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Abstract

Background: Hypotension is a common complication during the induction of anesthesia, leading to adverse outcomes such

as acute kidney injury (AKI), myocardial injury, and, in high-risk patients, death.

Objectives: This study aimed to predict post-induction hypotension (PIH) by considering clinical interventions using machine

learning (ML) methods.

Methods: Prior to the induction phase of anesthesia, patient data were collected, and cardiac monitoring was set to measure

non-invasive blood pressure (NIBP) at 1-minute intervals. Afterwards, induction was performed by the anesthesiologist.

Hypotension was assessed 30 minutes after induction, defined as either a 20% drop in mean arterial pressure (MAP), an absolute

MAP below 65 mmHg, or a systolic blood pressure (SBP) below 90 mmHg. The ML techniques were employed to develop a real-

time hypotension predictor. These models utilize data gathered from five minutes to predict occurrences of hypotension in the

next 10 minutes. Feature selection methods such as dimension reduction and sequential feature selection algorithms were

utilized to provide more informative inputs to the ML models. Static features such as clinical features and dynamic features like

vital signs were collected from patients undergoing general anesthesia across multiple hospital centers. Among the 215 patients,

110 developed PIH.

Results: Without employing feature selection methods, the best performance belongs to the random forest (RF) model, with

an accuracy of 88.3%, precision of 87.6%, recall of 85%, and an area under the curve of the receiver operating characteristic (AUC-

ROC) at 0.945. Moreover, when utilizing feature selection methods, the RF model retained its status as the best model, with

accuracy, precision, recall, and AUC-ROC values of 88.1%, 88.1%, 85.5%, and 0.947, respectively.

Conclusions: We discovered that ML models hold the potential to predict PIH within the subsequent 10 minutes by utilizing

data collected five minutes prior. Furthermore, considering clinical interventions, such as the patient's position and type of

anesthetic drug injection, have a positive impact on the performance of ML models.
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1. Background

Post-induction hypotension (PIH), which refers to

hypotension occurring after the induction of

anesthesia, is a significant concern within anesthesia

practice due to its association with adverse patient

outcomes. It can result in complications such as

prolonged hospital stays and even mortality (1). Various

factors contribute to the development of PIH, including
pre-induction systolic blood pressure (SBP), patient age,

and emergency surgeries (2). Additionally,

premedication drugs and the type of anesthetic
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induction can also contribute to PIH. Despite efforts to

prevent hypotension, it remains challenging due to the

complex interactions of various patient and anesthesia-
related factors (3). The early prediction of PIH could

potentially enhance patient outcomes by enabling
timely intervention and the prevention of adverse

events (4). However, predicting PIH is intricate due to

the multifactorial causes (5). Recent studies have
explored the application of machine learning (ML)

techniques to predict hypotension during anesthesia
induction (5, 6). These investigations have yielded

promising results, indicating that ML models can

accurately predict hypotension based on patient data

collected during anesthesia induction. Nonetheless,

most of these studies have primarily focused on
predicting hypotension solely based on patient data and

have not accounted for the potential influence of
clinical interventions on hypotension prediction.

In this particular study, hypotension during

anesthesia induction was predicted while considering

both clinical interventions and patient data. Clinical

experts' experiences at the bedside suggest that the type

of anesthetic drug injection can impact the occurrence

of hypotension. Administering the anesthetic all at once

(bolus) increases the likelihood of hypotension, whereas

administering it gradually (titrated) reduces the

chances. Consequently, the type of anesthetic drug

injection is one of the clinical interventions investigated

in this study, which hasn't been explored by previous

research. During anesthesia, patients lose the ability to

breathe spontaneously, and it becomes the

anesthesiologist's responsibility to facilitate breathing.

This is achieved by inserting an endotracheal tube into

the patient's airway. The insertion of this tube often

necessitates the patient to lie flat on their back.

