level-wise rather than leaf-wise. In other words,

LGBM grows trees vertically, while different algorithms

grow trees horizontally. Previous studies have

concluded that LGBM can significantly outperform XG

in terms of computational speed, memory

consumption, and accuracy (22, 23). To develop the

models, we employed the default parameter settings of

the RF, XG, and LGBM libraries, ensuring a standard

approach to model training and evaluation.

3.4. Feature Selection and Modeling

Feature selection is a necessary stage of data analysis

for selecting a small set of relevant features. The RF

classifier is an instrumental base for the wrapper

algorithms solving all relevant problems because it

provides the variable importance measure (24). We used

RF feature selection to avoid overfitting the model

(Figure 1). Based on expert opinion, we removed the

features whose importance was less than 0.00237 and

then proceeded to build the models. Additionally, we

used the logistic regression model to report the

individual ratio measure with a confidence level of 95%,

making its interpretation suitable for doctors.

3.5. Software

In this study, we used SPSS version 22 software for

statistical analysis and machine learning models

implemented by Python libraries of Scikit-learn, XG, and

LGBM. Regarding the hardware, our CPU was an Intel i5

2.53 GHz with 8 GB installed memory.

4. Results

4.1. Participants

In the data of 2,055 patients, 983 cases were women,

and 1,072 cases were men, with a mean (SD) age of 55.93

(15.7) and 54.14 (15.4), respectively. In general, 865

patients died, and 1,190 were discharged. The results of

Figure 1 show that the number of days of hospitalization

before entering the ICU has the most substantial impact

on the construction of the models. Table 1 shows that

the difference between the two groups (expired and

discharged) is significant, with the quartile difference

between the first and third patients who died being five

days, with a mean of 3.3 (3.1); for the discharge group, it

is two days, with a mean of 1.6 (2.5). Table 1 shows the

characteristics of patients in the ICU in two groups:

Death and survival. Statistical tests were performed for

each of the factors, which include: Age, number of days

receiving antibiotics (AB), blood pressure (BP),

minimum respiration rate [RR (min)], maximum blood

sodium [Na (max)], blood sugar (BG), blood creatinine

(Cr), blood urea nitrogen (BUN), urine volume [UA (vol)],

blood hematocrit level (Hct), white blood cell count

(WBC), percentage of inspiratory oxygen (FiO2), hospital

infection, surgery, diabetes, chronic kidney disease, liver

failure, metastasis, immunodeficiency, readmission,

heart attack, chronic obstructive pulmonary disease,

leukemia, tracheostomy, and reason for ICU admission.

These tests separately show that there is a significant

difference.

4.2. Models Validation

We developed three mortality ensemble models:

Model 1: Light GBM, model 2: XGBoost, and model 3:

Random forest. After adjusting the hyperparameters, we

https://brieflands.com/articles/jcce-138141
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Table 2. Evaluation Indicators

Models Accuracy F-Score Recall Precision Specificity

LGBM 0.937 0.937 0.919 0.955 0.956

XG 0.937 0.936 0.923 0.950 0.951

RF 0.911 0.912 0.880 0.945 0.944

Abbreviations: LGBM, LightGBM; XG, XGBoost; RF, Random Forest.

Figure 2. The ROC curve

considered 100 estimators for RF and 150 estimators for

LGBM and XG. The research indicated that the accuracy

of the RF model is 0.91, while LGBM and XG both

achieved an accuracy of 0.93. Other evaluation criteria

are reported in Table 2. We also compared them using
the receiver operating characteristic (ROC) curve, with

RF (area = 0.91), LGBM (area = 0.94), and XG (area = 0.94),

leading to the conclusion that LGBM and XG had almost

the same performance (Figure 2).

5. Discussion

Based on past studies conducted in the field of
mortality in the ICU and the differences between

ensemble models and individual models, this study

aimed to compare the performance of ensemble
models, particularly the bagging and boosting methods,

to improve the prediction of mortality in the ICU. The
study demonstrated that the performance of boosting

methods is superior to bagging. One of the attractions

of using ensemble models is the stacking method, as

different results can be obtained by combining different

classifiers. This method can be used for future studies

and offers innovation. In this study, in addition to
highlighting the importance of each patient’s

characteristics in mortality, we used logistic regression

to report the odds ratio criterion with a confidence level

of 95%. The odds ratio is a statistical measure of the

association between binary variables across two
different groups, where one group is referred to as the

independent group, while the other is the dependent

group (25). This criterion is widely used in the medical

community and is suitable for the interpretation of

predictors (Table 3).

