

The Risk of Catastrophic Health Expenditures Due to Direct Non-Medical Costs in Patients: A Study of the Outpatients in Qazvin, Iran

Saeed Asefzadeh¹, Bahman Ahadi Nezhad² and Saeed Norouzi^{1,*}

¹Health Services Management Department, School of Health, Qazvin University of Medical Sciences, Qazvin, Iran

²Social Determinants of Health Research Center, Research Institute for Prevention of Non-Communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran

*Corresponding author: Health Services Management Department, School of Health, Qazvin University of Medical Sciences, Qazvin, Iran. Email: snoroozi72@gmail.com

Received 2020 June 28; Revised 2020 November 11; Accepted 2020 November 24.

Abstract

Background: Out-of-pocket payment encompasses the costs that patients pay for healthcare services, which is an inefficient approach to healthcare financing as it may lead to poverty.

Objectives: The present study aimed to determine the risk of catastrophic health expenditures due to non-medical costs in the outpatients in Qazvin, Iran.

Methods: This cross-sectional survey was conducted on 341 outpatients referring to the internists of Velayat Hospital and Bu-Ali Sina Hospital in Qazvin. The required data were collected using a researcher-made questionnaire and the prescriptions of the patients. Out-of-pocket payments were defined as the direct medical and non-medical costs within one month.

Results: The mean out-of-pocket payments of the patients in one month was 49.97 dollars, 75.8% of which covered direct medical cost (disease diagnosis and treatment), and 24.2% covered direct non-medical costs to receive health services. The highest out-of-pocket payments were for diagnostic/laboratory tests (50.3%), medications (21.5%), and transportation (18.2%). In addition, the exposure rate to catastrophic expenditures was estimated at 31%, and the patients with lower income had less exposure compared to those without incomes.

Conclusions: According to the results, direct non-medical costs were associated with the increased out-of-pocket payments of the patients, which in turn led to the higher rates of catastrophic expenditures.

Keywords: Direct Non-medical Costs, Out-of-pocket Payment, Catastrophic Health Expenditures, Outpatients, Iran

1. Background

The health expenditure of the gross domestic product (GDP) trend in the world and in Iran is increasing steadily (1, 2). In 2000, 4.7% of Iran's GDP was devoted to the health sector, while it reached 8.1% in 2016 (1). In addition, healthcare expenditures or direct medical costs in the world are on the rise, which is considered to be a major challenge for health policymakers (3, 4). In addition, non-medical costs have intensified the challenge through increasing out-of-pocket patient costs (5).

In general, patients incur the three categories of direct, indirect, and intangible costs in receiving healthcare services (6), and some of these costs are paid out-of-pocket. Notably, out-of-pocket payments are classified as direct costs, which refer to the costs of diagnostic and treatment processes (7, 8). Direct costs could be medical and non-medical; direct medical costs include the payments for

disease diagnosis and treatment, patient admission, prescriptions, follow-ups, hospitalization, and rehabilitation (9, 10); in official statements, direct medical costs are expressed as healthcare expenditures. These costs are partly paid by insurance systems and partly by patients (5). Direct non-medical costs refer to the costs that patients must pay for access to medical services; such examples are medical commuting and transportation costs, accommodation costs, food costs or the phone charges required for setting appointments. These costs are also classified as out-of-pocket payments (11).

Out-of-pocket payment is the most inefficient and unfair approach to healthcare financing, which leads to the increased rate of poverty (12). In low- and middle-income countries, the main source of healthcare financing is the out-of-pocket payments of patients, which cause catastrophic health expenditures (CHEs) in households (13, 14). In these countries, the financing of the health system is

poor and causes numerous households to sell their assets or borrow money to pay for healthcare expenditure (15, 16). Approximately 150 million experience financial stress each year due to the out-of-pocket expenditures for healthcare services, while 100 million face poverty (17, 18).