Consequently, in surgeries like those involving the back,

spine, and hips, where the patient needs to be in the

prone position for the procedure, they must initially lie

on their back for anesthesia induction. After anesthesia

is administered, a position change is performed to

reposition the patient's face. This change in positioning

on the bed frequently leads to a decrease in blood

pressure — a phenomenon that is examined as a

subsequent clinical intervention under a predefined

framework. In this research, we utilized ML techniques

to build a real-time model for predicting PIH.

Indeed, a crucial aspect of preparing inputs for ML

models is determining an appropriate labeling

approach. Given the absence of a unique hypotension

definition and the varying criteria used in different

studies, such as mean arterial pressure (MAP) below 65

mmHg (5, 7-9) or 55 mmHg (10) or SBP below 90 mmHg

(11), the selection of a sensitive and accurate

hypotension definition becomes essential for

constructing an effective model. Additionally, the
incorporation of feature selection techniques serves as

another strategy to furnish the ML models with more
informative inputs.

In related works, Kendale et al. aimed to predict

hypotension 10 minutes after induction by conducting

multiple ML analyses using features extracted from

electronic health records (EHRs) data. They employed

the Recursive Feature Selection (RFS) function to select

relevant features for ML models, and gradient boosting

machine (GBM) prediction showed the best

performance on both the training and test sets (12).

Moghadam et al. developed an algorithm for predicting

hypotension in intensive care units (ICU) based on the

mean and standard deviation of 11 variables. These

variables included peripheral capillary oxygen

saturation (SpO2), arterial blood pressure (ABP),

diastolic blood pressure (DBP), SBP, respiration rate (RR),

heart rate (HR), pulse pressure (PP), MAP, mean arterial

pressure-to-heart rate ratio (MAP2HR), cardiac output
(CO), and average respiratory rate intervals from

electrocardiogram (ECG) time series (7).

In another study, Sudfeld et al. examined the

association between PIH, occurring during the first 20

minutes following anesthesia induction, and early

intraoperative hypotension (eIOH), occurring during

the first 30 minutes after surgery. They utilized data

from EHRs, which is considered one of the most reliable

sources for medical research, particularly because they

include time series of physiological signals (2). Chen et

al. presented PHASE, a method for converting time series

signals into input features for predictive ML models. By

using physiological signals, researchers can more

accurately predict the adverse effects of surgery. PHASE

was evaluated using EHRs data from two operating

room (OR) datasets and an ICU dataset. It demonstrated

that the PHASE model is interpretable and valuable for

clinical applications (13).

To predict critical conditions such as hemodynamic

instability, critical care clinicians analyze multiple

physiological parameters simultaneously. Cherifa et al.

developed the multi-task learning physiological deep

learner (MTL-PDL), which predicts HR and MAP

simultaneously (9).

2. Methods

2.1. Problem Definition

https://brieflands.com/articles/jcma-151664
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Hypotensive events during the induction of

anesthesia are characterized by a drop in blood pressure

below a clinically significant threshold. This threshold

can be defined by considering a decrease in SBP, DBP, or

MAP values. To predict hypotension during induction
using ML models at time t, we aim to utilize patient

information within the time range of t-5 to t to make

predictions about the occurrence of PIH at the time of

t+10. Our learning model in this task performs binary

classification, categorizing instances into two classes:
Hypotension and non-hypotension. This is achieved by

calculating the probability of a hypotensive event in the

next 10 minutes based on the patient's information

collected five minutes ago. A significant aspect of this

study is to account for the impact of clinical
interventions, such as position and type of anesthetic

drug injection, on the occurrence of hypotension
during the specified time period. In essence, the main

purpose of this study is to employ ML models for

predicting PIH, taking into consideration the influence
of clinical interventions.

