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Abstract

Background: Hypotension is a common complication during the induction of anesthesia, leading to adverse outcomes such
as acute kidney injury (AKI), myocardial injury, and, in high-risk patients, death.

Objectives: This study aimed to predict post-induction hypotension (PIH) by considering clinical interventions using machine
learning (ML) methods.

Methods: Prior to the induction phase of anesthesia, patient data were collected, and cardiac monitoring was set to measure
non-invasive blood pressure (NIBP) at I-minute intervals. Afterwards, induction was performed by the anesthesiologist.
Hypotension was assessed 30 minutes after induction, defined as either a 20% drop in mean arterial pressure (MAP), an absolute
MAP below 65 mmHg, or a systolic blood pressure (SBP) below 90 mmHg. The ML techniques were employed to develop a real-
time hypotension predictor. These models utilize data gathered from five minutes to predict occurrences of hypotension in the
next 10 minutes. Feature selection methods such as dimension reduction and sequential feature selection algorithms were
utilized to provide more informative inputs to the ML models. Static features such as clinical features and dynamic features like
vital signs were collected from patients undergoing general anesthesia across multiple hospital centers. Among the 215 patients,
110 developed PIH.

Results: Without employing feature selection methods, the best performance belongs to the random forest (RF) model, with
an accuracy of 88.3%, precision of 87.6%, recall of 85%, and an area under the curve of the receiver operating characteristic (AUC-
ROC) at 0.945. Moreover, when utilizing feature selection methods, the RF model retained its status as the best model, with
accuracy, precision, recall, and AUC-ROC values of 88.1%, 88.1%, 85.5%, and 0.947, respectively.

Conclusions: We discovered that ML models hold the potential to predict PIH within the subsequent 10 minutes by utilizing
data collected five minutes prior. Furthermore, considering clinical interventions, such as the patient's position and type of
anesthetic drug injection, have a positive impact on the performance of ML models.
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1. Background outcomes. It can result in complications such as
prolonged hospital stays and even mortality (1). Various

Post-induction hypotension (PIH), which refers to factors contribute to the development of PIH, including
hypotension occurring after the induction of  pre-induction systolic blood pressure (SBP), patient age,

anesthesia, is a significant concern within anesthesia
practice due to its association with adverse patient

and emergency surgeries (2). Additionally,
premedication drugs and the type of anesthetic

Copyright © 2025, Hashemi et al. This open-access article is available under the Creative Commons Attribution 4.0 (CC BY 4.0) International License
(https://creativecommons.org|licenses/by/4.0/), which allows for unrestricted use, distribution, and reproduction in any medium, provided that the original

work is properly cited.

How to Cite: Hashemi S, Abin A A, Sheikhi H, Ejmalian A, Nabavi S, et al. Machine Learning-based Prediction of Hypotension During Anesthesia Induction. |

Cell Mol Anesth. 2025; 10 (3): e151664. https://doi.org[10.5812[jcma-151664.


https://doi.org/10.5812/jcma-151664
https://doi.org/10.5812/jcma-151664
https://doi.org/10.5812/jcma-151664
https://doi.org/10.5812/jcma-151664
https://crossmark.crossref.org/dialog/?doi=10.5812/jcma-151664&domain=pdf
https://crossmark.crossref.org/dialog/?doi=10.5812/jcma-151664&domain=pdf
https://orcid.org/0000-0002-7901-2893
https://orcid.org/0000-0002-7901-2893
https://orcid.org/0000-0002-0916-0348
https://orcid.org/0000-0002-0916-0348
https://orcid.org/0000-0001-7240-0239
https://orcid.org/0000-0001-7240-0239
https://orcid.org/0000-0001-9377-3587
https://orcid.org/0000-0001-9377-3587
https://orcid.org/0000-0003-3430-5075
https://orcid.org/0000-0003-3430-5075
https://orcid.org/0000-0002-0710-4967
https://orcid.org/0000-0002-0710-4967
mailto:ardeshir.tajbakhsh@gmail.com

Hashemi Set al.

