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Abstract

Background: Perioperative management plays a pivotal role in reducing complications and improving patient outcomes. The choice of anesthesia can
significantly influence postoperative trajectories; however, current clinical practice lacks data-driven tools to support personalized selection. With the
emergence of machine learning (ML) and access to large clinical databases, new opportunities have arisen to optimize anesthesia selection and predict patient
outcomes.

Methods: This retrospective study utilized the MIMIC-IV database (version 3.1), which comprises data from over 364,000 patients. After feature selection and
preprocessing, 28 demographic, clinical, and laboratory variables were used to model four types of anesthesia (general, regional, local, and sedation) in 31,821
patients. Supervised models [random forest, logistic regression, support vector machine (SVM), k-nearest neighbors (KNN), decision tree, gradient boosting, and
extreme gradient boosting (XGBoost)] were trained to predict anesthesia type; synthetic minority oversampling technique (SMOTE) was applied within training
to address class imbalance. Performance was evaluated on a held-out test set using accuracy and macro-Fl. Associations between anesthesia type and short-term
outcomes (in-hospital mortality, 30-day readmission, postoperative infection, and length of stay) were examined through observational comparisons.

Results: Boosting-based models achieved the highest predictive performance, with XGBoost and gradient boosting reaching approximately 83% accuracy on
the test set (macro-F1 for XGBoost = 0.45). Across anesthesia groups, regional anesthesia was associated with more favorable outcomes than general anesthesia —
namely lower in-hospital mortality, fewer infections, shorter hospital and intensive care unit (ICU) stays, and reduced 30-day readmission — although estimates
for the regional group were less precise due to small sample size and residual confounding is possible.

Conclusions: Anesthesia type was associated with short-term clinical outcomes in this large, single-center cohort, and boosting models demonstrated strong
predictive performance for anesthesia type. These findings suggest a potential role for predictive analytics in perioperative planning, while underscoring that
observed differences are associations rather than causal effects. Prospective multicenter studies and randomized trials, with longer-term patient-reported
outcomes, are warranted. Predictive models require external validation and calibration before they can be used clinically.
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1. Background

The management of the perioperative period
represents a critical component of healthcare, involving
the coordinated care of patients across the preoperative,
intraoperative, and postoperative phases. Well-
structured management in this setting can reduce

complications, decrease length of stay, and lower the
risks of readmission and mortality (1, 2). Anesthesia
technique plays a pivotal role in postoperative
outcomes, including pain, nausea and vomiting,
cognitive recovery, respiratory function, and length of
stay. These factors guide clinicians in selecting protocols
that promote optimal recovery (3). Recent
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advancements, including target-controlled infusion,
ultrasound-guided regional anesthesia, and closed-loop
anesthesia systems, have improved anesthetic safety
and efficacy. However, many of these innovations are
still under development and not widely adopted in
routine practice (4, 5). Incorporating these innovations
into practice, supported by sustained research and
technological adoption, is essential to further

improving patient outcomes (6).

As healthcare systems become increasingly digitized,
large clinical datasets have emerged, enabling new
approaches to perioperative research. Over the past
decade, artificial intelligence (AI) and machine learning
(ML) have garnered increasing interest in the medical
field. In perioperative care, ML can generate predictive
models and early warning systems, support the
identification of critical illness, and improve the
management of highrisk patients (7-10). Unlike
traditional statistical methods, Al can learn from data,
refine its performance over time, and develop models
tailored to individual patients (11). The intensive care
unit (ICU), due to continuous patient monitoring,
generates large amounts of clinical data. Publicly
available datasets, particularly the MIMIC series, have
enabled extensive research in critical care. MIMIC-I
included over 90 patients (12), followed by MIMIC-I,
which featured larger cohorts and digital integration
(13), and MIMIC-II, which expanded to more than
40,000 patients (14). The MIMIC-IV dataset, which covers
ICU admissions from 2008 to 2019, provides precise
digital information, including electronic medication
records, and features a modular structure that
facilitates efficient use in clinical research (15).

Despite extensive interest in anesthesia-outcome
relationships, most prior studies have been limited to
specific procedures or small cohorts, and few have
simultaneously assessed both predictive feasibility and
real-world outcome associations on a large scale.

2. Objectives

This study aims to evaluate whether routinely
collected perioperative clinical features can accurately
predict anesthesia type and to investigate the
association between anesthesia modality and short-
term clinical outcomes using the MIMIC-IV dataset and
modern ML techniques.