2.2. Data Collection

In this study, we collected a dataset of 215 patients

from multiple hospital centers in Iran, between 10 May

2024 and 19 June 2024. The dataset includes the

demographic information and vital records of patients

who underwent general anesthesia. Demographic

information, including age, gender, weight, NPO time,

fluid before induction, American Society of

Anesthesiologists (ASA) physical status classification,

type of surgical procedure, type of surgery, Losartan

usage, background diseases, muscle relaxants,

premedication drugs, IV anesthetic drugs, and details of

anesthesia interventions such as type of anesthetic drug

injection and position, were retrieved from the data

collection forms. Vital signs were collected from SAADAT

B9 vital signs monitors. We extracted the vital records of

patients during the first 30 minutes of anesthesia

induction, including MAP, SBP, DBP, and HR, which were

recorded at 1-minute intervals. The dataset was collected

without any intervention in the patients' treatment

process and was anonymized to ensure the privacy of

patients. However, it's important to note that the

authors did not have access to information that could

potentially identify individual participants, both during

and after the data collection process.

2.3. Features

2.3.1. Feature Types

In this study, we carefully selected several features by

incorporating insights from related studies (5, 6) and

obtaining confirmation from anesthesiologists to

ensure the inclusion of relevant information. These

features were categorized into static and dynamic
groups. The static features consist of clinical features

and clinical interventions. Clinical features such as age,

weight, and gender are included in this study as part of

the static features. Additionally, clinical interventions

implemented during the surgery included position and
type of anesthetic drug injection. By investigating these

interventions, we aimed to capture the effectiveness of

clinical actions in mitigating or resolving hypotensive

episodes.

The dynamic features include vital records or

intraoperative hemodynamic measurements.

Parameters such as SBP, DBP, MAP, and HR were collected.

These measurements provide real-time information

about the patient's cardiovascular status and are crucial

indicators of hypotensive episodes. By incorporating

hemodynamic measurements as features, our models

aimed to capture the dynamic changes in blood

pressure and HR that precede and accompany

hypotension. Both types of features can influence the

risk of hypotension during anesthesia. By considering

these features, our ML models were able to capture

complex patterns and interactions, allowing us to

predict the occurrence of PIH events. Table 1 shows all

the static and dynamic features used in this study.

2.3.2. Feature Vectors

In this section, our objective is to prepare all feature
values for utilization as inputs in ML models, effectively

forming feature vectors. These feature vectors
encompass both static and dynamic features. Each

feature vector consists of 20 elements, and elements 1 to

16 correspond to the static features, which remain
constant throughout the 30-minute induction period.

These static features can have both numerical and non-
numerical values. Non-numerical values will be

transformed into numerical values using encoding
methods. On the other hand, elements 17 to 20 of the

feature vectors are designated for representing

statistical values (such as mean or variance) of dynamic
features that evolve over time. Thus, all the elements

within the feature vectors are transformed into
numerical values. As a result, this process yields feature

vectors containing 20 numerical elements, effectively

consolidating all pertinent information. These prepared
feature vectors are then utilized for subsequent ML

analysis.

https://brieflands.com/articles/jcma-151664
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Table 1. Features Description

Data Sources Data Type Category Features

Data collection
forms Static features

Clinical features

Age

Gender

Weight

NPO time

Fluid before anesthesia induction

ASA (E1, E2, or E3)

Type of surgical procedure (head and neck surgery, thoracic surgery, abdominal and pelvic
surgery, or extremities surgery)

Type of surgery (elective or emergency)

Fluid in early 30 minutes of induction

Losartan usage

Background diseases (diabetes, hypertension, cardiac ischemia, or others)

Muscle relaxants drugs (succinyl choline, atracuriun, cisatracurium, or rocronium)

Premedication drugs (benzodiazepins, opioids, or lidocaine)

IV anesthetics drugs (propofol, sodium thiopental (nesdonal), etomidate, or ketamine)

Clinical interventions
Position (supine, prone, lateral, or semi-sitting)

Type of anesthetic drug injection (bolus or titrated)

Vital recorders Dynamic
features

Intraoperative hemodynamic
measurements

HR

SBP

DBP

MAP

Abbreviations: ASA, American Society of Anesthesiologists; HR, heart rate; SBP, systolic blood pressure; DBP, diastolic blood pressure; MAP, mean arterial pressure.