Brieflands

induction can also contribute to PIH. Despite efforts to
prevent hypotension, it remains challenging due to the
complex interactions of various patient and anesthesia-
related factors (3). The early prediction of PIH could
potentially enhance patient outcomes by enabling
timely intervention and the prevention of adverse
events (4). However, predicting PIH is intricate due to
the multifactorial causes (5). Recent studies have
explored the application of machine learning (ML)
techniques to predict hypotension during anesthesia
induction (5, 6). These investigations have yielded
promising results, indicating that ML models can
accurately predict hypotension based on patient data
collected during anesthesia induction. Nonetheless,
most of these studies have primarily focused on
predicting hypotension solely based on patient data and
have not accounted for the potential influence of
clinical interventions on hypotension prediction.

In this particular study, hypotension during
anesthesia induction was predicted while considering
both clinical interventions and patient data. Clinical
experts' experiences at the bedside suggest that the type
of anesthetic drug injection can impact the occurrence
of hypotension. Administering the anesthetic all at once
(bolus) increases the likelihood of hypotension, whereas
administering it gradually (titrated) reduces the
chances. Consequently, the type of anesthetic drug
injection is one of the clinical interventions investigated
in this study, which hasn't been explored by previous
research. During anesthesia, patients lose the ability to
breathe spontaneously, and it becomes the
anesthesiologist's responsibility to facilitate breathing.
This is achieved by inserting an endotracheal tube into
the patient's airway. The insertion of this tube often
necessitates the patient to lie flat on their back.
Consequently, in surgeries like those involving the back,
spine, and hips, where the patient needs to be in the
prone position for the procedure, they must initially lie
on their back for anesthesia induction. After anesthesia
is administered, a position change is performed to
reposition the patient's face. This change in positioning
on the bed frequently leads to a decrease in blood
pressure — a phenomenon that is examined as a
subsequent clinical intervention under a predefined
framework. In this research, we utilized ML techniques
to build a real-time model for predicting PIH.

Indeed, a crucial aspect of preparing inputs for ML
models is determining an appropriate labeling
approach. Given the absence of a unique hypotension
definition and the varying criteria used in different
studies, such as mean arterial pressure (MAP) below 65
mmHg (5, 7-9) or 55 mmHg (10) or SBP below 90 mmHg

(11), the selection of a sensitive and accurate
hypotension  definition becomes essential for
constructing an effective model. Additionally, the
incorporation of feature selection techniques serves as
another strategy to furnish the ML models with more
informative inputs.

In related works, Kendale et al. aimed to predict
hypotension 10 minutes after induction by conducting
multiple ML analyses using features extracted from
electronic health records (EHRs) data. They employed
the Recursive Feature Selection (RFS) function to select
relevant features for ML models, and gradient boosting
machine (GBM) prediction showed the Dbest
performance on both the training and test sets (12).
Moghadam et al. developed an algorithm for predicting
hypotension in intensive care units (ICU) based on the
mean and standard deviation of 11 variables. These
variables included peripheral capillary oxygen
saturation (SpO,), arterial blood pressure (ABP),
diastolic blood pressure (DBP), SBP, respiration rate (RR),
heart rate (HR), pulse pressure (PP), MAP, mean arterial
pressure-to-heart rate ratio (MAP2HR), cardiac output
(CO), and average respiratory rate intervals from
electrocardiogram (ECG) time series (7).

In another study, Sudfeld et al. examined the
association between PIH, occurring during the first 20
minutes following anesthesia induction, and early
intraoperative hypotension (elOH), occurring during
the first 30 minutes after surgery. They utilized data
from EHRs, which is considered one of the most reliable
sources for medical research, particularly because they
include time series of physiological signals (2). Chen et
al. presented PHASE, a method for converting time series
signals into input features for predictive ML models. By
using physiological signals, researchers can more
accurately predict the adverse effects of surgery. PHASE
was evaluated using EHRs data from two operating
room (OR) datasets and an ICU dataset. It demonstrated
that the PHASE model is interpretable and valuable for
clinical applications (13).

To predict critical conditions such as hemodynamic
instability, critical care clinicians analyze multiple
physiological parameters simultaneously. Cherifa et al.
developed the multi-task learning physiological deep
learner (MTL-PDL), which predicts HR and MAP
simultaneously (9).

