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Abstract

Background: Dual-task performance, which involves concurrent cognitive and motor demands, is important for volleyball players who must coordinate

tactical decisions with dynamic movements. Cognitive errors during such tasks may indicate sensory-motor control deficits and an increased risk of injury.

Objectives: This study aimed to compare baseline sensory-motor function, including tuck jump assessment (TJA) score, knee and ankle proprioception, lower

limb strength, and postural control, between female volleyball players classified by their cognitive performance (with or without cognitive errors) during dual-

task execution.

Methods: In this cross-sectional study conducted between May and July 2024, 82 female volleyball players (mean age of 20.35 ± 1.84 years) participated.

Athletes performed the TJA under dual-task conditions, which included a working-memory task requiring participants to recall and repeat five sequential

numbers in the correct order. Based on cognitive accuracy, participants were classified into a “without cognitive error” group and a “with cognitive error” group;

participants were classified as making a cognitive error if they failed to recall the full number sequence correctly. The TJA score, joint position sense error,

muscle strength, and static balance were measured using the tuck jump task, goniometer, handheld dynamometer, and foot scan system, respectively. Data were

analyzed using multivariate analysis of variance, and effect sizes (η2
p) were calculated to interpret the magnitude of group differences.

Results: Compared to the group without cognitive error, athletes with cognitive errors showed significantly higher TJA scores (P = 0.001; η2
p = 0.4, large

effect), greater proprioceptive errors at the knee (P = 0.026; η2
p = 0.061, medium effect) and ankle (P = 0.001; η2

p = 0.177, large effect), and reduced strength of the

knee extensors (P = 0.004; η2
p = 0.098, medium to large effect), hip adductor (P = 0.045; η2

p = 0.049, small to medium effect) and hip abductor (P = 0.003; η2
p =

0.104, medium to large effect) muscles. Postural sway parameters differed only under eyes-closed conditions, with the cognitive error group showing greater

ellipse area of center of pressure (CoP, P = 0.041; η2
p = 0.051, small to medium effect).

Conclusions: Cognitive errors during dual-task execution in female volleyball players are associated with deficits in proprioception, lower-limb strength, and

postural control. Dual-task testing may help identify athletes at risk and inform targeted cognitive-motor training to improve performance and reduce injury

risk.
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1. Background

Volleyball is a dynamic sport that requires

exceptional neuromuscular coordination and

simultaneous cognitive processing. Players must track

the ball trajectory, anticipate opponents’ movements,

and make tactical decisions while maintaining postural

stability and generating explosive power (1-4). These

multifaceted demands underscore the critical

importance of understanding how cognitive and motor

systems interact and integrate during sport-specific

performance. The dual-task paradigm is a well-

established methodological approach for evaluating the

ability to perform cognitive and motor tasks

concurrently (5, 6). This paradigm is grounded in

theories of limited attentional capacity, which propose

that cognitive and motor processes compete for shared

neural resources (7, 8). Evidence suggests that dual-

tasking typically results in performance decrements,

known as “cognitive cost” (9, 10). The magnitude of this

performance decrement is thought to reflect the

efficiency of attentional resource allocation and the
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degree of motor automaticity achieved (11, 12). Cognitive

errors occurring during dual-task conditions may

therefore indicate inefficient allocation of attentional
resources, insufficient automatization of motor

patterns, or limited neuromuscular reserves.

In athletic populations, dual-task paradigms have

revealed important distinctions between skill levels.

Studies show that higher-skilled athletes typically

exhibit smaller dual-task costs compared to less-skilled

counterparts, suggesting superior attentional resource

management and greater movement automaticity (13,

14). Elite athletes appear to possess more efficient

sensorimotor control strategies that require less

conscious supervision, thereby freeing attentional

resources for concurrent cognitive processing.

Conversely, athletes who struggle with dual-task

performance may be operating closer to their capacity

limits, with less efficient motor control requiring

greater cortical involvement and leaving minimal

reserves for additional cognitive demands.