This study identified which characteristics of

patients in the ICU have a significant relationship with

mortality. Patients whose reason for referral was trauma

https://brieflands.com/articles/jcce-138141
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Table 3. The Odds Ratio for Predictors of Mortality

Predictors P-Value (0.05) Odd Ratio
95% CI

Lower Upper

Age 0.000 0.963 0.951 0.975

Brain surgery 0.304 1.355 0.759 2.421

Trauma surgery 0.046 1.870 1.012 3.456

Other surgeries 0.842 1.041 0.704 1.537

Respiratory 0.000 0.394 0.264 0.590

AB (d) 0.000 1.101 1.064 1.140

GCS 0.001 1.185 1.073 1.308

Nosocomial infection 0.030 1.537 1.044 2.264

Emergency surgery 0.001 2.501 1.467 4.263

Diabetes 0.000 5.492 3.506 8.604

Intubation 0.008 0.414 0.215 0.796

Metastasis 0.000 0.224 0.128 0.394

Immunosuppression 0.000 2.916 1.915 4.441

MI 0.010 1.679 1.130 2.494

CVLine 0.000 1.671 1.256 2.224

Tracheostomy 0.000 9.987 5.406 18.450

COPD 0.000 4.159 2.760 6.268

Anesthetic 0.000 4.124 2.909 5.847

TPN 0.000 4.357 2.660 7.139

Gender (male) 0.872 1.027 0.744 1.417

BP (max) 0.016 0.987 0.976 0.997

Before ICU (d) 0.000 0.879 0.837 0.923

FiO 2 0.368 1.005 0.994 1.018

Bili 0.001 1.194 1.074 1.328

Readmission 0.007 1.615 1.142 2.284

Hct (max) 0.047 0.950 0.903 0.999

T (min) 0.306 1.236 0.824 1.853

Alb 0.272 0.878 0.696 1.108

BUN (min) 0.016 0.974 0.954 0.995

BG (min) 0.768 1.001 0.995 1.007

Na (min) 0.465 0.984 0.943 1.027

Na (max) 0.292 0.980 0.944 1.017

PR (min) 0.172 0.994 0.985 1.003

Cr (min) 0.154 1.950 0.779 4.880

Abbreviations: AB, antibiotics; GCS, Glasgow Coma Scale; BP, blood pressure; ICU, intensive care unit; FiO2, percentage of inspiratory oxygen; Bili, bilirubin; Hct (max), maximum

blood hematocrit level; T, temperature; Alb, albumin; BUN, blood urea nitrogen; BG, blood glucose; Na (min), minimum blood sodium; Na (max), maximum blood sodium; PR
(min), minimum pulse rate; Cr, blood creatinine.

surgery had a lower mortality risk, whereas patients

with respiratory problems were at higher risk of

mortality. Factors such as age, high blood pressure,

blood urea nitrogen, the number of days receiving

antibiotics, readmission to the ICU, and the number of

days of hospital stay before entering the ICU were

directly related to increased mortality risk. This study

also showed that although intubated patients were less

prone to mortality, they were more inclined to mortality

under tracheostomy. Among other factors influencing

the death rate in the ICU is nosocomial infection, which

has a direct relationship with mortality. The GCS

criterion has an inverse relationship with mortality;

these relationships are clinically acceptable. Our sample

size was only sufficient to find statistically significant

large associations. The purpose of developing predictive

models in machine learning is to aid in decision-

making, and the more accurate the model’s

performance, the more reliable it is. This study sought

https://brieflands.com/articles/jcce-138141
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to improve the prediction performance of mortality in

the ICU by using ensemble models.

5.1. Conclusions

Based on the accuracy of traditional scoring methods

in past studies, we found that machine learning

methods have higher accuracy. In this study, the

performance of ensemble models was reported to be

better than individual models used in previous studies.

Furthermore, when comparing ensemble methods

(bagging and boosting), boosting techniques (LGBM,

XG) demonstrated similar performance and were

superior to the bagging strategy (RF).
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Table 1. Patients’ Features a

Features Outcomes P-Value
Expired (n = 865) Discharged (n = 1190)

