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Abstract

Background: Perioperative management plays a pivotal role in reducing complications and improving patient outcomes. The choice of anesthesia can

significantly influence postoperative trajectories; however, current clinical practice lacks data-driven tools to support personalized selection. With the

emergence of machine learning (ML) and access to large clinical databases, new opportunities have arisen to optimize anesthesia selection and predict patient

outcomes.

Methods: This retrospective study utilized the MIMIC-IV database (version 3.1), which comprises data from over 364,000 patients. After feature selection and

preprocessing, 28 demographic, clinical, and laboratory variables were used to model four types of anesthesia (general, regional, local, and sedation) in 31,821

patients. Supervised models [random forest, logistic regression, support vector machine (SVM), k-nearest neighbors (KNN), decision tree, gradient boosting, and

extreme gradient boosting (XGBoost)] were trained to predict anesthesia type; synthetic minority oversampling technique (SMOTE) was applied within training

to address class imbalance. Performance was evaluated on a held-out test set using accuracy and macro-F1. Associations between anesthesia type and short-term

outcomes (in-hospital mortality, 30-day readmission, postoperative infection, and length of stay) were examined through observational comparisons.

Results: Boosting-based models achieved the highest predictive performance, with XGBoost and gradient boosting reaching approximately 83% accuracy on

the test set (macro-F1 for XGBoost ≈ 0.45). Across anesthesia groups, regional anesthesia was associated with more favorable outcomes than general anesthesia —

namely lower in-hospital mortality, fewer infections, shorter hospital and intensive care unit (ICU) stays, and reduced 30-day readmission — although estimates

for the regional group were less precise due to small sample size and residual confounding is possible.

Conclusions: Anesthesia type was associated with short-term clinical outcomes in this large, single-center cohort, and boosting models demonstrated strong

predictive performance for anesthesia type. These findings suggest a potential role for predictive analytics in perioperative planning, while underscoring that

observed differences are associations rather than causal effects. Prospective multicenter studies and randomized trials, with longer-term patient-reported

outcomes, are warranted. Predictive models require external validation and calibration before they can be used clinically.
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1. Background

The management of the perioperative period

represents a critical component of healthcare, involving

the coordinated care of patients across the preoperative,

intraoperative, and postoperative phases. Well-

structured management in this setting can reduce

complications, decrease length of stay, and lower the

risks of readmission and mortality (1, 2). Anesthesia

technique plays a pivotal role in postoperative

outcomes, including pain, nausea and vomiting,

cognitive recovery, respiratory function, and length of

stay. These factors guide clinicians in selecting protocols

that promote optimal recovery (3). Recent
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advancements, including target-controlled infusion,

ultrasound-guided regional anesthesia, and closed-loop

anesthesia systems, have improved anesthetic safety

and efficacy. However, many of these innovations are

still under development and not widely adopted in

routine practice (4, 5). Incorporating these innovations

into practice, supported by sustained research and

technological adoption, is essential to further

improving patient outcomes (6).

As healthcare systems become increasingly digitized,

large clinical datasets have emerged, enabling new

approaches to perioperative research. Over the past

decade, artificial intelligence (AI) and machine learning

(ML) have garnered increasing interest in the medical

field. In perioperative care, ML can generate predictive

models and early warning systems, support the

identification of critical illness, and improve the

management of high-risk patients (7-10). Unlike

traditional statistical methods, AI can learn from data,

refine its performance over time, and develop models

tailored to individual patients (11). The intensive care

unit (ICU), due to continuous patient monitoring,

generates large amounts of clinical data. Publicly

available datasets, particularly the MIMIC series, have

enabled extensive research in critical care. MIMIC-I

included over 90 patients (12), followed by MIMIC-II,

which featured larger cohorts and digital integration

(13), and MIMIC-III, which expanded to more than

40,000 patients (14). The MIMIC-IV dataset, which covers

ICU admissions from 2008 to 2019, provides precise

digital information, including electronic medication

records, and features a modular structure that

facilitates efficient use in clinical research (15).

Despite extensive interest in anesthesia-outcome

relationships, most prior studies have been limited to

specific procedures or small cohorts, and few have

simultaneously assessed both predictive feasibility and

real-world outcome associations on a large scale.

2. Objectives

This study aims to evaluate whether routinely

collected perioperative clinical features can accurately

predict anesthesia type and to investigate the

association between anesthesia modality and short-

term clinical outcomes using the MIMIC-IV dataset and

modern ML techniques.