2.Methods

2.1. Problem Definition
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Hypotensive events during the induction of
anesthesia are characterized by a drop in blood pressure
below a clinically significant threshold. This threshold
can be defined by considering a decrease in SBP, DBP, or
MAP values. To predict hypotension during induction
using ML models at time t, we aim to utilize patient
information within the time range of t-5 to t to make
predictions about the occurrence of PIH at the time of
t+10. Our learning model in this task performs binary
classification, categorizing instances into two classes:
Hypotension and non-hypotension. This is achieved by
calculating the probability of a hypotensive event in the
next 10 minutes based on the patient's information
collected five minutes ago. A significant aspect of this
study is to account for the impact of clinical
interventions, such as position and type of anesthetic
drug injection, on the occurrence of hypotension
during the specified time period. In essence, the main
purpose of this study is to employ ML models for
predicting PIH, taking into consideration the influence
of clinical interventions.

2.2. Data Collection

In this study, we collected a dataset of 215 patients
from multiple hospital centers in Iran, between 10 May
2024 and 19 June 2024. The dataset includes the
demographic information and vital records of patients
who underwent general anesthesia. Demographic
information, including age, gender, weight, NPO time,
fluid before induction, American Society of
Anesthesiologists (ASA) physical status classification,
type of surgical procedure, type of surgery, Losartan
usage, background diseases, muscle relaxants,
premedication drugs, IV anesthetic drugs, and details of
anesthesia interventions such as type of anesthetic drug
injection and position, were retrieved from the data
collection forms. Vital signs were collected from SAADAT
B9 vital signs monitors. We extracted the vital records of
patients during the first 30 minutes of anesthesia
induction, including MAP, SBP, DBP, and HR, which were
recorded at 1-minute intervals. The dataset was collected
without any intervention in the patients' treatment
process and was anonymized to ensure the privacy of
patients. However, it's important to note that the
authors did not have access to information that could
potentially identify individual participants, both during
and after the data collection process.

2.3. Features

2.3.1. Feature Types

] Cell Mol Anesth. 2025;10(3): e151664

In this study, we carefully selected several features by
incorporating insights from related studies (5, 6) and
obtaining confirmation from anesthesiologists to
ensure the inclusion of relevant information. These
features were categorized into static and dynamic
groups. The static features consist of clinical features
and clinical interventions. Clinical features such as age,
weight, and gender are included in this study as part of
the static features. Additionally, clinical interventions
implemented during the surgery included position and
type of anesthetic drug injection. By investigating these
interventions, we aimed to capture the effectiveness of
clinical actions in mitigating or resolving hypotensive
episodes.

The dynamic features include vital records or
intraoperative hemodynamic measurements.
Parameters such as SBP, DBP, MAP, and HR were collected.
These measurements provide real-time information
about the patient's cardiovascular status and are crucial
indicators of hypotensive episodes. By incorporating
hemodynamic measurements as features, our models
aimed to capture the dynamic changes in blood
pressure and HR that precede and accompany
hypotension. Both types of features can influence the
risk of hypotension during anesthesia. By considering
these features, our ML models were able to capture
complex patterns and interactions, allowing us to
predict the occurrence of PIH events. Table 1 shows all
the static and dynamic features used in this study.

2.3.2. Feature Vectors

In this section, our objective is to prepare all feature
values for utilization as inputs in ML models, effectively
forming feature vectors. These feature vectors
encompass both static and dynamic features. Each
feature vector consists of 20 elements, and elements 1 to
16 correspond to the static features, which remain
constant throughout the 30-minute induction period.
These static features can have both numerical and non-
numerical values. Non-numerical values will be
transformed into numerical values using encoding
methods. On the other hand, elements 17 to 20 of the
feature vectors are designated for representing
statistical values (such as mean or variance) of dynamic
features that evolve over time. Thus, all the elements
within the feature vectors are transformed into
numerical values. As a result, this process yields feature
vectors containing 20 numerical elements, effectively
consolidating all pertinent information. These prepared
feature vectors are then utilized for subsequent ML
analysis.
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Table 1. Features Description

Data Sources Data Type Category Features

Age

Gender

Weight

NPO time

Fluid before anesthesia induction

ASA (E1, E2, or E3)

Clinical features

Type of surgical procedure (head and neck surgery, thoracic surgery, abdominal and pelvic
surgery, or extremities surgery)