3.Methods

3.1. MIMIC-IV Database

This study utilized version 3.1 of the MIMIC-IV
database, a comprehensive, structured, and anonymized
dataset created by the MIT Laboratory for
Computational Physiology and made freely available to
researchers via the PhysioNet platform. All data used in
this study are publicly available to credentialed
researchers through the PhysioNet platform. The
database contains extensive information about patients
who were treated in the emergency room and ICU at
Beth Israel Deaconess Medical Center in Boston,
Massachusetts. Version 3.1 has information on 364,627
unique patients, 546,028 hospital admissions, and
94,458 ICU stays. It is divided into two main modules:
HOSP, which has hospital-level data like admissions,
diagnoses, laboratory tests, medications, and
administrative or billing information; and ICU, which
has continuous ICU data like vital signs, clinical events,
administered medications, and caregiver interventions.
Only researchers who have finished CITI training on
"Data or Specimens Only Research" and signed the data
use agreement can access this database. The MIMIC-IV
database is a publicly available, de-identified dataset.
Therefore, this study did not require separate approval
from an Institutional Review Board. MIMIC-IV is now one
of the most important tools for research in ML, clinical
risk analysis, outcome prediction, and improving
medical processes (15).

3.2. Collecting Data and Choosing Features

After signing up and obtaining permission on the
PhysioNet platform, data analysis was performed in the
Jupyter Notebook environment using Python version
3.11. The libraries used were Pandas, NumPy, and scikit-
learn. The unique identifier (subject;yq) was used to get

patient-level information. Initially, 32 candidate features
were selected based on their clinical significance and
recommendations from anesthesiology experts. We
used a combination of domain expertise and statistical
filtering to select the features. Initially, 32 candidate
features were chosen based on clinical relevance,
followed by statistical analysis using ANOVA. These
included demographic variables (like sex and anchor
age), information about the admission (like the type of
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admission, insurance, in-hospital death rate, and 30-day
readmission rate), comorbidities (like diabetes,
hypertension, CAD, cancer, CKD, COPD, sepsis, and
infections, which were coded as binary variables), and
procedural information (like the type of surgery and
anesthesia). We averaged laboratory and physiological
measures,
creatinine,

including hemoglobin,
blood wurea nitrogen

platelet
(BUN),

potassium, INR, diastolic blood pressure, GCS score, and
weight, to create patient-level summaries that were
representative. Records containing incomplete or

count,
sodium,

implausible values were omitted. After that, a univariate
statistical analysis using ANOVA was done, and variables
with P < 0.05 were thought to be statistically significant.
Atotal of 28 final features were chosen for modeling.

3.3. Target Variable and Outcomes

The main variable of this study was the type of
anesthesia, which was a multiclass categorical variable
with four groups: General, regional, local, and sedation.
Furthermore, a series of secondary outcomes was
included to facilitate a more thorough assessment of
anesthesia-related effects. These outcomes consisted of
duration of hospital stay, duration of ICU stay, in-
hospital mortality, 30-day readmission, and incidence of
infection. The lengths of hospital and ICU stays were
broken down into three groups: Short (< 24 hours),
intermediate (24 - 72 hours), and long (> 72 hours). In-
hospital mortality and 30-day readmission were
classified as binary outcomes, and postoperative or in-
hospital infection was similarly regarded as a binary
variable. This multidimensional outcome design
facilitated a more comprehensive examination of the
correlation between anesthesia type and clinical
outcomes.

3.4. Data Preprocessing

The LabelEncoder converted categorical variables,
such as sex, admission type, and surgery type, into
numerical values, enabling the data to be used for
modeling. We used MinMaxScaler to normalize the
numerical variables so that differences in scale would
have less of an effect. Data normalization was performed
using MinMaxScaler for consistency across models.
However, for tree-based models like extreme gradient
boosting (XGBoost) and random forest, this scaling does
not affect model performance; it was applied to ensure

] Cell Mol Anesth. 2025;10(4): 166293

compatibility with other models. We averaged temporal
data, such as lab results and vital signs, to make things
easier and more consistent. Using column means,
SimpleImputer filled in missing numbers, and the Z-
score method identified and removed outliers. The last
dataset was divided into two parts: A training set and a
testing set, with an 80/20 split. A fixed random state was
used to ensure the results could be reproduced. To fix
the problem of class imbalance in anesthesia type, two
methods were used: The synthetic minority
oversampling technique (SMOTE) to add more examples
to minority classes and adjusting class weights
(classyejghe = 'balanced') for some models to make them

more sensitive to categories that are not well

represented.