In volleyball, working memory and attentional
control have been shown to correlate positively with

sport-specific performance in young players. In

competitive play combined with explosive movements

such as jumping, working memory demands increase

substantially, as athletes must simultaneously process
environmental information, plan motor actions, and

execute precise movements. The tuck jump has emerged

as a valid and reliable assessment tool for evaluating

neuromuscular control, particularly in adolescent

athletes and individuals at risk of anterior cruciate
ligament (ACL) injury (15, 16). This plyometric movement

mimics volleyball-specific jumping actions such as

blocking and spiking. The tuck jump assessment (TJA)

systematically evaluates movement quality across

multiple biomechanical dimensions, including knee

valgus, landing symmetry, trunk control, and lower-

limb alignment (16). When combined with a concurrent

cognitive task, such as sequential number recall, the

tuck jump creates a dual-task condition that more

closely approximates the cognitive-motor demands

encountered during actual competition (17). This dual-

task modification transforms the assessment from a

simple motor screening tool into a probe of cognitive-

motor integration capacity (4).

Postural control is a fundamental component of

successful volleyball performance, supporting the
efficient execution of serves, spikes, blocks, and

defensive movements. The sensorimotor system,
including proprioception, lower-limb strength, and

postural control mechanisms, continuously integrates

information to maintain stability. Under dual-task

demands, however, postural strategies may shift,

revealing deficits not evident in single-task assessments

(3).

Despite growing recognition of the importance of

cognitive-motor integration in sports, limited research

has explored how cognitive performance during sport-

specific dual-task execution relates to comprehensive

baseline sensory-motor capacities in volleyball players.

Most previous studies have examined cognitive and

motor domains separately or have focused on dual-task

costs within the dual-task condition itself (13, 18), rather

than investigating whether dual-task cognitive

performance reflects underlying differences in

fundamental sensory-motor function measured under

single-task conditions. Understanding these

relationships is particularly important in young female

volleyball players, who face an elevated risk of lower-

limb injuries, including ACL tears and ankle sprains.

2. Objectives

The present study aimed to compare key sensory-

motor indices, including knee and ankle

proprioception, lower-limb strength, movement quality

(TJA score), and postural control, between female

volleyball players classified by their cognitive accuracy

during a sport-specific dual-task assessment (tuck jump

combined with sequential number recall). We

hypothesized that athletes who committed cognitive

errors during dual-task execution would demonstrate

poorer baseline sensory-motor function across these

domains when assessed under single-task conditions,

reflecting underlying differences in neuromuscular

capacity and sensory integration efficiency.

3. Methods

3.1. Study Design and Participants

This cross-sectional study was conducted between

May and July 2024 at the Sports Science Laboratory of

Bu-Ali Sina University, Hamedan, Iran. The study was
approved by the Ethics Committee of Bu-Ali Sina

University (IR.BASU.REC.1402.076) and conducted in

accordance with the Declaration of Helsinki.

3.2. Sample Size Calculation

Sample size was calculated using G*Power software

based on an independent samples t-test design. With an
alpha level of 0.05, power of 0.85, and medium effect

size (Cohen's d = 0.5), a minimum sample of 73

participants was required. To ensure adequate statistical
power and account for potential dropouts, 85 female
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volleyball players were initially recruited, of whom 82

met the inclusion criteria and completed all

assessments.

3.3. Participants

Eighty-two female volleyball players aged 18 - 23 years

from university and club teams in Hamedan province

participated in this study. Participants were recruited

using convenience sampling from teams that provided

written consent for their athletes' participation. Group

classification was based on participants' cognitive

performance during the dual-task TJA condition.

Specifically, individuals who accurately recalled all five

digits were placed in the “no cognitive error” group,

while those with incorrect or incomplete recall were

assigned to the “cognitive error” group. This

classification relied solely on the cognitive recall result

and was independent of the other variables studied

(such as TJA score, proprioception, strength, and

balance). To reduce bias, the assessor conducting the

dual-task condition was different from other assessors,

and all assessors were blinded to group allocation.

Following completion of the dual-task TJA (19),

participants were classified into two groups based on

cognitive performance: Those without cognitive errors

(accurate recall of all five numbers; n = 40) and those

with cognitive errors (incorrect or incomplete recall; n =

42).

Inclusion criteria: (1) Female volleyball athletes aged

18 to 23 with intermediate to advanced playing skills; (2)

BMI within the normal range; (3) minimum of three

years of organized volleyball training (≥ 6 hours/week);
(4) current participation in competitive volleyball at the

university or club level; (5) no lower extremity or
lumbar spine injuries within the past 12 months; (6) no

history of lower limb surgery, including ACL

reconstruction; (7) no history of neurocognitive
disorders, mental health conditions, or concussion

within the past 12 months. Exclusion criteria: (1)
Voluntary withdrawal from study participation; (2)

inability to complete all required assessments; (3) acute
illness or injury at the time of testing.