The share of out-of-pocket payments of the total costs in health care and CHEs are important factors to be considered in healthcare planning and policymaking (19, 20). Iran is a middle-income country (21), and the financing of the Iranian health system covers a combination of public income, social insurance, private insurance, and out-of-pocket payments (22). According to the most recent global report in this regard, the rate of out-of-pocket health expenditures in Iran was 38.79% in 2016 (23). Meanwhile, the average out-of-pocket payment in the world and OECD countries is 18.5% and 20.2%, respectively (24, 25). In 2000-2015 in the eastern Mediterranean region, almost half of the health expenditures were financed by out-of-pocket payments (21). Therefore, it could be inferred that the out-of-pocket payments of the health expenditures in Iran are higher than the world and OECD average.

2. Objectives

The present study aimed to determine the risk of catastrophic health expenditures due to non-medical costs in the outpatients in Qazvin, Iran.

3. Methods

This cross-sectional survey was conducted on the outpatients and caregivers referring to the internists of Bu-Ali Sina and Velayat teaching hospitals in Qazvin, Iran. The study protocol was approved by the Research Ethics Committee of Qazvin University of Medical Sciences (code: IR-QUMS.REC.1396.20).

The sample size of the study was estimated using the Cochran formula based on the trend of the previous year (26). Based on statistical formulations, the sample size was determined to be 341 outpatients. The patients were selected via cluster sampling, and data were collected via sample rotation within one month (December 22, 2017-January 22, 2018) with a one-month recall period. Finally, 341 outpatients were randomly selected from those referring to the mentioned healthcare centers.

Data were collected using a researcher-made questionnaire and by the observation of the prescriptions of the selected patients. Initially, the validity of the questionnaire was confirmed by health service management professionals and physicians. Prior to data collection, a questionnaire was distributed among 30 outpatients in a pilot study, and

the required data were collected after removing the defects.

Unlike family-centered studies, the current research was conducted from the perspective of the outpatients. The expenses that had been paid directly by the patients and their caregivers to receive health services were calculated and considered as out-of-pocket payment. Initially, the out-of-pocket expenditures of the patients and their caregivers were identified. The outpatient out-of-pocket expenditures included the out-of-pocket payments covering direct medical costs (costs of physician visits, medications, and laboratory or diagnostic tests) and non-medical costs (costs of transportation, residence, and food), which were paid by the patients and their caregivers. Notably, the share of insurance payments was excluded in the identification of the mentioned costs. In the present study, several steps were followed to determine whether the out-of-pocket payment costs could be catastrophic. One of the approaches that is applied to determine the threshold of CHEs is to calculate the ratio of out-of-pocket payments to the total income. In general, the reported thresholds in different studies are within the range of 2.5 - 15% (27).

$$x = \frac{OPP}{Income} \quad (1)$$

Considering that Iran is a middle-income country (28), a threshold of 5% was set to determine whether payments were out-of-pocket for patients. The currency conversions were carried out based on the official exchange rate of December 22, 2017 (1\$=34,214 Iranian Rials) (29).

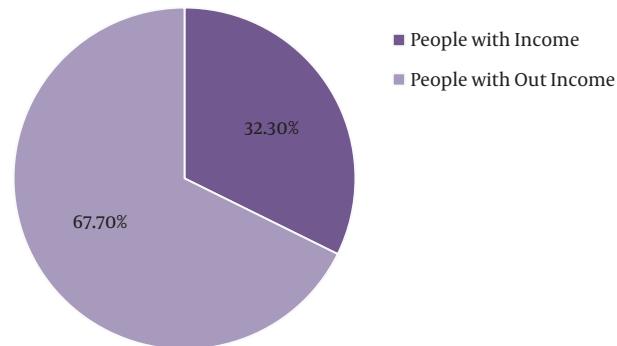
3.1. Statistical Analysis

Data analysis was initially performed in Excel 2013 and SPSS version 21 using mean, median, and standard deviation. In addition, graphs and ratios were prepared.

4. Results

In total, 341 outpatients referring to the internal medicine clinics of Velayat Hospital and Bu-Ali Sina Hospital in Qazvin in 2017 were enrolled in the study. The mean age of the patients was 47.8 ± 13.7 years, and the highest and the lowest frequencies belonged to the age groups of 40-50 years (34.6%) and < 20 years (0.9%), respectively. The majority of the patients were female (61.3%) and married (81.5%). In terms of education level, the patients without a high school diploma had the highest frequency (67.7%). In addition, the majority of the examined outpatients were housewives (41.9%), and self-employed patients had the lowest frequency (2.3%). Approximately 89.5% of the patients had social security and health insurance coverage;

among the insured patients, social security was most common, while Imam Khomeini Relief Foundation had the lowest frequency. **Table 1** shows the demographic characteristics of the examined patients.