Data collection Static features

Type of surgery (elective or emergency)

forms

Fluid in early 30 minutes of induction

Losartan usage

Background diseases (diabetes, hypertension, cardiac ischemia, or others)

Muscle relaxants drugs (succinyl choline, atracuriun, cisatracurium, or rocronium)

Premedication drugs (benzodiazepins, opioids, or lidocaine)

IV anesthetics drugs (propofol, sodium thiopental (nesdonal), etomidate, or ketamine)

Position (supine, prone, lateral, or semi-sitting)

Clinical interventions

Type of anesthetic drug injection (bolus or titrated)

HR

i » i SBP
Vital recorders Dynamic Intraoperative hemodynamic

features measurements

DBP

MAP

Abbreviations: ASA, American Society of Anesthesiologists; HR, heart rate; SBP, systolic blood pressure; DBP, diastolic blood pressure; MAP, mean arterial pressure.

2.3.3. Feature Selection

In this study, we extracted 20 features from both
static and dynamic features to predict hypotension
during anesthesia induction using ML models. Given
that the dataset contains around 215 samples, it is
important to maintain a well-balanced ratio of features
to samples for effective model training. An excessive
number of features can lead to challenges related to
dimensionality. High dimensionality can make model
training more complex and might necessitate a larger
dataset (14). To address these concerns, we employed
two feature selection methods: Firstly, using
dimensionality reduction techniques, such as Linear
Discriminant Analysis (LDA), Principal Component
Analysis (PCA), and Singular Value Decomposition (SVD)
to reduce the feature count from 20 to 10. Next, we
employed sequential feature selection methods in both
forward and backward forms to choose the top 10
informative features.

2.4. Labeling Approach

Labeling data with appropriate blood pressure
thresholds is crucial for training and evaluating ML
models. In this section, we present a medical definition

of predicting hypotension during anesthesia induction
and describe the data labeling approach. Hypotensive
events during the induction of general anesthesia are
defined by a reduction in blood pressure below a
clinically significant threshold, which can be either
absolute or relative. This binary classification task
encompasses two classes: The hypotension class (labeled
as 1) and the non-hypotension class (labeled as 0). The
determination of these classes relies on three dynamic
variables: The MAP, DBP, and SBP, each representing an
individual's level of hypotension. Distinct threshold
values have been established for these variables to
identify instances of hypotension, with MAP less than 65
mm Hg, along with SBP less than 90 mm Hg, serving as
hypotensive indicators. To assign labels to each sample,
at time t, we examine the values of these three variables
at a time point n+10 minutes ahead. If any of these
values fall below their respective threshold (either
absolute or relative), the sample is labeled as 1, denoting
hypotension. Conversely, if none of these three values
drop below their thresholds, the label 0 is assigned to
the sample, indicating the absence of hypotension.

2.5. Data Monitoring and Predicting Interval

In the current study, the prediction of PIH is carried
out by considering two-time intervals: The data

] Cell Mol Anesth. 2025;10(3): e151664
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Table 2. Results of Using All Dynamic and Static Data ?

Models Accuracy Precision Recall AUC-ROC
IR 63 63 46.4 0.524
SVM 67 52.1 40.1 0.486
K-NN 47.4 43.6 413 0.458
DT 85.2 82.9 82.7 0.848
RF 88.3 87.6 85 0.945
GBM 853 86.6 78.4 0.929
XGBoost 86.6 85.5 83.1 0.941
LightGBM 87.1 85.7 84.2 0.942

Abbreviations: AUC-ROC, area under the curve of the receiver operating characteristic; LR, logistic regression; SVM, support vector machine; K-NN, K-nearest neighbor; DT,
decision tree; RF, random forest; GBM, gradient boosting machine; XGBoost, eXtreme gradient boosting; LightGBM, light gradient boosting.

Values are expressed as percentage.

Table 3. Results of Performing Sequential Feature Selection Methods *

Models Accuracy Precision Recall AUC-ROC
RF 85 83.5 84.1 0.933
GBM 84.9 87.79 78.1 0.924
XGBoost 86.3 85.1 85.1 0.939
LightGBM 86.7 86.5 84.6 0.943

Abbreviations: AUC-ROC, area under the curve of the receiver operating characteristic; RF, random forest; GBM, gradient boosting machine; XGBoost, eXtreme gradient boosting;

LightGBM, light gradient boosting.