3. Methods

3.1. MIMIC-IV Database

This study utilized version 3.1 of the MIMIC-IV

database, a comprehensive, structured, and anonymized

dataset created by the MIT Laboratory for

Computational Physiology and made freely available to

researchers via the PhysioNet platform. All data used in

this study are publicly available to credentialed

researchers through the PhysioNet platform. The

database contains extensive information about patients

who were treated in the emergency room and ICU at

Beth Israel Deaconess Medical Center in Boston,

Massachusetts. Version 3.1 has information on 364,627

unique patients, 546,028 hospital admissions, and

94,458 ICU stays. It is divided into two main modules:

HOSP, which has hospital-level data like admissions,

diagnoses, laboratory tests, medications, and

administrative or billing information; and ICU, which

has continuous ICU data like vital signs, clinical events,

administered medications, and caregiver interventions.

Only researchers who have finished CITI training on

"Data or Specimens Only Research" and signed the data

use agreement can access this database. The MIMIC-IV

database is a publicly available, de-identified dataset.

Therefore, this study did not require separate approval

from an Institutional Review Board. MIMIC-IV is now one

of the most important tools for research in ML, clinical

risk analysis, outcome prediction, and improving

medical processes (15).

3.2. Collecting Data and Choosing Features

After signing up and obtaining permission on the

PhysioNet platform, data analysis was performed in the

Jupyter Notebook environment using Python version

3.11. The libraries used were Pandas, NumPy, and scikit-

learn. The unique identifier (subjectid) was used to get

patient-level information. Initially, 32 candidate features

were selected based on their clinical significance and

recommendations from anesthesiology experts. We

used a combination of domain expertise and statistical

filtering to select the features. Initially, 32 candidate

features were chosen based on clinical relevance,

followed by statistical analysis using ANOVA. These

included demographic variables (like sex and anchor

age), information about the admission (like the type of
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admission, insurance, in-hospital death rate, and 30-day

readmission rate), comorbidities (like diabetes,

hypertension, CAD, cancer, CKD, COPD, sepsis, and

infections, which were coded as binary variables), and

procedural information (like the type of surgery and

anesthesia). We averaged laboratory and physiological

measures, including hemoglobin, platelet count,

creatinine, blood urea nitrogen (BUN), sodium,

potassium, INR, diastolic blood pressure, GCS score, and

weight, to create patient-level summaries that were

representative. Records containing incomplete or

implausible values were omitted. After that, a univariate

statistical analysis using ANOVA was done, and variables

with P < 0.05 were thought to be statistically significant.

A total of 28 final features were chosen for modeling.

3.3. Target Variable and Outcomes

The main variable of this study was the type of

anesthesia, which was a multiclass categorical variable

with four groups: General, regional, local, and sedation.

Furthermore, a series of secondary outcomes was

included to facilitate a more thorough assessment of

anesthesia-related effects. These outcomes consisted of

duration of hospital stay, duration of ICU stay, in-

hospital mortality, 30-day readmission, and incidence of

infection. The lengths of hospital and ICU stays were

broken down into three groups: Short (≤ 24 hours),

intermediate (24 - 72 hours), and long (> 72 hours). In-

hospital mortality and 30-day readmission were

classified as binary outcomes, and postoperative or in-

hospital infection was similarly regarded as a binary

variable. This multidimensional outcome design

facilitated a more comprehensive examination of the

correlation between anesthesia type and clinical

outcomes.

3.4. Data Preprocessing

The LabelEncoder converted categorical variables,

such as sex, admission type, and surgery type, into

numerical values, enabling the data to be used for

modeling. We used MinMaxScaler to normalize the

numerical variables so that differences in scale would

have less of an effect. Data normalization was performed

using MinMaxScaler for consistency across models.

However, for tree-based models like extreme gradient

boosting (XGBoost) and random forest, this scaling does

not affect model performance; it was applied to ensure

compatibility with other models. We averaged temporal

data, such as lab results and vital signs, to make things

easier and more consistent. Using column means,

SimpleImputer filled in missing numbers, and the Z-

score method identified and removed outliers. The last

dataset was divided into two parts: A training set and a

testing set, with an 80/20 split. A fixed random state was

used to ensure the results could be reproduced. To fix

the problem of class imbalance in anesthesia type, two

methods were used: The synthetic minority

oversampling technique (SMOTE) to add more examples

to minority classes and adjusting class weights

(classweight = 'balanced') for some models to make them

more sensitive to categories that are not well

represented.