Table 1. Demographic Variables of Studied Patients

Variables	Frequently	Percent (%)
Age		
Under 30 years	41	12.02
30 - 40 years	48	14.08
40 - 50 years	118	34.60
Over 50 years	134	39.30
Total	341	100.00
Gender		
Female	209	61.29
Male	132	38.71
Total	341	100
Marital status		
Married	278	81.50
Single	50	14.70
Other	13	3.80
Total	341	100
Education		
Diploma & Under diploma	293	85.92
Associate	24	7.04
Licentiates and above	24	7
Total	341	100
Occupational status		
Housewives	143	41.94
Retired/ pensioner	23	6.74
Employee	18	5
Unable	14	4.11
Self-employed	8	2.35
Others	135	39.59
Total	341	100
Insurance		
Social security	177	52
Health insurance	128	37.54
Armed forces	12	3.52
Others	24	7.04
Total	341	100

According to the information in **Table 2** and **Figure 1**, the majority of the examined patients (67.7%) had no income.

Table 2. Descriptive Indicators of Patients' Monthly Income

Income	Mean	Median	Standard Deviation
USD	159.29	0	248.14
Rls	5,450,000	0	8,490,000

Figure 1. Frequency distribution of patients based on weekly income

Table 3 shows the mean income of the outpatients with income.

Table 3. Descriptive Indicators of Patients with Income

Income	Mean	Median	Standard Deviation
USD	493.8	467.64	159.53
Rls	16,894,540	16,000,000	5,458,290

The direct expenditure of the studied patients encompassed both medical and non-medical costs. The mean out-of-pocket spending of the patients for direct medical and non-medical costs was estimated at 38 and 12 dollars, respectively, while the mean out-of-pocket spending of the patients for direct costs was 50 dollars. Therefore, it could be inferred that the out-of-pocket payment of the patients for direct medical costs constituted 75.8% of the total out-of-pocket payments for the direct costs. In other words, the out-of-pocket payments for the direct medical costs (receiving medical services and treatments) was higher in the present study. The mean direct costs represented the patients' mean out-of-pocket payments incurred for the patients by themselves or their caregivers (**Table 4**).

Table 5 shows the details of the out-of-pocket payments of the patients for direct medical services, such as physician visits, medications, and diagnostic/laboratory tests. According to the findings, the mean out-of-pocket payments for these costs were estimated at 1.98, 10.8, and 25.13 dollars, respectively. Meanwhile, the highest out-of-pocket payment belonged to diagnostic/laboratory test expenditures (50.3%).

Table 4. OOP Descriptive Indicators of Patients' Direct Costs per One Month

Direct Costs	Mean	Median	Standard Deviation	OOP Ratio of Direct Costs
Medical				
USD	38	28	33	75.8
Rls	1,300,000	960,000	1,120,000	
Non-medical				
USD	12	6	21	24.2
Rls	410,000	200,000	720,000	
Total				
USD	50	34	54	100
Rls	1,710,000	1,160,000	1,840,000	

Direct non-medical costs included transportation, residence, and food of the patients and their caregivers, which were calculated to be 9.06, 0.78, and 2.19 dollars, respectively. In other words, the transportation costs had the highest share (18.2%) of the out-of-pocket payments for the direct non-medical costs. In addition, the sum of the direct costs represented the total out-of-pocket payments of the patients and their caregivers.

Finally, the total out-of-pocket payment of the studied outpatients was estimated at 49.97 dollars, and the highest out-of-pocket payments were for diagnostic/laboratory tests, medications, and transportation costs.