@Values are expressed as percentage.

monitoring interval and the prediction interval for the
occurrence of PIH. Relevant studies indicate that the
length of these intervals varies based on the patient's
anesthesia location. For instance, in the OR, both the
data monitoring and prediction intervals are reported
as 3, 5, 10, and 15 minutes (12, 15-17). Conversely, for
patients in the ICU, the prediction interval tends to be
longer, even around 30 minutes (7). In this research,
guided by multiple studies and expert anesthesia
validation, we selected a data monitoring interval of five
minutes and a prediction interval of 10 minutes. In
essence, the model will predict PIH in the next 10
minutes, based on information obtained five minutes
prior.

3. Results

3.1. Experiment 1: Using All Static and Dynamic Features

In the first experiment, all static and dynamic
features were provided to the ML models, and the
outcomes are detailed in Table 2.

As observed, the random forest (RF) model has
demonstrated the most favorable performance with
accuracy, precision, recall, and area under the curve of

] Cell Mol Anesth. 2025;10(3): e151664

the receiver operating characteristic (AUC-ROC) of 88.3%,
87.6%, 85%, and 0.945, respectively. Additionally, the GBM,
XGBoost, and LightGBM models also stand out as high-
performing models.

3.2. Experiment 2: Using Sequential Feature Selection
Methods

In the subsequent experiments, the number of input
features for the learning model was intentionally
reduced from the initial 20 features through a process
of feature selection. This method was aimed at
enhancing the model's performance by identifying the
most informative features. Proceeding, we will present
the results of this technique in preparing inputs for the
ML models. It's essential to note that in this experiment,
we will report the outcomes of the top four performing
models along with their corresponding evaluation
metrics.

During the feature selection process using the
sequential feature selection method, which involves
both forward and backward algorithms, we extracted
the top 10 features from the original set of 20 features.
Finally, we considered the top-ranked features as input
for the best-performing models. These features include
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Table 4. Results of Performing Dimensionality Reduction Methods #
Models LDA PCA SVD
Accuracy Precision  Recall AUCROC Accuracy Precision  Recall AUCROC Accuracy Precision  Recall AUC-ROC
RF 67 63.8 64.7 0.759 87.8 85.6 84 0.944 88.1 88.1 85.5 0.947
GBM 723 69 72.4 0.813 833 84.5 781 0.920 83.2 84.8 77.6 0.915
XGBoost 71.2 68.7 68.5 0.800 87.3 87.6 87.3 0.943 87.3 86.9 85.4 0.946
LightGBM 72.4 69.7 70.8 0.806 87.7 87.7 85.2 0.946 87.2 86.6 85 0.947

Abbreviations: LDA, linear discriminant analysis; PCA, principle component analysis; SVD, singular value decomposition; AUC-ROC, area under the curve of the receiver operating
characteristic; RF, random forest; GBM, gradient boosting machine; XGBoost, eXtreme gradient boosting; LightGBM, light gradient boosting.

?Values are expressed as percentage.

age, ASA, gender, position, type of surgery, Losartan
usage, amount of fluid in the early 30 minutes, weight,
HR, muscle relaxants, and IV anesthetic. The results of
the top-performing models with these features as inputs
can be seen in Table 3.

As you can see, LightGBM is the model that has
demonstrated the best performance by receiving the
selected features through sequential feature selection
algorithms. This model achieved accuracy, precision,
recall, and AUC-ROC values of 86.7%, 86.5%, 84.6%, and
0.943, respectively.

3.3. Experiment 3: Using Dimensionality Reduction Methods

Dimensionality reduction is another feature
selection method used in this study. By applying three
kinds of dimensionality reduction methods, including
LDA, PCA, and SVD, we obtained the results presented in
Table 4.

In this experiment, the RF model achieved the best
result when its input was the features selected using
SVD. The RF model demonstrated an accuracy of 88.1%,
precision of 88.1%, recall of 85.5%, and an AUC-ROC of
0.947.