3.5. Model Implementation

All modeling procedures were executed in scikit-
learn using Jupyter Notebook. The primary goal was to
determine the type of anesthesia to use based on
demographic, clinical, and surgical factors, and to
examine the relationship between these factors and
secondary outcomes. The models used were random
forest, logistic regression, support vector machine
(SVM), k-nearest neighbors (KNN), decision tree,
gradient boosting, and XGBoost, among others. Multi-
output models, such as MultiOutputClassifier and
MultiOutputRegressor, were used when multiple
outcomes needed to be predicted simultaneously.

3.6. Model Evaluation

We evaluated the model on a test set to assess its
performance. Standard multiclass evaluation metrics,
such as overall accuracy, precision, recall, and F1 score,
were used to predict the type of anesthesia as a four-
class categorical variable. We utilized functions from the
scikit-learn library to perform all the mathematical
operations. Lastly, the models that performed best in
predicting the type of anesthesia were selected as the
best-performing models.

4. Results

4.1. Baseline Characteristics

After data preprocessing and outlier removal, a total
of 31,821 patients were included in the study. These
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Table 1. Baseline Characteristics

Features General Anesthesia (N =24,545)

Regional Anesthesia (N =127)

Local Anesthesia (N =2990) Sedation (N = 4159)

Age 62.4+14.8
Gender (male) 52.1
Diabetes 23.4
Hypertension 39.8
Coronary artery disease 15.2
Kidney failure 125
Asthma and COPD 10.8
Cancer 6.2
Sepsis history 71
Hemoglobin (g/dL) 132+1.8
Platelets (x 10 3/uL) 25035
Creatinine (mgj/dL) 11+03
Infection history 9.1
Hospital length of stay (d) 2.6+£4.9
ICU length of stay (d) 21+4.2

65.7+13.1 62.1+15.0 61.7+13.5
53.0 54.5 50.5
25.6 20.2 21.8
473 42.2 393
16.1 14.3 2.8
133 1.1 10.0
13.2 9.5 8.7
7.8 5.9 6.0
83 6.7 6.1
13.5£1.9 133117 13.0£18
270+40 245+30 235%38
1.0+0.2 11+£0.3 12+03
4.6 6.1 5.5
1.8+3.7 24142 23%35
14+35 2.0£37 2.2+%31

Abbreviation: ICU, intensive care unit.

2Values are expressed as mean + SD or percentage.

patients were divided into four groups based on the
type of anesthesia. The general anesthesia group had the
largest number of patients (24,545), followed by the
sedation, local, and regional anesthesia groups, which
ranked second, third, and fourth, with 4,159, 2,990, and
127 patients, respectively. The mean age of the patients
was approximately 62.4 years. In terms of gender, 52.1%
of the subjects were male and 47.9% were female.

A significant difference was observed between the
anesthesia groups. Patients in the regional anesthesia
group were older on average than those in the general
anesthesia group (mean age 65.7 vs. 62.4; P < 0.001). Also,
the prevalence of hypertension was higher in the
regional anesthesia group (47.3% vs. 39.8%; P < 0.001),
while no significant difference was observed for
diabetes (P = 0.21). The prevalence of CAD differed
modestly but significantly across groups (P = 0.008).
Most laboratory parameters showed statistically
significant  between-group differences, although
absolute differences were small.

Table 1
(demographic, clinical, and laboratory) by type of

shows the baseline characteristics
anesthesia performed. This table provides information
on the mean age, gender, comorbidities (including
diabetes, hypertension, coronary artery disease, renal
failure, and cancer), and laboratory parameters

(hemoglobin, platelets, creatinine, and infection) for

each anesthesia group. Significant differences in
demographic and clinical characteristics can affect

clinical outcomes.

4.2. Performance of Machine Learning Models (Synthetic
Minority Oversampling Technique-Balanced Data)

Using 28 selected features, seven ML models were
compared on the held-out test set after applying SMOTE
to address class imbalance across anesthesia types.
Gradient boosting and XGBoost achieved the highest
overall accuracy (83.1% and 83.1%, respectively), with
random forest close behind (82.6%). At the class level,
gradient boosting yielded the best F1 score for general
anesthesia, whereas XGBoost outperformed the others
for sedation and local anesthesia; all models struggled
with regional anesthesia due to the extremely small
sample Overall, KNN and decision tree
underperformed relative to boosting-based models.

size.