3.5. Model Implementation

All modeling procedures were executed in scikit-

learn using Jupyter Notebook. The primary goal was to

determine the type of anesthesia to use based on

demographic, clinical, and surgical factors, and to

examine the relationship between these factors and

secondary outcomes. The models used were random

forest, logistic regression, support vector machine

(SVM), k-nearest neighbors (KNN), decision tree,

gradient boosting, and XGBoost, among others. Multi-

output models, such as MultiOutputClassifier and

MultiOutputRegressor, were used when multiple

outcomes needed to be predicted simultaneously.

3.6. Model Evaluation

We evaluated the model on a test set to assess its

performance. Standard multiclass evaluation metrics,

such as overall accuracy, precision, recall, and F1 score,

were used to predict the type of anesthesia as a four-

class categorical variable. We utilized functions from the

scikit-learn library to perform all the mathematical

operations. Lastly, the models that performed best in

predicting the type of anesthesia were selected as the

best-performing models.

4. Results

4.1. Baseline Characteristics

After data preprocessing and outlier removal, a total

of 31,821 patients were included in the study. These
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Table 1. Baseline Characteristics a

Features General Anesthesia (N = 24,545) Regional Anesthesia (N = 127) Local Anesthesia (N = 2990) Sedation (N = 4159)

Age 62.4 ± 14.8 65.7 ± 13.1 62.1 ± 15.0 61.7 ± 13.5

Gender (male) 52.1 53.0 54.5 50.5

Diabetes 23.4 25.6 20.2 21.8

Hypertension 39.8 47.3 42.2 39.3

Coronary artery disease 15.2 16.1 14.3 12.8

Kidney failure 12.5 13.3 11.1 10.0

Asthma and COPD 10.8 13.2 9.5 8.7

Cancer 6.2 7.8 5.9 6.0

Sepsis history 7.1 8.3 6.7 6.1

Hemoglobin (g/dL) 13.2 ± 1.8 13.5 ± 1.9 13.3 ± 1.7 13.0 ± 1.8

Platelets (× 10 3/µL) 250 ± 35 270 ± 40 245 ± 30 235 ± 38

Creatinine (mg/dL) 1.1 ± 0.3 1.0 ± 0.2 1.1 ± 0.3 1.2 ± 0.3

Infection history 9.1 4.6 6.1 5.5

Hospital length of stay (d) 2.6 ± 4.9 1.8 ± 3.7 2.4 ± 4.2 2.3 ± 3.5

ICU length of stay (d) 2.1 ± 4.2 1.4 ± 3.5 2.0 ± 3.7 2.2 ± 3.1

Abbreviation: ICU, intensive care unit.

a Values are expressed as mean ± SD or percentage.

patients were divided into four groups based on the

type of anesthesia. The general anesthesia group had the

largest number of patients (24,545), followed by the

sedation, local, and regional anesthesia groups, which

ranked second, third, and fourth, with 4,159, 2,990, and

127 patients, respectively. The mean age of the patients

was approximately 62.4 years. In terms of gender, 52.1%

of the subjects were male and 47.9% were female.

A significant difference was observed between the

anesthesia groups. Patients in the regional anesthesia

group were older on average than those in the general

anesthesia group (mean age 65.7 vs. 62.4; P < 0.001). Also,

the prevalence of hypertension was higher in the

regional anesthesia group (47.3% vs. 39.8%; P < 0.001),

while no significant difference was observed for

diabetes (P = 0.21). The prevalence of CAD differed

modestly but significantly across groups (P = 0.008).

Most laboratory parameters showed statistically

significant between-group differences, although

absolute differences were small.

Table 1 shows the baseline characteristics

(demographic, clinical, and laboratory) by type of

anesthesia performed. This table provides information

on the mean age, gender, comorbidities (including

diabetes, hypertension, coronary artery disease, renal

failure, and cancer), and laboratory parameters

(hemoglobin, platelets, creatinine, and infection) for

each anesthesia group. Significant differences in

demographic and clinical characteristics can affect

clinical outcomes.

4.2. Performance of Machine Learning Models (Synthetic
Minority Oversampling Technique-Balanced Data)

Using 28 selected features, seven ML models were

compared on the held-out test set after applying SMOTE

to address class imbalance across anesthesia types.