3.4. Experiment 4: Changing the Length of Data Monitoring
Intervals

In the present study, the data monitoring interval is
set to five minutes prior. In this experiment, we varied
the length of this interval to 3, 10, and 15 minutes to
assess the impact of this interval on the performance of
ML models as predictors of hypotension. Table 5
presents the results of this experiment.

As evident from the results, the GBM model attained
the highest performance with a data monitoring
interval of 3 minutes. The corresponding evaluation
metrics values for accuracy, precision, recall, and AUC-
ROC were 90.2%, 88.8%, 87.5%, and 0.961, respectively.

3.5. Experiment 5: Changing the Length of Post-induction
Hypotension Prediction Intervals

As previously mentioned, our goal was to build ML
models for predicting PIH within the subsequent 10
minutes. Therefore, the prediction interval in this study
remained at 10 minutes. However, in the current
experiment, we altered this interval to 3, 5, and 15
minutes to assess its impact. The outcomes of this
experiment are detailed in Table 6.

With a prediction interval of 3 minutes, the GBM
model demonstrated the most favorable outcome. This
model demonstrated an accuracy of 89.5%, precision of
88.8%, recall of 86.3%, and an AUC-ROC of 0.963.

4. Discussion

As previously stated, the aim of this research is to
develop a predictive model using ML algorithms to
ascertain whether a patient will experience hypotension
in the subsequent 10 minutes based on a five-minute
data input taken earlier. The data monitoring interval,
signifying the five-minute window used for model
monitoring, holds paramount importance in this study.
In Experiment 4, we explored the impact of altering the
data monitoring interval while keeping other
parameters constant on the model's performance. We
considered three distinct data monitoring intervals:
Three, 10, and 15 minutes, in contrast to the original 5-
minute interval.

The obtained results indicate that reducing the data
monitoring interval while maintaining a consistent
prediction interval significantly enhances the model's
performance. In other words, the improvement in
model performance resulting from the shortened data
monitoring interval suggests that, under these
conditions, the model places a greater emphasis on the
available patient-specific information, particularly
dynamic features that evolve over time. This, in turn,
facilitates more effective learning by the model, leading
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Table 5. Results of Changing the Length of Data Monitoring Intervals *

RF GBM XGBoost LightGBM
Models
3min 5min 10min 15min 3min 5min 10min 15min 3min 5min 10min 15min 3min 5min 10min 15min
Accuracy 89.6 88.3 89.2 873 90.2 85.3 89.2 86.4 89.2 86.6 88.9 84.4 89.6 87.1 89.2 83.8
Precision 88.3 87.6 88.5 873 88.8 86.6 89.5 88.5 87.5 85.5 88 82 88.2 85.7 88.4 84.8
Recall 86.6 85 85.7 83.1 87.5 78.4 84.9 82.2 87.1 83.1 86.1 82.6 87.2 84.2 86.3 82.6
AUC-ROC 0.963 0.945 0.958 0.931 0.961 0.929 0.957 0.933 0.96 0.941 0.958 0.91 0.962 0.942 0.958 0.92

Abbreviations: RF, random forest; GBM, gradient boosting machine; XGBoost, eXtreme gradient boosting; LightGBM, light gradient boosting; AUC-ROC, area under the curve of

the receiver operating characteristic.

2Values are expressed as percentage.

to improved overall efficiency and enhanced prediction
of hypotension.

After exploring the impact of altering the data
monitoring interval, the next experiment (experiment
5) involves investigating the effect of the prediction
interval on the model's predictive capabilities. In this
study, the prediction interval is initially set at 10
minutes. However, the mentioned experiment aims to
evaluate the model's performance using prediction
intervals of 3, 5, and 15 minutes instead of the original
10-minute interval. The central hypothesis in this
section posits that, while maintaining a fixed data
monitoring interval (which is five minutes in this
study), shorter prediction intervals will enhance the
accuracy of the model's predictions. This hypothesis is
based on the notion that reducing the time gap between
these two intervals is likely to result in more accurate
predictions by minimizing information gaps. Longer
intervals, on the other hand, might lead to the exclusion
of critical data, ultimately weakening the model's
predictive capability. The results validate the
aforementioned hypothesis, demonstrating that shorter
prediction intervals indeed contribute to improved
model performance in predicting hypotension.