4.3. Data Balance (Synthetic Minority Oversampling
Technique) and Class Weights

The SMOTE increased overall accuracy
approximately  77.5%  without resampling to
approximately 83% with resampling for boosting-based

(from

models), but did not significantly improve macro-Fi,
and the performance for the regional class remained
low. We therefore report the SMOTE results as the main
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Table 2. Performance of Machine-Learning Models on the Synthetic Minority Oversampling Technique-Balanced Test Set

Models Accuracy Macro-Precision Macro-Recall Macro-F1 Weighted-F1
Gradient boosting 0.8314 0.52 0.42 0.43 0.80
XGBoost 0.8308 0.60 0.43 0.45 0.80
Random forest 0.8259 0.52 038 0.38 0.78
KNN 0.7832 0.40 033 034 0.74
Decision tree 0.7361 038 0.39 0.38 0.74
SVM 0.6573 0.40 0.53 0.41 0.71
Logistic regression 0.5527 037 0.52 035 0.63

Abbreviations: XGBoost, extreme gradient boosting; KNN, k-nearest neighbors; SVM, support vector machine.

analysis and provide non-resampled results as a
sensitivity analysis. Where supported (e.g., LR, SVM, and
RF), classeighe = 'balanced' showed broadly consistent

patterns with the SMOTE analysis.

4.4. Main Result

The XGBoost and gradient boosting achieved the
highest performance in predicting the type of
anesthesia. For XGBoost, the approximate binomial 95%
CI for accuracy was 82.2 - 84.0%; for gradient boosting,
82.2 - 84.1%. The macro-averaged F1 score for XGBoost was
0.45, reflecting the impact of severe class imbalance.
Given the near-tie in accuracies, we report both boosting
models as top performers and provide full per-class
metrics in Table 2. Agreement between predictions and
true labels, measured by Cohen’s x, was 0.48 (95% CI 0.46
- 0.51) for XGBoost and 0.47 (0.45 - 0.49) for gradient
boosting on the four-class task.

4.5. Clinical Interpretation

This study indicates that the choice of anesthesia is
associated with differences in clinical outcomes, such as
in-hospital mortality, 30-day readmission, infection, and
length of hospital and ICU stay. Regional anesthesia was
associated with more favorable outcomes compared
with general anesthesia. In our analyses, regional
anesthesia was associated with approximately 37% lower
odds of in-hospital mortality (OR = 0.63), shorter ICU
stays, fewer infections, and lower 30-day readmission
and hospital length of stay. Possible mechanisms — such
as attenuation of systemic inflammatory and stress
responses — are biologically plausible but remain
hypotheses. Because general anesthesia is often selected
for more complex or urgent procedures, residual
confounding (e.g., confounding by indication) may

] Cell Mol Anesth. 2025;10(4): 166293

persist, and estimates for the regional group are limited
by its small sample size. Therefore, these findings
should be interpreted as associations rather than causal
effects, while still providing information that may help
clinicians select the most appropriate anesthetic
technique for patients with specific clinical conditions.

5. Discussion

In this large retrospective cohort study, which
included more than 30,000 patients from the MIMIC-IV
database, we observed that the type of anesthesia was
associated with short-term outcomes. Compared with
general anesthesia, regional anesthesia was associated
with lower in-hospital mortality, decreased infection
rates, shorter hospital and ICU stays, and reduced 30-day
readmissions. Furthermore, ML analyses demonstrated
that demographic and clinical characteristics could
predict anesthesia type with high accuracy. The XGBoost
and gradient boosting achieved the highest accuracy
(approximately 83%) on the held-out test set (macro-F1
for XGBoost = 0.45). Collectively, these findings highlight
both the clinical implications and the predictive utility
of anesthesia selection in patient stratification.

It is important to emphasize that this study is
observational in design, and our primary goal was to
identify patterns and associations rather than establish
causality. Our findings are consistent with earlier
evidence that regional anesthesia is associated with
more favorable perioperative outcomes than general
anesthesia, although effect sizes may vary across
subgroups and outcomes. Earlier studies, including
systematic reviews and meta-analyses, have compared
the efficacy and patient outcomes associated with
general, regional, and local anesthesia in both surgical
and critical care settings. For example, recent meta-
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analyses found no significant difference in overall
between
However,

sedation or anesthesia success rates
remimazolam  and  propofol  (16).
remimazolam may reduce the risk of hypoxemia and
injection pain, at the expense of longer awakening
times (17).