3.4. Experimental Procedures

All assessments were conducted in a single 60-

minute session in a temperature-controlled laboratory

environment. A 3-to-5-minute rest period was provided

between each assessment domain. All measurements

were performed on the dominant leg, determined by
asking participants which leg they would use to kick a

ball.

3.4.1. Tuck Jump Assessment

The TJA was performed under two conditions: Single-

task (motor only) and dual-task (motor+cognitive) (16).

All participants first completed a standardized

familiarization trial of the TJA protocol, during which

the procedure was explained and practiced. Following

this, they performed the dual-task TJA and then

completed the single-task TJA in a fixed order. Given the

short duration of the TJA (10 seconds) and the athletic
background of participants, fatigue was considered

unlikely to affect performance. To further minimize

fatigue, a rest interval was provided between conditions,

adjusted based on individual needs.

For the single-task condition, participants began in a

standing position with feet shoulder-width apart. They

were instructed to perform continuous vertical jumps

for 10 seconds, bringing their knees toward the chest

until thighs were parallel to the ground at peak jump

height. Emphasis was placed on soft landings on the

forefoot with an immediate transition to the next jump.

For the dual-task condition, the motor task remained

identical, but a cognitive component was added using

custom-designed software. Five random single-digit

numbers (0-9) were sequentially displayed on a monitor

positioned in front of the participant. Each number
appeared for 2 seconds with no inter-stimulus interval.

The sequence began with "Ready" (2 seconds), followed

by "Go" (2 seconds), which signaled the start of jumping.

Participants were required to memorize the number

sequence while performing the tuck jumps and verbally
recall the numbers immediately upon completion.

Performance was recorded using two synchronized

digital cameras, positioned to capture frontal and

sagittal planes. Video recordings were analyzed frame-

by-frame using Kinovea software (20). Two trained

evaluators, blinded to group allocation, independently

scored each trial using the standardized 10-point TJA

scoring criteria. Each technical error observed was

scored as "1", with perfect technique scored as "0",

yielding a total score range of 0-10 points (19).

3.4.2. Proprioception Assessment

Joint position sense was evaluated for knee extension

and ankle dorsiflexion using a universal plastic

goniometer with 1° resolution. The active angle

reproduction method was employed. For the

assessment of knee proprioception (21), participants sat

on an examination desk with the tested leg hanging

freely (knee flexion). The target angle of 60° knee

extension was passively achieved by the examiner, held

for 5 seconds, and then returned to the starting

https://brieflands.com/journals/jcrps/articles/166347
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position. After a 5-second pause, participants actively

reproduced the target angle while blindfolded. The

absolute angular error was calculated as the target

angle minus the reproduced angle. For the assessment

of ankle proprioception, participants remained in the

same seated position with the knee extended, and the

target angle of 10° dorsiflexion was established

following the same protocol (22). Three trials were

performed for each joint, with 30-second rest intervals.

The mean absolute error across trials was calculated for

analysis.

3.4.3. Muscle Strength Testing

Isometric muscle strength was measured using a

calibrated handheld dynamometer (MMT, North Coast

Medical, USA). The device was calibrated using a 10-kg

weight before and after each testing session to ensure

accuracy. Each muscle group was tested three times with

5-second maximal voluntary contractions and 30-

second rest intervals. Standardized verbal

encouragement was provided. The value across three

trials was recorded and normalized to body weight

(strength/body weight × 100%). The mean of three trials

was calculated for final analysis. Muscle strength

assessments were conducted in accordance with

standardized protocols (23-26).

For hip strength testing, abduction was evaluated

with the participant positioned in side-lying, with the

test leg uppermost and the hip maintained in a neutral

position. A pillow was placed between the legs, and the

dynamometer pad was applied 5 cm proximal to the

lateral femoral condyle, while the pelvis was stabilized

using a strap. Adduction was assessed in the same side-

lying position, with the non-tested leg flexed to 90°. The

dynamometer pad was positioned 5 cm proximal to the

medial femoral condyle of the tested leg, which was

kept in a neutral position.

For knee strength testing, quadriceps strength

(extension) was measured with the participant seated at

the edge of a table, the knee flexed to 90°. The

dynamometer was placed on the anterior surface of the

distal tibia, approximately 5 cm proximal to the ankle

joint, with the thigh stabilized. Hamstring strength

(flexion) was tested in the same seated position. In this

case, the dynamometer was applied to the posterior

surface of the distal tibia to resist knee flexion, with

consistent stabilization of the thigh maintained.