The process of labeling the collected samples, on
which the model's learning and evaluation are based, is
one of the most important parts of this research. This
task involves considering the concept of hypotension
and the threshold associated with it. As mentioned,
hypotension can be defined in two ways: Absolute or
relative. In this study, the determination of the
hypotension threshold was done in an absolute manner,
using three dynamic variables: The MAP, DBP, and SBP.
While the relative concept of hypotension can also be
utilized to establish this threshold, we conducted an
experiment by employing relative thresholds instead of
absolute ones for data labeling. In this case, by
considering the values of the three mentioned dynamic
variables at time zero, if more than 20% of this value

] Cell Mol Anesth. 2025;10(3): e151664

decreases in any of the subsequent minutes and in any
of these three variables, we labeled the respective
sample as "1", indicating the occurrence of a hypotensive
event.

After training and evaluating the models with
relative labeled data, it was observed that compared to
the absolute labeling results, the RF model exhibited the
best performance. Through relative labeling, the RF
model achieved an accuracy of 82.1% However,
employing the absolute labeling approach resulted in
an accuracy value of 82.7%. Therefore, no significant
improvement was observed by adopting the relative
labeling approach. Furthermore, it's worth noting that
the study by Putowski et al. (18) also highlighted the
superiority of defining absolute hypotension over the
relative definition. Given the confidence in the
correctness of the obtained results and the
demonstrated superiority of the absolute labeling
method in this study, we can confidently assert that
absolute labeling outperforms the relative labeling
approach.

In the present study, as previously mentioned, the
features can be categorized into two groups: Dynamic
and static. Clinical interventions, such as position and
type of anesthetic drug injection, are considered static
features. To evaluate the impact of information obtained
from these two clinical interventions in the prediction
of ML models, we proceeded with two main analyses.

First, the ML models were trained solely using
dynamic features. The best-performing model, REF,
achieved an accuracy of 80.3%. Subsequently, we added
the two mentioned clinical interventions to the
dynamic feature set and compared the outcomes. The
best-performing model, RF, reported an accuracy of
81.2%. The results clearly demonstrate that the inclusion
of data pertaining to position and type of anesthetic
drug injection as clinical interventions has a positive
effect on the model's performance.
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Table 6. Results of Changing the Length of Post-induction Hypotension Prediction Intervals
Models RF GBM XGBoost LightGBM
3min 5min 10min 15min 3min 5min 10min 15min 3min 5min 10min 15min 3min 5min 10min 15min
Accuracy 89.1 88.3 88.3 87.4 89.5 88.2 85.3 87.4 89.1 88.9 86.6 86.8 89.3 88.7 871 86.8
Precision 87.8 87.2 87.6 86.8 88.8 87.6 86.6 88.1 87.9 88 85.5 86 88.4 87.8 85.7 85.8
Recall 86.3 85.1 85 84.1 86.3 84.6 78.4 82.4 86.2 85.9 83.1 83.6 86 87.4 84.2 83.8
AUC-ROC 0.959 0.952 0.945 0.944 0.963 0.952 0.929 0.941 0.96 0.954 0.941 0.945 0.962 0.955 0.942 0.947

Abbreviations: RF, random forest; GBM, gradient boosting machine; XGBoost, eXtreme gradient boosting; LightGBM, light gradient boosting; AUC-ROC, area under the curve of

the receiver operating characteristic.

?Values are expressed as percentage.

Second, we trained ML models using all static and
dynamic features. The best-performing model, RF,
reached an accuracy of 88.3%. Next, we removed position
and type of anesthetic drug injection from the feature
set and re-evaluated the models. The best-performing
model, RF, reported an accuracy of 82%. Once again, the
results indicate that the omission of these clinical
interventions leads to a decline in performance.

To conclude, our study employed various feature
selection techniques, including sequential feature
selection and dimensionality reduction. The most
notable enhancement in performance was observed
when applying the SVD method, which is a
dimensionality reduction technique. However, it is
imperative to note that in methods like SVD, the selected
features remain a black box and lack clarity. Given the
paramount importance of model interpretability and
comprehending the influential input variables to
achieve desirable outcomes, we recommend exploring
alternative feature selection methods that provide these
attributes.
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