Regional anesthesia techniques, such as peripheral
nerve blocks, have been associated with lower early
postoperative pain scores compared with general
anesthesia, though differences diminish after the first 12
hours post-surgery. Moreover, regional approaches are
associated with lower opioid consumption and fewer
instances of nausea and vomiting immediately
postoperatively (18). When comparing regional and
general anesthesia for major procedures, Bayesian meta-
analyses suggest that the use of dexmedetomidine as an
adjunct can further improve quality of recovery (QoR)
and patient-centered outcomes, including reduced
agitation and faster return to baseline function (19).

More recently, analyses using large critical care
databases, such as MIMICIV, have produced
complementary associations regarding anesthetic
techniques and sedative combinations. These studies
demonstrate that sedatives, such as dexmedetomidine,
have been associated with improved survival and fewer
complications compared to midazolam or propofol in
mechanically ventilated ICU patients (16, 20, 21). Other
studies using the same dataset have also suggested that
ketamine may offer short-term mortality benefits in
critically ill patients on vasopressors, though its
advantages may not persist at 90 days (22).

Combination anesthesia approaches, such as general
anesthesia combined with regional blocks, have been
associated with enhanced recovery markers compared
to general anesthesia alone, including improved
postoperative pulmonary function, more stable
hemodynamics, lower complication rates, and faster
recovery of cognitive function and sleep quality. For
instance, patients receiving combined anesthesia
exhibited better pulmonary oxygenation, more stable
hemodynamics, and a faster recovery of cognitive and
sleep quality after surgery compared to those receiving
general anesthesia alone. Additionally, combined
general and epidural anesthesia improved pain control
and psychomotor recovery after major surgery (23-25).

Additionally, new agents, such as remimazolam, are
being investigated for their role in reducing

postoperative nausea and vomiting, which remain
important recovery outcomes in anesthesia practice
(26). Because most of these analyses are observational
and often conducted in single centers, residual
confounding and selection bias remain possible;
therefore, effect sizes should be interpreted cautiously.

What distinguishes the present study from earlier
literature is its scale, breadth, and methodological
approach. Unlike prior single-procedure or limited-
population analyses, our work leveraged data from
more than 30,000 patients undergoing diverse surgical
interventions. By integrating modern ML approaches,
we not only documented between-group outcome
differences across anesthesia modalities but also
demonstrated that patient- and procedure-level factors
can predict anesthesia type with high accuracy (XGBoost
and gradient boosting achieved approximately 83%
accuracy on the held-out test set). These findings
contribute to the growing body of evidence suggesting
that anesthesia choice is not merely a procedural
decision but is also associated with the patient's
trajectory, and they highlight the potential role of
predictive modeling in guiding perioperative care.

In contrast to randomized controlled trials that focus
on narrow patient groups, our database-driven
approach provides insights into real-world practice
patterns and outcomes across a wide range of clinical
contexts, thereby offering complementary evidence to
trial-based literature. Despite its strengths, this study
has notable limitations. Retrospective design inherently
risks selection bias, as patients undergoing regional
anesthesia may represent less complex surgical cases or
distinct comorbidity profiles compared with those
receiving general Although
adjustments were applied, unmeasured confounding,
such as intraoperative management practices or
anesthesiologist preference, remains possible. Group
size imbalance further constrained analysis, with
approximately 24,545 patients in the general anesthesia
group but only 127 in the regional anesthesia group;
estimates for the regional arm are therefore less precise.

anesthesia. covariate

Moreover, reliance on the MIMIC-IV dataset, drawn
from a single U.S. tertiary hospital, restricts the
generalizability of these findings to broader healthcare
contexts. The limitation that databases like MIMIC-1V do
not capture postoperative functional outcomes such as
long-term pain, cognitive recovery, or quality of life is
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increasingly acknowledged in anesthesia research.
Functional outcomes and QoR after anesthesia and
surgery are complex, multidimensional processes that
encompass physical, psychological, and social domains,
which traditional datasets often fail to capture (27, 28).
The QoR scales, such as the QoR-15 and QoR-40, provide
patient-centered metrics but are not routinely included
in large clinical databases, thereby limiting
comprehensive outcome assessment (29).