2.3.3. Feature Selection

In this study, we extracted 20 features from both

static and dynamic features to predict hypotension

during anesthesia induction using ML models. Given

that the dataset contains around 215 samples, it is

important to maintain a well-balanced ratio of features

to samples for effective model training. An excessive

number of features can lead to challenges related to

dimensionality. High dimensionality can make model

training more complex and might necessitate a larger

dataset (14). To address these concerns, we employed

two feature selection methods: Firstly, using

dimensionality reduction techniques, such as Linear

Discriminant Analysis (LDA), Principal Component

Analysis (PCA), and Singular Value Decomposition (SVD)

to reduce the feature count from 20 to 10. Next, we

employed sequential feature selection methods in both

forward and backward forms to choose the top 10

informative features.

2.4. Labeling Approach

Labeling data with appropriate blood pressure

thresholds is crucial for training and evaluating ML

models. In this section, we present a medical definition

of predicting hypotension during anesthesia induction

and describe the data labeling approach. Hypotensive

events during the induction of general anesthesia are

defined by a reduction in blood pressure below a

clinically significant threshold, which can be either

absolute or relative. This binary classification task

encompasses two classes: The hypotension class (labeled

as 1) and the non-hypotension class (labeled as 0). The

determination of these classes relies on three dynamic

variables: The MAP, DBP, and SBP, each representing an

individual's level of hypotension. Distinct threshold

values have been established for these variables to

identify instances of hypotension, with MAP less than 65

mm Hg, along with SBP less than 90 mm Hg, serving as

hypotensive indicators. To assign labels to each sample,

at time t, we examine the values of these three variables

at a time point n+10 minutes ahead. If any of these

values fall below their respective threshold (either

absolute or relative), the sample is labeled as 1, denoting

hypotension. Conversely, if none of these three values

drop below their thresholds, the label 0 is assigned to

the sample, indicating the absence of hypotension.

2.5. Data Monitoring and Predicting Interval

In the current study, the prediction of PIH is carried

out by considering two-time intervals: The data

https://brieflands.com/articles/jcma-151664
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Table 2. Results of Using All Dynamic and Static Data a

Models Accuracy Precision Recall AUC-ROC

LR 63 63 46.4 0.524

SVM 67 52.1 40.1 0.486

K-NN 47.4 43.6 41.3 0.458

DT 85.2 82.9 82.7 0.848

RF 88.3 87.6 85 0.945

GBM 85.3 86.6 78.4 0.929

XGBoost 86.6 85.5 83.1 0.941

LightGBM 87.1 85.7 84.2 0.942

Abbreviations: AUC-ROC, area under the curve of the receiver operating characteristic; LR, logistic regression; SVM, support vector machine; K-NN, K-nearest neighbor; DT,
decision tree; RF, random forest; GBM, gradient boosting machine; XGBoost, eXtreme gradient boosting; LightGBM, light gradient boosting.

a Values are expressed as percentage.

Table 3. Results of Performing Sequential Feature Selection Methods a

Models Accuracy Precision Recall AUC-ROC

RF 85 83.5 84.1 0.933

GBM 84.9 87.79 78.1 0.924

XGBoost 86.3 85.1 85.1 0.939

LightGBM 86.7 86.5 84.6 0.943

Abbreviations: AUC-ROC, area under the curve of the receiver operating characteristic; RF, random forest; GBM, gradient boosting machine; XGBoost, eXtreme gradient boosting;
LightGBM, light gradient boosting.

a Values are expressed as percentage.

monitoring interval and the prediction interval for the

occurrence of PIH. Relevant studies indicate that the

length of these intervals varies based on the patient's

anesthesia location. For instance, in the OR, both the

data monitoring and prediction intervals are reported

as 3, 5, 10, and 15 minutes (12, 15-17). Conversely, for

patients in the ICU, the prediction interval tends to be

longer, even around 30 minutes (7). In this research,

guided by multiple studies and expert anesthesia

validation, we selected a data monitoring interval of five

minutes and a prediction interval of 10 minutes. In

essence, the model will predict PIH in the next 10

minutes, based on information obtained five minutes

prior.