The ratio of the out-of-pocket payments to the income of the patients was also calculated, and it was determined whether the patients' out-of-pocket payments were catastrophic. As mentioned earlier, the threshold of the CHEs was set at 5%. According to the obtained results, the rate of exposure to CHEs was 31%, and the ratio of the out-of-pocket payments to the income of the patients with income was 10%. (Table 6)

5. Discussion

In the current research, the mean out-of-pocket payment per outpatient was calculated within a one-month period based on the share of the direct medical and non-medical costs using a novel approach. The main difference of our study with similar studies is that due to the shift in the perspective of the family unit from multidimensional families to individuals across various countries, costs and incomes are calculated per person rather than on a household basis. In order to meet the research objectives, questions were addressed regarding the out-of-pocket payments for direct medical and non-medical costs, rate of patients' exposure to CHEs, and impact of direct non-medical costs on the patients' exposure to CHEs.

According to statistics, the costs of out-of-pocket health expenditures in Iran was more than twice the global average in 2016 (23). In official statements, out-of-pocket expenditures generally represent patients' out-of-pocket payments for receiving diagnostic and treatment procedures. In addition to direct medical costs, direct non-medical costs are thoroughly paid by patients or their caregivers, which significantly increase patients' out-of-pocket payments (5).

In the current research, the out-of-pocket payments of the patients were calculated contrary to the traditional approach and most of the similar studies considering the out-of-pocket payments for direct medical and non-medical costs. According to the obtained results, the out-of-pocket direct medical costs constituted a major share compared to the non-medical costs. Consistently, Bahmei et al. also reported that direct medical costs were higher than direct non-medical costs (30), whereas Wagner et al. stated that direct non-medical costs were higher than direct medical costs (31). The main cause of increased direct medical costs has been shown to be the higher costs of diagnostic tests compared to other costs. In a study by the WHO, most out-of-pocket payments were for the costs of medication (32). Some of the discrepancies in this regard could be attributed to the differences in the sample populations (inpatient/outpatient), type of diseases, study design, and items considered in the classification of direct medical and non-medical costs. Most findings have confirmed that the share of direct medical costs is higher than non-medical costs, while these categories of costs cannot have the same share in healthcare expenditures. Therefore, further investigations are required.

According to the results of the present study regarding direct non-medical costs, commuting costs were observed to be higher than other costs. In the study by Powel et al., direct non-medical costs were reported to be lower than direct medical costs. Furthermore, the results of the men-

Table 5. OOP Descriptive Indicators for Details of Patients' Direct Costs in One Month

Direct costs	Parameters	Mean	Median	Standard Deviation	OOP Ratio of Direct Costs
Medical	Visit				4
	USD	1.987	1.228	1.052	
	Rls	68,000	42,000	36,000	
	Drug				21.5
	USD	10.814	8.768	11.399	
	Rls	370,000	300,000	390,000	
	Laboratory & diagnostic tests				50.3
	USD	25.136	21.336	27.182	
	Rls	860,000	730,000	930,000	
	Transportation				18.2
Non-medical	USD	9.061	4.676	13.737	
	Rls	310,000	160,000	470,000	
	Reside				1.5
	USD	0.789	-	5.553	
	Rls	27,000	-	190,000	
	Food				4.5
	USD	2.192	-	5.846	
	Rls	75,000	-	200,000	
	Total				100
Total direct costs	USD	49.980	36.535	43.842	
	Rls	1,710,000	1,250,000	1,500,000	

Table 6. Patients' Exposure to CHE Matrix with and without Consideration of Direct Non-medical Costs in One Month

	Without Non-Medical Costs	With Non-Medical Costs
Mean of total sample income	X = 38/159.29 = 0.23	X = 50/159.29 = 0.31
Mean of patients with income	X = 38/493.8 = 0.076	X = 50/493.8 = 0.10

tioned study indicated that commuting costs were higher than the costs of accommodation and food (33). Therefore, it could be inferred that patients must pay out of their pockets for transportation services to reach their medical center of choice and may overlook their other essential needs (e.g., food) as they are forced to pay for direct non-medical costs. Notably, access to healthcare services is an important issue in the discussion of direct non-medical costs since the availability of more services decreases these costs. Moreover, these costs may vary in the case of inpatients.

According to the results of the present study, the patients' out-of-pocket payments were catastrophic in differ-

ent situations. A large portion of the patients' income was reported to be allocated to health services and treatment, thereby leading to CHEs. In addition, the patients with no income were more likely to experience CHEs. In fact, direct medical costs caused 23% of all the examined patients and 8% of the patients with income to face CHEs.