Gradient boosting and XGBoost achieved the highest

overall accuracy (83.1% and 83.1%, respectively), with

random forest close behind (82.6%). At the class level,

gradient boosting yielded the best F1 score for general

anesthesia, whereas XGBoost outperformed the others

for sedation and local anesthesia; all models struggled

with regional anesthesia due to the extremely small

sample size. Overall, KNN and decision tree

underperformed relative to boosting-based models.

4.3. Data Balance (Synthetic Minority Oversampling
Technique) and Class Weights

The SMOTE increased overall accuracy (from

approximately 77.5% without resampling to

approximately 83% with resampling for boosting-based

models), but did not significantly improve macro-F1,

and the performance for the regional class remained

low. We therefore report the SMOTE results as the main
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Table 2. Performance of Machine-Learning Models on the Synthetic Minority Oversampling Technique-Balanced Test Set

Models Accuracy Macro-Precision Macro-Recall Macro-F1 Weighted-F1

Gradient boosting 0.8314 0.52 0.42 0.43 0.80

XGBoost 0.8308 0.60 0.43 0.45 0.80

Random forest 0.8259 0.52 0.38 0.38 0.78

KNN 0.7832 0.40 0.33 0.34 0.74

Decision tree 0.7361 0.38 0.39 0.38 0.74

SVM 0.6573 0.40 0.53 0.41 0.71

Logistic regression 0.5527 0.37 0.52 0.35 0.63

Abbreviations: XGBoost, extreme gradient boosting; KNN, k-nearest neighbors; SVM, support vector machine.

analysis and provide non-resampled results as a

sensitivity analysis. Where supported (e.g., LR, SVM, and

RF), classweight = 'balanced' showed broadly consistent

patterns with the SMOTE analysis.

4.4. Main Result

The XGBoost and gradient boosting achieved the

highest performance in predicting the type of

anesthesia. For XGBoost, the approximate binomial 95%

CI for accuracy was 82.2 - 84.0%; for gradient boosting,

82.2 - 84.1%. The macro-averaged F1 score for XGBoost was

0.45, reflecting the impact of severe class imbalance.

Given the near-tie in accuracies, we report both boosting

models as top performers and provide full per-class

metrics in Table 2. Agreement between predictions and

true labels, measured by Cohen’s κ, was 0.48 (95% CI 0.46

- 0.51) for XGBoost and 0.47 (0.45 - 0.49) for gradient

boosting on the four-class task.

4.5. Clinical Interpretation

This study indicates that the choice of anesthesia is

associated with differences in clinical outcomes, such as

in-hospital mortality, 30-day readmission, infection, and

length of hospital and ICU stay. Regional anesthesia was

associated with more favorable outcomes compared

with general anesthesia. In our analyses, regional

anesthesia was associated with approximately 37% lower

odds of in-hospital mortality (OR ≈ 0.63), shorter ICU

stays, fewer infections, and lower 30-day readmission

and hospital length of stay. Possible mechanisms — such

as attenuation of systemic inflammatory and stress

responses — are biologically plausible but remain

hypotheses. Because general anesthesia is often selected

for more complex or urgent procedures, residual

confounding (e.g., confounding by indication) may

persist, and estimates for the regional group are limited

by its small sample size. Therefore, these findings

should be interpreted as associations rather than causal

effects, while still providing information that may help

clinicians select the most appropriate anesthetic

technique for patients with specific clinical conditions.

5. Discussion

In this large retrospective cohort study, which

included more than 30,000 patients from the MIMIC-IV

database, we observed that the type of anesthesia was

associated with short-term outcomes. Compared with

general anesthesia, regional anesthesia was associated

with lower in-hospital mortality, decreased infection

rates, shorter hospital and ICU stays, and reduced 30-day

readmissions. Furthermore, ML analyses demonstrated

that demographic and clinical characteristics could

predict anesthesia type with high accuracy. The XGBoost

and gradient boosting achieved the highest accuracy

(approximately 83%) on the held-out test set (macro-F1

for XGBoost ≈ 0.45). Collectively, these findings highlight

both the clinical implications and the predictive utility

of anesthesia selection in patient stratification.

It is important to emphasize that this study is

observational in design, and our primary goal was to

identify patterns and associations rather than establish

causality. Our findings are consistent with earlier

evidence that regional anesthesia is associated with

more favorable perioperative outcomes than general

anesthesia, although effect sizes may vary across

subgroups and outcomes. Earlier studies, including

systematic reviews and meta-analyses, have compared

the efficacy and patient outcomes associated with

general, regional, and local anesthesia in both surgical

and critical care settings. For example, recent meta-
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analyses found no significant difference in overall

sedation or anesthesia success rates between

remimazolam and propofol (16). However,

remimazolam may reduce the risk of hypoxemia and

injection pain, at the expense of longer awakening

times (17).