3.4.4. Postural Control Assessment

Static balance was evaluated using a pressure

platform system (FootScan, RSscan International,

Belgium), sampling at 2000 Hz. Participants performed

a single-leg stance on their dominant leg for 30 seconds

under two visual conditions: Eyes open (focusing on a

target 3 meters away) and eyes closed. Each trial was

performed for each condition with 60-second rest

intervals (27).

3.5. Statistical Analysis

Data normality for all variables was assessed using

the Shapiro-Wilk test. When the assumption of

normality, homogeneity of variance-covariance matrices

(Box’s M test), and absence of multicollinearity were

met, a MANOVA was conducted to compare groups with

cognitive errors and those without across the

dependent variables. Effect sizes were calculated using

partial eta squared and interpreted as small (0.01),

medium (0.06), or large (0.14). Statistical significance

was set at P < 0.05. All analyses were performed using

IBM SPSS Statistics, version 27.

4. Results

A total of 82 female volleyball players were included.

No significant differences between groups were

observed in demographic variables (P > 0.05; Table 1).

In the TJA, players with cognitive errors

demonstrated significantly higher error scores

compared to those without errors (P < 0.001; η2
p =

0.400, large effect; Table 2). For proprioception, the knee

extension angle reproduction error was significantly

higher in the cognitive error group (P = 0.026; η2
p =

0.061, medium effect). However, the ankle dorsiflexion

error was significantly lower in the cognitive error

group (P = 0.001; η2
p = 0.177, large effect), indicating

better accuracy in this joint.

In terms of muscle strength, athletes without

cognitive errors had significantly greater knee extensor

strength (P = 0.004; η2
p = 0.098, medium to large

effect), hip adductor strength (P = 0.045; η2
p = 0.049,

small to medium effect), and hip abductor strength (P =

0.003; η2
p = 0.104, medium to large effect). No group

differences were observed for knee flexor strength (P =

0.501; η2
p = 0.006, negligible effect).

For static balance with eyes open, no significant

differences were found between groups across center of

pressure (CoP) parameters (all P > 0.05; Table 3). Under

eyes-closed conditions, significant between-group

differences were observed in traveled distance (P =

https://brieflands.com/journals/jcrps/articles/166347
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Table 1. Demographic Characteristics of Participants a

Variables Without Cognitive Error Group (N = 40) With Cognitive Error Group (N = 42) P-Value

Age (y) 20.45 ± 1.72 20.26 ± 1.96 0.620

Height (cm) 161.71 ± 4.23 162.50 ± 4.98 0.444

Weight (kg) 57.02 ± 10.42 58.83 ± 10.76 0.442

BMI (kg/m 2) 21.81 ± 3.72 22.17 ± 3.93 0.671

Training experience (y) 7.08 ± 1.73 6.38 ± 1.63 0.066

a Values are expressed as mean ± SD.

Table 2. Between-Groups Comparisons of Tuck Jump Score, Proprioception, and Muscle Strength

Variables Mean ± SD F-Value P-Value Partial Eta Squared

TJA 53.238 0.001 a 0.400

TJA scores

Without the cognitive error group 2.65 ± 1.35

With cognitive error group 4.81 ± 1.33

Proprioception (joint angle reproduction error)

Knee-extension (degrees) 5.179 0.026 a 0.061

Without the cognitive error group 2.71 ± 1.56

With cognitive error group 3.68 ± 2.20

Ankle-dorsi flexion (degrees) 17.171 0.001 a 0.177

Without the cognitive error group 2.85 ± 1.77

With cognitive error group 4.73 ± 2.27

Muscle dtrength (%BW)

Knee flexors 0.458 0.501 0.006

Without the cognitive error group 39.73 ± 5.20

With cognitive error group 40.69 ± 7.40

Knee extensors 8.700 0.004 a 0.098

Without the cognitive error group 58.63 ± 4.86

With cognitive error group 54.86 ± 6.53

Hip adductors 4.146 0.045 a 0.049

Without the cognitive error group 28.01 ± 6.25

With cognitive error group 25.01 ± 7.03

Hip abductors 9.296 0.003 a 0.104

Without the cognitive error group 33.80 ± 5.39

With cognitive error group 30.19 ± 5.33

Abbreviation: TJA, tuck jump assessment.

a significant difference between groups.