Several mechanisms may explain why regional
anesthesia was associated with improved outcomes.
First, regional anesthesia may reduce sympathetic
activation and blunt the surgical stress response,
thereby contributing to more stable cardiovascular
physiology (30). Second, by reducing the need for
tracheal intubation and mechanical ventilation in
selected procedures, regional anesthesia may lower the
risk of pulmonary complications such as pneumonia

and ventilator-associated lung injury (31). Third,
regional approaches may attenuate systemic
inflammation (e.g., lower perioperative cytokine

release), potentially reducing the risk of infection and
sepsis (32). In older adults, regional anesthesia has been
associated with a lower incidence of postoperative
delirium and cognitive dysfunction compared with
general anesthesia in some studies, which may translate
into more favorable recovery trajectories (33-35).

From a clinical perspective, these findings suggest
that anesthetic technique should be considered not
only from a procedural standpoint but also as part of
individualized perioperative risk management. In frail
or multimorbid patients, regional anesthesia may offer
meaningful reductions in morbidity and resource
utilization when feasible; conversely, general anesthesia
remains essential for complex or long-duration
operations where regional techniques are impractical or
contraindicated. Practical considerations, including
surgical site, expected duration, anticoagulation status,
patient preference, and operator expertise, as well as the
possibility of block failure and conversion to general
anesthesia, should be incorporated into shared
decision-making. Machine-learning tools, such as those
evaluated here, could eventually support clinicians by
identifying patients most likely to benefit from regional
approaches, pending external validation, calibration,
and decision-curve analysis. They should not
complement clinical judgment.

] Cell Mol Anesth. 2025;10(4): 166293

Further research is needed through multicenter
prospective studies to confirm these associations in
broader populations. Randomized controlled trials
remain crucial for establishing causality, particularly for
multimodal anesthesia strategies and novel agents such
as remimazolam and ciprofol. Long-term endpoints,
including persistent pain, cognitive recovery, and
quality of life, should be incorporated. Prospective
registries should also include patientreported
outcomes to capture QoR more comprehensively.
Ultimately, evaluating Al-enabled perioperative decision
support in pragmatic trials could clarify its impact on

patient safety, efficiency, and outcomes.

5.1. Conclusions

Our findings from a retrospective analysis of more
than 30,000 patients in the MIMIC-IV database indicate
that the choice of anesthesia has a measurable impact
on perioperative outcomes, with regional anesthesia
associated with lower in-hospital mortality, reduced
infection rates, and shorter hospital and ICU stays
compared with general anesthesia. By incorporating ML
methods, particularly the XGBoost algorithm, we also
demonstrated that anesthesia type can be predicted
with high accuracy using routine demographic and
clinical features, highlighting the potential of predictive
analytics to support personalized anesthesia planning.
While the retrospective design, imbalance in group
sizes, and lack of long-term functional outcomes limit
causal inference, the consistency of associations across
multiple endpoints underscores the clinical importance
of anesthesia modality as more than a technical
consideration, but rather as a determinant of patient
recovery and healthcare resource use. Future
prospective multicenter studies and randomized
controlled trials are needed to confirm these
observations, integrate long-term and patient-reported
outcomes, and evaluate emerging agents and
multimodal strategies. The use of Al in perioperative
decision-making may further enhance individualized
and patient-centered care in anesthesia.

5.2. Limitations

This retrospective, observational study precludes
causal inference; findings should be interpreted as
associations. Although we adjusted for measured
covariates, residual and unmeasured confounding (e.g.,
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intraoperative management, provider preference) may
remain. Procedure information was available only at a
coarse level; detailed factors such as urgency,
complexity, surgical approach, and ASA class were not
comprehensively captured, which may influence both
anesthetic selection and outcomes (confounding by
indication). We used secondary data from MIMICIV
(single U.S. tertiary center), limiting generalizability;
registry data can include missingness, miscoding, and
exposure misclassification (e.g., combined general-plus-
regional techniques labeled as a single category).
Preprocessing choices (e.g., imputation and outlier
handling) may affect estimates and should be viewed as
analytic assumptions. There was marked class
imbalance (general > regional); we addressed this only
in prediction models using SMOTE within training folds
to avoid leakage, but the small regional cohort still
reduces the precision/stability of estimates for that
group. For ICU time-to-discharge, time-to-event analyses
may be affected by competing risks and time-dependent
confounding. Finally, while machine-learning models
performed well internally, external validation,
calibration, and decision-curve analysis are needed
before clinical deployment.
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