3. Results

3.1. Experiment 1: Using All Static and Dynamic Features

In the first experiment, all static and dynamic

features were provided to the ML models, and the

outcomes are detailed in Table 2.

As observed, the random forest (RF) model has

demonstrated the most favorable performance with

accuracy, precision, recall, and area under the curve of

the receiver operating characteristic (AUC-ROC) of 88.3%,

87.6%, 85%, and 0.945, respectively. Additionally, the GBM,

XGBoost, and LightGBM models also stand out as high-

performing models.

3.2. Experiment 2: Using Sequential Feature Selection
Methods

In the subsequent experiments, the number of input

features for the learning model was intentionally

reduced from the initial 20 features through a process

of feature selection. This method was aimed at

enhancing the model's performance by identifying the

most informative features. Proceeding, we will present

the results of this technique in preparing inputs for the

ML models. It's essential to note that in this experiment,

we will report the outcomes of the top four performing

models along with their corresponding evaluation

metrics.

During the feature selection process using the

sequential feature selection method, which involves

both forward and backward algorithms, we extracted

the top 10 features from the original set of 20 features.

Finally, we considered the top-ranked features as input

for the best-performing models. These features include

https://brieflands.com/articles/jcma-151664
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Table 4. Results of Performing Dimensionality Reduction Methods a

Models
LDA PCA SVD

Accuracy Precision Recall AUC-ROC Accuracy Precision Recall AUC-ROC Accuracy Precision Recall AUC-ROC

RF 67 63.8 64.7 0.759 87.8 85.6 84 0.944 88.1 88.1 85.5 0.947

GBM 72.3 69 72.4 0.813 83.3 84.5 78.1 0.920 83.2 84.8 77.6 0.915

XGBoost 71.2 68.7 68.5 0.800 87.3 87.6 87.3 0.943 87.3 86.9 85.4 0.946

LightGBM 72.4 69.7 70.8 0.806 87.7 87.7 85.2 0.946 87.2 86.6 85 0.947

Abbreviations: LDA, linear discriminant analysis; PCA, principle component analysis; SVD, singular value decomposition; AUC-ROC, area under the curve of the receiver operating
characteristic; RF, random forest; GBM, gradient boosting machine; XGBoost, eXtreme gradient boosting; LightGBM, light gradient boosting.

a Values are expressed as percentage.

age, ASA, gender, position, type of surgery, Losartan

usage, amount of fluid in the early 30 minutes, weight,

HR, muscle relaxants, and IV anesthetic. The results of

the top-performing models with these features as inputs

can be seen in Table 3.

As you can see, LightGBM is the model that has

demonstrated the best performance by receiving the

selected features through sequential feature selection

algorithms. This model achieved accuracy, precision,

recall, and AUC-ROC values of 86.7%, 86.5%, 84.6%, and

0.943, respectively.

3.3. Experiment 3: Using Dimensionality Reduction Methods

Dimensionality reduction is another feature

selection method used in this study. By applying three

kinds of dimensionality reduction methods, including

LDA, PCA, and SVD, we obtained the results presented in

Table 4.

In this experiment, the RF model achieved the best

result when its input was the features selected using

SVD. The RF model demonstrated an accuracy of 88.1%,

precision of 88.1%, recall of 85.5%, and an AUC-ROC of

0.947.

3.4. Experiment 4: Changing the Length of Data Monitoring
Intervals

In the present study, the data monitoring interval is

set to five minutes prior. In this experiment, we varied

the length of this interval to 3, 10, and 15 minutes to

assess the impact of this interval on the performance of

ML models as predictors of hypotension. Table 5

presents the results of this experiment.

As evident from the results, the GBM model attained

the highest performance with a data monitoring

interval of 3 minutes. The corresponding evaluation

metrics values for accuracy, precision, recall, and AUC-

ROC were 90.2%, 88.8%, 87.5%, and 0.961, respectively.