The findings of the current research demonstrated that the out-of-pocket payments for direct non-medical costs (costs of medical transportation, accommodation, and food) increased the CHEs by up to 8%. In line with this finding, Shrime et al. also confirmed the effects of direct non-medical costs on the exposure of patients to CHEs (34). On the other hand, Anderz et al. did not consider direct non-medical costs in the calculation of CHEs (35).

Direct medical costs (i.e., healthcare costs) are the 'tip of the iceberg' when it comes to the costs of medical services imposed on patients. In contrast, direct non-medical costs may be invisible to health care policymakers and decision-makers. Depending on the type of diseases and patient conditions, direct non-medical costs may be large or small, while non-medical costs increase the out-of-pocket payments, thereby increasing the CHEs.

Although all the patients were covered by insurance in the present study, they still had out-of-pocket payments for healthcare services. Therefore, it could be concluded that insurances have literally failed to cover the needs and costs of patients. In fact, insurance services must adequately and fully cover a wide range of the medical needs of their clients. Furthermore, the high costs and poor performance of supplementary insurances may be the reasons behind patients' lack of interest in purchasing these services. According to Zhang et al., the shallow coverage of outpatient care is a major issue in the healthcare system (36). Although private and public insurance covers more than 90% of Iranians, studies have shown that more than 50% of health expenditures are paid out-of-pocket (22).

5.1. Limitations of the Study

- The impossibility of patient follow-up and lack of accurate data on their costs; to resolve this issue, the patients' recent prescriptions were reviewed, and if a drug or test was prescribed and cost information was not available, the cost would be extracted based on the prescriptions.

- In all cost studies, there is a reminder bias or a reminder error, which cannot be reduced to zero. By designing appropriate questions, categorizing questions, consulting professors about designing the questions, detailing the questions, asking and interviewing the patients, and viewing the patients' prescriptions, we attempted to minimize the reminder bias.

5.2. Recommendations

- Calculation of out-of-pocket payments by dividing direct (medical and non-medical) and indirect costs using the same method in the patients with different diseases (inpatient and outpatient) in diverse geographical areas to determine the dominate share of each cost;

- It is recommended that similar studies be performed on both public and private sectors for the comparison of the results.

- It is recommended that similar studies be performed on the elderly and housewives who do not have income and are in a more vulnerable position when it comes to CHEs.

- Due to the individualistic view of family relations, it is recommended that individuals be examined rather than families for the reconsideration of CHE-related approaches.

5.3. Conclusion

Considering the national policy concerning the shift from inpatient services to outpatient services, it is anticipated that high out-of-pocket payments will cause severe

issue for both the health system and patients in the coming years. Moreover, the high direct medical costs that are paid by outpatients out of their pockets require strong and coherent policies for the determination of the patients' share. With the occurrence of illnesses, patients incur direct and indirect medical costs. Therefore, policymakers and decision-makers must consider direct non-medical and medical costs since direct non-medical costs add to the overall out-of-pocket payment of patients and increase the risk of CHEs.

Footnotes

Authors' Contribution: All authors contribute equally.

Conflict of Interests: The authors declare that there are no Conflict of interests.

Ethical Approval: IR-QUMS.REC. 1396.20.

Funding/Support: This research did not receive any support or funding from public or private agencies.