0.042; η2
p = 0.051, small to medium effect), ellipse area

of CoP (P = 0.031; η2
p = 0.057), and ellipse secondary axis

(P = 0.041; η2
p = 0.051). However, the ellipse principal

axis did not differ significantly between groups (P =

0.158; η2
p = 0.025).

5. Discussion

This study compared baseline sensory-motor

function and postural control between female volleyball

players classified by cognitive performance during dual-

task execution. Athletes who committed cognitive

errors during the combined tuck jump and memory

recall task showed poorer movement quality, greater

https://brieflands.com/journals/jcrps/articles/166347
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Table 3. Between-Groups Comparisons of Postural Control Parameters

Variables Mean ± SD F-Value P-Value Partial Eta Squared

Static balance test/open eyes

Traveled distance (mm) 0.262 0.610 0.003

Without the cognitive error group 564.05 ± 198.44

With cognitive error group 543.67 ± 160.86

Ellipse area of CoP (mm2) 1.414 0.238 0.017

Without the cognitive error group 47.45 ± 20.07

With cognitive error group 54.74 ± 33.44

Ellipse principal axis (mm) 0.439 0.510 0.005

Without the cognitive error group 11.45 ± 3.42

With cognitive error group 12 ± 4.04

Ellipse secondary axis (mm) 0.006 0.939 0.000

Without the cognitive error group 5.48 ± 0.93

With cognitive error group 5.50 ± 1.85

Static balance test/closed eyes

Traveled distance (mm) 4.261 0.042 a 0.051

Without the cognitive error group 982.93 ± 262.56

With cognitive error group 1096.81 ± 236.835

Ellipse area of CoP (mm2) 4.807 0.031 a 0.057

Without the cognitive error group 141.73 ± 47.57

With cognitive error group 163.90 ± 44.02

Ellipse principal axis (mm) 2.035 0.158 0.025

Without the cognitive error group 17.63 ± 4.70

With cognitive error group 18.98 ± 3.84

Ellipse secondary axis (mm) 4.308 0.041 a 0.051

Without the cognitive error group 10.85 ± 2.46

With cognitive error group 12.21 ± 3.39

Abbreviation: CoP, center of pressure.

a significant difference between groups.

proprioceptive deficits, reduced lower-limb strength,

and impaired postural control under eyes-closed

conditions. These findings suggest that dual-task

cognitive errors may reflect broader neuromuscular and

sensory integration limitations rather than isolated

cognitive deficits. Higher TJA scores in the cognitive

error group, under single-task conditions, indicate

reduced movement automaticity. Efficient motor

execution typically relies on automatized motor

programs requiring minimal attentional input (28, 29).

Athletes with less automatic control may depend more

on conscious supervision, leaving fewer cognitive

resources for concurrent tasks. This aligns with motor

learning theories emphasizing reduced cortical

involvement and increased subcortical efficiency in

skilled performers (30, 31). The observed deficits may

stem from less efficient neural processing in regions like

the supplementary motor area and prefrontal cortex,

which support both motor planning and cognitive

control (32).

Proprioceptive errors in knee and ankle joint

position sense further highlight sensory integration

inefficiencies. Accurate proprioception depends on

peripheral input and central processing in the

somatosensory cortex, cerebellum, and parietal lobe (33,

34). Deficits in these systems compromise internal

models of body position, increasing reliance on

attentional monitoring and reducing capacity for

cognitive tasks (9, 35). Moreover, proprioceptive

processing shares neural substrates with working

memory and attention, particularly in the posterior

parietal cortex, suggesting resource competition during

dual-task scenarios (36, 37). In volleyball, where rapid

adjustments to unpredictable stimuli are essential,

impaired proprioception may hinder dynamic stability

and increase cognitive load (38).

https://brieflands.com/journals/jcrps/articles/166347
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Strength deficits in knee extensors and hip

abductors/adductors, but not flexors, suggest selective

neuromuscular limitations. These muscles are critical

for jumping, landing, and frontal plane control (39, 40).

Weakness in these areas increases joint loading and

requires greater conscious effort to maintain movement

quality (41, 42). Athletes with lower strength may

experience greater peripheral fatigue and rely more on

central drive, reducing attentional reserves for cognitive

tasks (43). Additionally, reduced strength may reflect

suboptimal motor unit recruitment and

synchronization, demand more cortical involvement,

and diminish automaticity (44, 45). These inefficiencies

likely contribute to dual-task interference.