3.5. Experiment 5: Changing the Length of Post-induction
Hypotension Prediction Intervals

As previously mentioned, our goal was to build ML

models for predicting PIH within the subsequent 10

minutes. Therefore, the prediction interval in this study

remained at 10 minutes. However, in the current

experiment, we altered this interval to 3, 5, and 15

minutes to assess its impact. The outcomes of this

experiment are detailed in Table 6.

With a prediction interval of 3 minutes, the GBM

model demonstrated the most favorable outcome. This

model demonstrated an accuracy of 89.5%, precision of

88.8%, recall of 86.3%, and an AUC-ROC of 0.963.

4. Discussion

As previously stated, the aim of this research is to

develop a predictive model using ML algorithms to

ascertain whether a patient will experience hypotension

in the subsequent 10 minutes based on a five-minute

data input taken earlier. The data monitoring interval,

signifying the five-minute window used for model

monitoring, holds paramount importance in this study.

In Experiment 4, we explored the impact of altering the

data monitoring interval while keeping other

parameters constant on the model's performance. We

considered three distinct data monitoring intervals:

Three, 10, and 15 minutes, in contrast to the original 5-

minute interval.

The obtained results indicate that reducing the data

monitoring interval while maintaining a consistent

prediction interval significantly enhances the model's

performance. In other words, the improvement in

model performance resulting from the shortened data

monitoring interval suggests that, under these

conditions, the model places a greater emphasis on the

available patient-specific information, particularly

dynamic features that evolve over time. This, in turn,

facilitates more effective learning by the model, leading

https://brieflands.com/articles/jcma-151664


Hashemi S et al. Brieflands

J Cell Mol Anesth. 2025; 10(3): e151664 7

Table 5. Results of Changing the Length of Data Monitoring Intervals a

Models
RF GBM XGBoost LightGBM

3 min 5 min 10 min 15 min 3 min 5 min 10 min 15 min 3 min 5 min 10 min 15 min 3 min 5 min 10 min 15 min

Accuracy 89.6 88.3 89.2 87.3 90.2 85.3 89.2 86.4 89.2 86.6 88.9 84.4 89.6 87.1 89.2 83.8

Precision 88.3 87.6 88.5 87.3 88.8 86.6 89.5 88.5 87.5 85.5 88 82 88.2 85.7 88.4 84.8

Recall 86.6 85 85.7 83.1 87.5 78.4 84.9 82.2 87.1 83.1 86.1 82.6 87.2 84.2 86.3 82.6

AUC-ROC 0.963 0.945 0.958 0.931 0.961 0.929 0.957 0.933 0.96 0.941 0.958 0.91 0.962 0.942 0.958 0.92

Abbreviations: RF, random forest; GBM, gradient boosting machine; XGBoost, eXtreme gradient boosting; LightGBM, light gradient boosting; AUC-ROC, area under the curve of
the receiver operating characteristic.

a Values are expressed as percentage.

to improved overall efficiency and enhanced prediction

of hypotension.

After exploring the impact of altering the data

monitoring interval, the next experiment (experiment

5) involves investigating the effect of the prediction

interval on the model's predictive capabilities. In this

study, the prediction interval is initially set at 10

minutes. However, the mentioned experiment aims to

evaluate the model's performance using prediction

intervals of 3, 5, and 15 minutes instead of the original

10-minute interval. The central hypothesis in this

section posits that, while maintaining a fixed data

monitoring interval (which is five minutes in this

study), shorter prediction intervals will enhance the

accuracy of the model's predictions. This hypothesis is

based on the notion that reducing the time gap between

these two intervals is likely to result in more accurate

predictions by minimizing information gaps. Longer

intervals, on the other hand, might lead to the exclusion

of critical data, ultimately weakening the model's

predictive capability. The results validate the

aforementioned hypothesis, demonstrating that shorter

prediction intervals indeed contribute to improved

model performance in predicting hypotension.

The process of labeling the collected samples, on

which the model's learning and evaluation are based, is

one of the most important parts of this research. This

task involves considering the concept of hypotension

and the threshold associated with it. As mentioned,

hypotension can be defined in two ways: Absolute or

relative. In this study, the determination of the

hypotension threshold was done in an absolute manner,

using three dynamic variables: The MAP, DBP, and SBP.