Regional anesthesia techniques, such as peripheral

nerve blocks, have been associated with lower early

postoperative pain scores compared with general

anesthesia, though differences diminish after the first 12

hours post-surgery. Moreover, regional approaches are

associated with lower opioid consumption and fewer

instances of nausea and vomiting immediately

postoperatively (18). When comparing regional and

general anesthesia for major procedures, Bayesian meta-

analyses suggest that the use of dexmedetomidine as an

adjunct can further improve quality of recovery (QoR)

and patient-centered outcomes, including reduced

agitation and faster return to baseline function (19).

More recently, analyses using large critical care

databases, such as MIMIC-IV, have produced

complementary associations regarding anesthetic

techniques and sedative combinations. These studies

demonstrate that sedatives, such as dexmedetomidine,

have been associated with improved survival and fewer

complications compared to midazolam or propofol in

mechanically ventilated ICU patients (16, 20, 21). Other

studies using the same dataset have also suggested that

ketamine may offer short-term mortality benefits in

critically ill patients on vasopressors, though its

advantages may not persist at 90 days (22).

Combination anesthesia approaches, such as general

anesthesia combined with regional blocks, have been

associated with enhanced recovery markers compared

to general anesthesia alone, including improved

postoperative pulmonary function, more stable

hemodynamics, lower complication rates, and faster

recovery of cognitive function and sleep quality. For

instance, patients receiving combined anesthesia

exhibited better pulmonary oxygenation, more stable

hemodynamics, and a faster recovery of cognitive and

sleep quality after surgery compared to those receiving

general anesthesia alone. Additionally, combined

general and epidural anesthesia improved pain control

and psychomotor recovery after major surgery (23-25).

Additionally, new agents, such as remimazolam, are

being investigated for their role in reducing

postoperative nausea and vomiting, which remain

important recovery outcomes in anesthesia practice

(26). Because most of these analyses are observational

and often conducted in single centers, residual

confounding and selection bias remain possible;

therefore, effect sizes should be interpreted cautiously.

What distinguishes the present study from earlier

literature is its scale, breadth, and methodological

approach. Unlike prior single-procedure or limited-

population analyses, our work leveraged data from

more than 30,000 patients undergoing diverse surgical

interventions. By integrating modern ML approaches,

we not only documented between-group outcome

differences across anesthesia modalities but also

demonstrated that patient- and procedure-level factors

can predict anesthesia type with high accuracy (XGBoost

and gradient boosting achieved approximately 83%

accuracy on the held-out test set). These findings

contribute to the growing body of evidence suggesting

that anesthesia choice is not merely a procedural

decision but is also associated with the patient's

trajectory, and they highlight the potential role of

predictive modeling in guiding perioperative care.

In contrast to randomized controlled trials that focus

on narrow patient groups, our database-driven

approach provides insights into real-world practice

patterns and outcomes across a wide range of clinical

contexts, thereby offering complementary evidence to

trial-based literature. Despite its strengths, this study

has notable limitations. Retrospective design inherently

risks selection bias, as patients undergoing regional

anesthesia may represent less complex surgical cases or

distinct comorbidity profiles compared with those

receiving general anesthesia. Although covariate

adjustments were applied, unmeasured confounding,

such as intraoperative management practices or

anesthesiologist preference, remains possible. Group

size imbalance further constrained analysis, with

approximately 24,545 patients in the general anesthesia

group but only 127 in the regional anesthesia group;

estimates for the regional arm are therefore less precise.

Moreover, reliance on the MIMIC-IV dataset, drawn

from a single U.S. tertiary hospital, restricts the

generalizability of these findings to broader healthcare

contexts. The limitation that databases like MIMIC-IV do

not capture postoperative functional outcomes such as

long-term pain, cognitive recovery, or quality of life is
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increasingly acknowledged in anesthesia research.

Functional outcomes and QoR after anesthesia and

surgery are complex, multidimensional processes that

encompass physical, psychological, and social domains,

which traditional datasets often fail to capture (27, 28).

The QoR scales, such as the QoR-15 and QoR-40, provide

patient-centered metrics but are not routinely included

in large clinical databases, thereby limiting

comprehensive outcome assessment (29).

Several mechanisms may explain why regional

anesthesia was associated with improved outcomes.