References

1. The World Bank. *Current health expenditure (% of GDP)-Iran, Islamic Rep. 2016*. Available from: <https://data.worldbank.org/indicator/SH.XPD.CHEX.GD.ZS?locations=IR..>
2. The World Bank. *Current health expenditure (% of GDP)*. 2016. Available from: <https://data.worldbank.org/indicator/SH.XPD.CHEX.GD.ZS>.
3. Jirawattanapisal T, Kingkaew P, Lee TJ, Yang MC. Evidence-based decision-making in Asia-Pacific with rapidly changing healthcare systems: Thailand, South Korea, and Taiwan. *Value Health*. 2009;12 Suppl 3:S4-11. doi: [10.1111/j.1524-4733.2009.00620.x](https://doi.org/10.1111/j.1524-4733.2009.00620.x). [PubMed: 20586980].
4. Noyce PR, Huttin C, Atella V, Brenner G, Haaijer-Ruskamp FM, Hedvall M, et al. The cost of prescription medicines to patients. *Health Policy*. 2000;52(2):129-45. doi: [10.1016/s0168-8510\(00\)00066-x](https://doi.org/10.1016/s0168-8510(00)00066-x).
5. Telser H, Fischer B, Leukert K, Vaterlaus S. *Healthcare expenditure and illness-related costs*. Switzerland, Basel: Interpharma / Polynomics; 2011. Available from: <https://issuu.com/interpharma/docs/healthcare-expenditure>.
6. Byford S, Torgerson DJ, Raftery J. Economic note: cost of illness studies. *BMJ*. 2000;320(7245):1335. doi: [10.1136/bmj.320.7245.1335](https://doi.org/10.1136/bmj.320.7245.1335). [PubMed: 10807635]. [PubMed Central: PMC1127320].
7. Farokhi Noori MR, Holakouie Naieni K, Haghdoost AA, Emami A. Cost analysis for cancer subgroups in Kerman, IRAN. *Iran J Epidemiology*. 2012;8(1):62-70.
8. IFPMA. *Cost of non-communicable diseases*. 2011. Available from: <https://www.ifpma.org/>.
9. Gold MR, Siegel JE, Russell LB, Weinstein MC. *Cost-effectiveness in health and medicine*. New York: Oxford University Press; 1996.
10. Hodgson TA, Meiners MR. Cost-of-illness methodology: a guide to current practices and procedures. *Milbank Mem Fund Q Health Soc*. 1982;60(3):429-62. [PubMed: 6923138].
11. Leigh JP, Bowlus CL, Leistikow BN, Schenker M. Costs of hepatitis C. *Arch Intern Med*. 2001;161(18):2231-7. doi: [10.1001/archinte.161.18.2231](https://doi.org/10.1001/archinte.161.18.2231). [PubMed: 11575980].
12. WHO. *The world health report 2000: health systems: improving performance*. Geneva: World Health Organization; 2010.