Age (y) 61.6 ± 14.3 50.1 ± 14.7 < 0.001 b

Receiving AB (d) 8.6 ± 6.1 7.3 ± 4.5 < 0.001 b

Before ICU (d) 3.3 ± 3.1 1.6 ± 2.5 < 0.001 b

T (min) 36.9 ± 0.3 36.9 ± 0.3 0.96

T (max) 38.7 ± 0.7 38.6 ± 0.6 0.11

BP (min) 99.3 ± 18.5 92.4 ± 19.2 < 0.001 b

BP (max) 126.7 ± 21.4 118.6 ± 21.8 < 0.001 b

PR (min) 73.6 ± 14.0 72.4 ± 14.0 0.054

PR (max) 102.3 ± 12.4 101.6 ± 12.6 0.18

RR (min) 19.0 ± 5.3 19.6 ± 5.4 0.019 b

RR (max) 28.3 ± 6.4 28.8 ± 6.5 0.079
pH 7.3 ± 0.1 7.3 ± 0.1 0.071

PaO 2 69.1 ± 22.7 69.2 ± 22.8 0.94

PaCO 2 39.8 ± 11.3 39.8 ± 11.4 0.935

Na (min) 129.4 ± 3.0 129.6 ± 2.9 0.293

Na (max) 138.8 ± 3.8 139.4 ± 3.3 0.001 b

BG (min) 120.9 ± 45.5 93.4 ± 21.4 < 0.001 b

BG (max) 214.1 ± 86.0 161.6 ± 49.7 < 0.001 b

Cr (min) 1.0 ± 0.2 0.9 ± 0.2 < 0.001 b

Cr (max) 1.5 ± 0.7 1.3 ± 0.4 < 0.001 b

BUN (min) 31.0 ± 9.7 27.1 ± 8.4 < 0.001 b

BUN (max) 55.9 ± 28.3 47.7 ± 15.8 < 0.001 b

UA (vol) 2181.8 ± 740.7 2366.8 ± 577.8 < 0.001 b

Alb 3.3 ± 0.54 3.3 ± 0.55 0.88

Bili 1.7 ± 1.1 1.8 ± 1.4 0.067

Hct (min) 32.0 ± 4.8 30.3 ± 5.1 < 0.001 b

Hct (max) 40.8 ± 4.8 39.3 ± 5.0 < 0.001 b

WBC 9120.1 ± 3319.5 8735.6 ± 3008.4 0.007 b

GCS 10.7 ± 2.5 10.7 ± 2.4 0.965
FiO 2 45.6 ± 19.5 47.7 ± 20.6 0.017 b

Gender 0.842
Female 416 567

Male 449 623

Nosocomial < 0.001 b

Positive 201 106
Negative 664 1084

Surgery < 0.001 b

Positive 340 794

Negative 526 396

Emergency surgery < 0.001 b

Positive 191 432
Negative 674 758

Diabetes < 0.001 b

Positive 446 185

Negative 419 1005

Chronic kidney disease < 0.001 b

Positive 108 33

Negative 757 1157

Liver failure 0.012 b

Positive 12 37
Negative 853 1153

Intubation 0.06
Positive 355 538

Negative 510 652

HIV 0.316
Positive 1 4

Negative 864 1186
Lymphoma 0.429

Positive 14 25
Negative 851 1165

Metastasis < 0.001 b

Positive 59 143

Negative 806 1047

Leukemia 0.036 b
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Features Outcomes P-Value

Positive 0 6
Negative 865 1184

Immunosuppression < 0.001 b

Positive 175 120

Negative 690 1070

Readmission < 0.001 b

Positive 329 222
Negative 536 968

Myocardial infarction < 0.001 b

Positive 292 99

Negative 573 1091

Central venous catheter line < 0.001 b

Positive 601 545

Negative 264 645

Tracheostomy < 0.001 b

Positive 154 37
Negative 711 1153

Nasogastric tube < 0.001 b

Positive 856 1053

Negative 9 137
Packed cell 0.288

Positive 216 322
Negative 649 868

Chronic obstructive pulmonary disease < 0.001 b

Positive 221 61

Negative 644 1129

Anesthetic < 0.001 b

Positive 754 872

Negative 111 318

Total parenteral nutrition < 0.001 b

Positive 221 43
Negative 644 1147

Alcohol 0.113
Positive 41 40

Negative 824 1150

Site < 0.001 b

Blood 16 4
Wound 9 7

Urine 65 40

Sputum 111 55
Not infected 664 1084

Pathogen < 0.001 b

Candidia 6 0

Escherichia coli 39 32
Acinetobacter 44 30

Staphylococcus aureus 47 17
Pseudomonas 13 4

Klebsiella 52 23

Not infected 664 1084

Ward < 0.001 b

Surgery 142 409
Internal 328 123

Emergency 395 658

The main AB used < 0.001 b

AB1 - -
AB2 - -

Reason for admission < 0.001 b

Others 238 299

Respiratory 287 99

Other surgeries 140 296
Trauma surgery 92 337

Brain surgery 108 159

Abbreviations: AB, antibiotics; ICU, intensive care unit; T, temperature; BP, blood pressure; PR (min), minimum pulse rate; PR (max), maximum pulse rate; RR (min),

minimum respiration rate; RR (max), maximum respiration rate; Na (min), minimum blood sodium; Na (max), maximum blood sodium; BG, blood glucose; Cr, blood

creatinine; BUN, blood urea nitrogen; UA (vol), urine volume; Alb, albumin; Bili, bilirubin; Hct (min), minimum blood hematocrit level; Hct (max), maximum blood hematocrit

level; WBC, white blood cell count; GCS, Glasgow Coma Scale; FiO2, percentage of inspiratory oxygen; HIV, human immunodeficiency virus.

a Values are expressed as No. or mean ± SD.

b Statistically significant.
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