First, regional anesthesia may reduce sympathetic

activation and blunt the surgical stress response,

thereby contributing to more stable cardiovascular

physiology (30). Second, by reducing the need for

tracheal intubation and mechanical ventilation in

selected procedures, regional anesthesia may lower the

risk of pulmonary complications such as pneumonia

and ventilator-associated lung injury (31). Third,

regional approaches may attenuate systemic

inflammation (e.g., lower perioperative cytokine

release), potentially reducing the risk of infection and

sepsis (32). In older adults, regional anesthesia has been

associated with a lower incidence of postoperative

delirium and cognitive dysfunction compared with

general anesthesia in some studies, which may translate

into more favorable recovery trajectories (33-35).

From a clinical perspective, these findings suggest

that anesthetic technique should be considered not

only from a procedural standpoint but also as part of

individualized perioperative risk management. In frail

or multimorbid patients, regional anesthesia may offer

meaningful reductions in morbidity and resource

utilization when feasible; conversely, general anesthesia

remains essential for complex or long-duration

operations where regional techniques are impractical or

contraindicated. Practical considerations, including

surgical site, expected duration, anticoagulation status,

patient preference, and operator expertise, as well as the

possibility of block failure and conversion to general

anesthesia, should be incorporated into shared

decision-making. Machine-learning tools, such as those

evaluated here, could eventually support clinicians by

identifying patients most likely to benefit from regional

approaches, pending external validation, calibration,

and decision-curve analysis. They should not

complement clinical judgment.

Further research is needed through multicenter

prospective studies to confirm these associations in

broader populations. Randomized controlled trials

remain crucial for establishing causality, particularly for

multimodal anesthesia strategies and novel agents such

as remimazolam and ciprofol. Long-term endpoints,

including persistent pain, cognitive recovery, and

quality of life, should be incorporated. Prospective

registries should also include patient-reported

outcomes to capture QoR more comprehensively.

Ultimately, evaluating AI-enabled perioperative decision

support in pragmatic trials could clarify its impact on

patient safety, efficiency, and outcomes.

5.1. Conclusions

Our findings from a retrospective analysis of more

than 30,000 patients in the MIMIC-IV database indicate

that the choice of anesthesia has a measurable impact

on perioperative outcomes, with regional anesthesia

associated with lower in-hospital mortality, reduced

infection rates, and shorter hospital and ICU stays

compared with general anesthesia. By incorporating ML

methods, particularly the XGBoost algorithm, we also

demonstrated that anesthesia type can be predicted

with high accuracy using routine demographic and

clinical features, highlighting the potential of predictive

analytics to support personalized anesthesia planning.

While the retrospective design, imbalance in group

sizes, and lack of long-term functional outcomes limit

causal inference, the consistency of associations across

multiple endpoints underscores the clinical importance

of anesthesia modality as more than a technical

consideration, but rather as a determinant of patient

recovery and healthcare resource use. Future

prospective multicenter studies and randomized

controlled trials are needed to confirm these

observations, integrate long-term and patient-reported

outcomes, and evaluate emerging agents and

multimodal strategies. The use of AI in perioperative

decision-making may further enhance individualized

and patient-centered care in anesthesia.

5.2. Limitations

This retrospective, observational study precludes

causal inference; findings should be interpreted as

associations. Although we adjusted for measured

covariates, residual and unmeasured confounding (e.g.,

https://brieflands.com/journals/jcma/articles/166293
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intraoperative management, provider preference) may

remain. Procedure information was available only at a

coarse level; detailed factors such as urgency,

complexity, surgical approach, and ASA class were not

comprehensively captured, which may influence both

anesthetic selection and outcomes (confounding by

indication). We used secondary data from MIMIC-IV

(single U.S. tertiary center), limiting generalizability;

registry data can include missingness, miscoding, and

exposure misclassification (e.g., combined general-plus-

regional techniques labeled as a single category).

Preprocessing choices (e.g., imputation and outlier

handling) may affect estimates and should be viewed as

analytic assumptions. There was marked class

imbalance (general ≫ regional); we addressed this only

in prediction models using SMOTE within training folds

to avoid leakage, but the small regional cohort still

reduces the precision/stability of estimates for that

group. For ICU time-to-discharge, time-to-event analyses

may be affected by competing risks and time-dependent

confounding. Finally, while machine-learning models

performed well internally, external validation,

calibration, and decision-curve analysis are needed

before clinical deployment.
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