13. Raban MZ, Dandona R, Dandona L. Variations in catastrophic health expenditure estimates from household surveys in India. *Bull World Health Organ.* 2013;91(10):726-35. doi: 10.2471/BLT.12.113100. [PubMed: 24115796]. [PubMed Central: PMC3791647].
14. Su TT, Kouyate B, Flessa S. Catastrophic household expenditure for health care in a low-income society: a study from Nouna District, Burkina Faso. *Bull World Health Organ.* 2006;84(1):21-7. doi: 10.2471/blt.05.023739. [PubMed: 16501711]. [PubMed Central: PMC2626518].
15. Joe W. Distressed financing of household out-of-pocket health care payments in India: incidence and correlates. *Health Policy Plan.* 2015;30(6):728-41. doi: 10.1093/heapol/czu050. [PubMed: 24966294].
16. Kruk ME, Goldmann E, Galea S. Borrowing and selling to pay for health care in low- and middle-income countries. *Health Aff (Millwood).* 2009;28(4):1056-66. doi: 10.1377/hlthaff.28.4.1056. [PubMed: 19597204].
17. WHO. *Global Health Observatory (GHO) data, Health Financing.* World Health Organization; 2016. Available from: <https://www.who.int/gho/data/themes/topics/health-financing>.
18. Van Lerberghe W. *The world health report 2008: primary health care: now more than ever.* World Health Organization; 2008.
19. Kavosi Z, Rashidian A, Pourreza A, Majdzadeh R, Pourmalek F, Hosseinpour AR, et al. Inequality in household catastrophic health care expenditure in a low-income society of Iran. *Health Policy Plan.* 2012;27(7):613-23. doi: 10.1093/heapol/czs001. [PubMed: 22279081].
20. Wagstaff A, Lindelow M. Can insurance increase financial risk? The curious case of health insurance in China. *J Health Econ.* 2008;27(4):990-1005. doi: 10.1016/j.jhealeco.2008.02.002. [PubMed: 18342963].
21. WHO. *Eastern mediterranean regional health expenditure dashboard.* WHO Global Health Expenditure Database; 2017. Available from: https://www.who.int/health_financing/topics/resource-tracking/Eastern-Mediterranean-Regional-Health-Expenditure-Dashboard.pdf?ua=1.
22. Zare H, Trujillo AJ, Driessens J, Ghasemi M, Gallego G. Health inequalities and development plans in Iran; an analysis of the past three decades (1984-2010). *Int J Equity Health.* 2014;13:42. doi: 10.1186/1475-9276-13-42. [PubMed: 24885492]. [PubMed Central: PMC4046006].
23. TheWorldBank. *Out-of-pocket expenditure (% of current health expenditure) - Iran, Islamic Rep.* 2016. Available from: <https://data.worldbank.org/indicator/SH.XPD.OOPC.CH.ZS?locations=IR>.
24. TheWorldBank. *Out-of-pocket expenditure (% of current health expenditure).* 2016. Available from: <https://data.worldbank.org/indicator/SH.XPD.OOPC.CH.ZS>.
25. OECD. *Out-of-pocket expenditure, % of current expenditure on health 2016 ed. OECD Health Statistics 2016 - Frequently Requested Data.* 2016. Available from: <https://www.oecd.org/health/OECD-Health-Statistics-2019-Frequently-Requested-Data.xls>.
26. Cochran W. *Sampling Technique.* 2nd ed. New York: John Wiley and Sons Inc; 1963.
27. Wagstaff A, van Doorslaer E. Catastrophe and impoverishment in paying for health care: with applications to Vietnam 1993-1998. *Health Econ.* 2003;12(11):921-34. doi: 10.1002/hec.776. [PubMed: 14601155].
28. World Bank Group. *Iran, Islamic Rep.* 2019. Available from: <https://data.worldbank.org/country/iran-islamic-rep?view=chart>.
29. Central Bank of The Islamic Republic of Iran. *Exchange rate: Central bank of The Islamic Republic of Iran.* 2019. Available from: <https://www.cbi.ir/>.
30. Bahmei J, Rahimi H, JAFARI AS, Habibyan M. Examination of medical and non-medical direct costs of outpatients and hospitalized cancer patients in Shiraz, Iran. *Payesh.* 2015;6:629-37.
31. Wagner RG, Bertram MY, Gomez-Olive FX, Tollman SM, Lindholm L, Newton CR, et al. Health care utilization and outpatient, out-of-pocket costs for active convulsive epilepsy in rural northeastern South Africa: a cross-sectional Survey. *BMJ Health Serv Res.* 2016;16:208. doi: 10.1186/s12913-016-1460-0. [PubMed: 27353295]. [PubMed Central: PMC4924265].
32. Saksena P, Xu K, Elovainio R, Perrot J. Health services utilization and out-of-pocket expenditure at public and private facilities in low-income countries. *World health report.* 2010;20:20.
33. Pavel MS, Chakrabarty S, Gow J. Cost of illness for outpatients attending public and private hospitals in Bangladesh. *Int J Equity Health.* 2016;15(1):167. doi: 10.1186/s12939-016-0458-x. [PubMed: 27224955]. [PubMed Central: PMC5057498].
34. Shrimie MG, Dare AJ, Alkire BC, O'Neill K, Meara JG. Catastrophic expenditure to pay for surgery worldwide: a modelling study. *Lancet Glob Health.* 2015;3 Suppl 2:S38-44. doi: 10.1016/S2214-109X(15)70085-9. [PubMed: 25926319]. [PubMed Central: PMC4428601].
35. Anders B, Ommen O, Pfaff H, Lungen M, Lefering R, Thum S, et al. Direct, indirect, and intangible costs after severe trauma up to occupational reintegration - an empirical analysis of 113 seriously injured patients. *Psychosoc Med.* 2013;10:Doc02. doi: 10.3205/psm000092. [PubMed: 23798979]. [PubMed Central: PMC3687242].
36. Zhang A, Nikoloski Z, Mossialos E. Does health insurance reduce out-of-pocket expenditure? Heterogeneity among China's middle-aged and elderly. *Soc Sci Med.* 2017;190:11-9. doi: 10.1016/j.socscimed.2017.08.005. [PubMed: 28823943].