The lack of significant differences in knee flexor

strength is also informative. Hamstring function is often

more closely associated with reactive stabilization and

eccentric control during rapid deceleration, whereas

the quadriceps and hip muscles play more prominent

roles in active force production and frontal plane

control during vertical jumping tasks (46). The selective

nature of the observed strength deficits thus aligns with

the specific motor demands of the TJA and volleyball-

specific movements.

Postural control analysis revealed no group

differences with eyes open, but significantly greater

sway in the cognitive error group when eyes were

closed. This suggests an over-reliance on visual input

and impaired integration of proprioceptive and

vestibular cues. According to the sensory reweighting

framework, healthy systems flexibly adjust input

weighting based on availability (47-50). Athletes with

proprioceptive deficits may lack this adaptability,

leading to instability when visual feedback is removed.

These athletes must allocate additional attentional

resources to sensory monitoring and postural control,

reducing the capacity available for cognitive tasks (51,

52). Moreover, postural control engages overlapping

neural networks with working memory and executive

function, particularly in the prefrontal cortex and

cerebellum (53, 54). Athletes with less efficient postural

control strategies may experience greater neural

resource competition when cognitive demands are

added, explaining why proprioceptive and balance

deficits correlate with dual-task cognitive errors. The

cerebellum, in particular, plays a crucial role in both

motor coordination and cognitive processing, including

working memory and attention (55). Reduced cerebellar

efficiency could thus contribute to both postural

instability and dual-task interference.

These findings parallel joint position sense deficits

and point to reduced somatosensory fidelity as a shared

mechanism underlying dual-task difficulties. The

cerebellum and prefrontal cortex, which support both

postural control and cognitive functions like working

memory (32, 36, 53, 56), may be less efficient in athletes

with cognitive errors. This could result in neural

resource competition and reduced capacity for dual-

task performance. Overall, the cognitive error group

appears to operate near their sensorimotor capacity

limits, requiring greater attentional supervision and

leaving minimal reserves for additional cognitive

processing. In contrast, athletes without cognitive

errors demonstrate more robust sensorimotor

foundations, enabling better dual-task performance.

These findings support the use of dual-task

paradigms as sensitive probes of underlying

sensorimotor capacity. Athletes who perform well in

isolated tests but struggle under dual-task conditions

may harbor hidden vulnerabilities that emerge under

complex sport demands. Practically, dual-task

assessments can help identify at-risk athletes and guide

targeted interventions. Training programs should

incorporate strength development for quadriceps and

hip muscles, proprioceptive drills, balance tasks under

varied sensory conditions, and dual-task exercises that

challenge both cognition and motor control. Such

training may enhance movement automaticity,

cognitive-motor integration, and attentional capacity,

reduce injury risk, and improve performance.

Importantly, cognitive errors during dual-task scenarios

may reflect sensorimotor limitations rather than pure

cognitive dysfunction. Athletes struggling with these

tasks may benefit more from foundational

neuromuscular and sensory training than from isolated

cognitive interventions.

This study has limitations. Its cross-sectional design

precludes causal inference; longitudinal and

interventional studies are needed to test whether

improving strength, proprioception, or movement

quality enhances dual-task performance. Convenience

sampling limits generalizability to other populations,

and replication across diverse groups is warranted.

Measurement precision could be improved using

advanced technologies like isokinetic dynamometry,

motion capture, and EMG. The cognitive task used,

sequential number recall, was simple and reliable but

may not reflect sport-specific cognitive demands. Future

studies should incorporate ecologically valid tasks

involving anticipation and decision-making. Finally,

proposed neural mechanisms remain speculative

without direct neurophysiological measures; future

research should include neuroimaging or

https://brieflands.com/journals/jcrps/articles/166347
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electrophysiological techniques to validate these

interpretations.

5.1. Conclusions

This study highlights that cognitive errors during

dual-task performance are not merely isolated lapses in

attention but reflect deeper limitations in sensorimotor

integration, neuromuscular strength, and movement

automaticity. Female volleyball players who struggle

with dual-task demands exhibit a distinct profile of

proprioceptive deficits, reduced lower-limb strength,

and impaired postural adaptability, factors that

collectively compromise their ability to manage

complex motor-cognitive challenges. These findings

underscore the value of dual-task assessments as

sensitive indicators of underlying motor control

capacity and suggest that training programs should

move beyond isolated physical or cognitive drills to

embrace integrated approaches that enhance cognitive-

motor coordination. By targeting foundational

sensorimotor systems, coaches and clinicians may not

only improve athletic performance but also reduce

injury risk in high-demand sports environments.
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