While the relative concept of hypotension can also be

utilized to establish this threshold, we conducted an

experiment by employing relative thresholds instead of

absolute ones for data labeling. In this case, by

considering the values of the three mentioned dynamic

variables at time zero, if more than 20% of this value

decreases in any of the subsequent minutes and in any

of these three variables, we labeled the respective

sample as "1", indicating the occurrence of a hypotensive

event.

After training and evaluating the models with

relative labeled data, it was observed that compared to

the absolute labeling results, the RF model exhibited the

best performance. Through relative labeling, the RF

model achieved an accuracy of 82.1%. However,

employing the absolute labeling approach resulted in

an accuracy value of 82.7%. Therefore, no significant

improvement was observed by adopting the relative

labeling approach. Furthermore, it's worth noting that

the study by Putowski et al. (18) also highlighted the

superiority of defining absolute hypotension over the

relative definition. Given the confidence in the

correctness of the obtained results and the

demonstrated superiority of the absolute labeling

method in this study, we can confidently assert that

absolute labeling outperforms the relative labeling

approach.

In the present study, as previously mentioned, the

features can be categorized into two groups: Dynamic

and static. Clinical interventions, such as position and

type of anesthetic drug injection, are considered static

features. To evaluate the impact of information obtained

from these two clinical interventions in the prediction

of ML models, we proceeded with two main analyses.

First, the ML models were trained solely using

dynamic features. The best-performing model, RF,

achieved an accuracy of 80.3%. Subsequently, we added

the two mentioned clinical interventions to the

dynamic feature set and compared the outcomes. The

best-performing model, RF, reported an accuracy of

81.2%. The results clearly demonstrate that the inclusion

of data pertaining to position and type of anesthetic

drug injection as clinical interventions has a positive

effect on the model's performance.

https://brieflands.com/articles/jcma-151664
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Table 6. Results of Changing the Length of Post-induction Hypotension Prediction Intervals a

Models
RF GBM XGBoost LightGBM

3 min 5 min 10 min 15 min 3 min 5 min 10 min 15 min 3 min 5 min 10 min 15 min 3 min 5 min 10 min 15 min

Accuracy 89.1 88.3 88.3 87.4 89.5 88.2 85.3 87.4 89.1 88.9 86.6 86.8 89.3 88.7 87.1 86.8

Precision 87.8 87.2 87.6 86.8 88.8 87.6 86.6 88.1 87.9 88 85.5 86 88.4 87.8 85.7 85.8

Recall 86.3 85.1 85 84.1 86.3 84.6 78.4 82.4 86.2 85.9 83.1 83.6 86 87.4 84.2 83.8

AUC-ROC 0.959 0.952 0.945 0.944 0.963 0.952 0.929 0.941 0.96 0.954 0.941 0.945 0.962 0.955 0.942 0.947

Abbreviations: RF, random forest; GBM, gradient boosting machine; XGBoost, eXtreme gradient boosting; LightGBM, light gradient boosting; AUC-ROC, area under the curve of
the receiver operating characteristic.

a Values are expressed as percentage.

Second, we trained ML models using all static and

dynamic features. The best-performing model, RF,

reached an accuracy of 88.3%. Next, we removed position

and type of anesthetic drug injection from the feature

set and re-evaluated the models. The best-performing

model, RF, reported an accuracy of 82%. Once again, the

results indicate that the omission of these clinical

interventions leads to a decline in performance.

To conclude, our study employed various feature

selection techniques, including sequential feature

selection and dimensionality reduction. The most

notable enhancement in performance was observed

when applying the SVD method, which is a

dimensionality reduction technique. However, it is

imperative to note that in methods like SVD, the selected

features remain a black box and lack clarity. Given the

paramount importance of model interpretability and

comprehending the influential input variables to

achieve desirable outcomes, we recommend exploring

alternative feature selection methods that provide these

attributes.
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