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Abstract

Context: Rheumatoid arthritis (RA) is the most prevalent autoimmune inflammatory joint disorder, characterized by chronic synovial inflammation,

autoantibody production, and progressive destruction of cartilage and bone. This complex condition often leads to systemic complications affecting the

cardiovascular, pulmonary, and skeletal systems. The pathogenesis of RA is largely driven by pro-inflammatory cytokines, including tumor necrosis factor-alpha

(TNF-α), interleukin-1 (IL-1), interleukin-6 (IL-6), and interleukin-8 (IL-8), which sustain inflammatory processes and disease progression. Current therapeutic

strategies, such as disease-modifying anti-rheumatic drugs (DMARDs) and biologics, have improved patient outcomes but are hindered by variable efficacy,

systemic side effects, and high costs.

Evidence Acquisition: Nanotechnology offers a transformative approach through targeted drug delivery systems that enhance therapeutic efficacy while

minimizing adverse effects. Recent advancements in nanoformulations — including nanoparticles, liposomes, micelles, nanoemulsions, nanocrystals, solid lipid

nanoparticles (SLNs), and hydrogels — address critical challenges such as drug solubility, bioavailability, and tissue-specific targeting. This review explores

passive, active, and stimuli-responsive delivery systems, alongside biomaterial-based immunotherapies, highlighting their potential to modulate immune

responses effectively.

Results: Preclinical studies indicate that these innovative strategies can significantly alleviate inflammation and joint damage. However, the integration of

nanotechnology in RA therapy faces challenges, including safety concerns, drug-drug interactions (DDIs), inconsistent drug delivery, regulatory complexities,

and patient acceptance.

Conclusions: Future directions emphasize the development of novel nanocarriers, the integration of artificial intelligence (AI) for optimized drug design,

and the refinement of stability and release mechanisms. Addressing biomarker limitations and ensuring long-term safety will be essential for overcoming

clinical translation barriers. Furthermore, the integration of diagnostics with therapeutics (theranostics) is crucial for advancing precision medicine in RA

management, paving the way for effective, personalized therapeutic solutions tailored to the complexities of this disease. In conclusion, while nanotechnology

holds significant promise for revolutionizing RA therapy through enhanced targeted delivery and improved patient outcomes, successful implementation in

clinical practice will require addressing associated challenges and ensuring patient education and acceptance.

Keywords: Rheumatoid Arthritis , Nanotechnology , Targeted Drug Delivery,
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1. Context

Rheumatoid arthritis (RA) is a chronic autoimmune
disorder affecting approximately 0.5 - 1% of the global

population, with a prevalence of 1 - 2% in women aged 40
- 60 years (1). The RA remains a significant global health

challenge. From 1990 to 2019, the age-standardized

prevalence rate (ASPR) increased by 0.37%, and the age-
standardized incidence rate (ASIR) increased by 0.3%. In

2020, approximately 17.6 million people worldwide
were affected by RA, equating to 208.8 cases per 100,000

individuals. Predictions suggest that by 2050, the
number of affected individuals will rise to 31.7 million.

These trends highlight the need for targeted

interventions and resource allocation in regions with a

high burden of disease (2).

The RA, characterized by synovial inflammation,

leads to cartilage and bone destruction, significantly

impairing quality of life and increasing mortality risk by

1.5 - 2-fold compared to the general population (3).

Clinically, RA manifests through symmetrical joint

involvement, predominantly affecting the small joints

of the hands and feet, including the wrists, fingers, and

toes (4). The global economic burden is substantial, with

annual costs estimated at $20 - 30 billion, including $10

billion in direct healthcare costs and $15 - 20 billion in

productivity losses due to disability (5).
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Systemic complications of RA, such as cardiovascular

disease and osteoporosis, further exacerbate its impact,

contributing to a 5 - 10-year reduction in life expectancy
(6). In low- and middle-income countries, access to

advanced therapies like biologics is limited, with only 10
- 20% of patients able to afford treatments (7) costing

$20,000–$50,000 annually, exacerbating health

disparities (5).

Conventional RA treatments — non-steroidal anti-

inflammatory drugs (NSAIDs), disease-modifying anti-

rheumatic drugs (DMARDs), and biologics — face

significant limitations, including poor bioavailability,

systemic toxicity, and high costs (6). For instance,

methotrexate, the cornerstone DMARD, provides clinical

benefit in just 30 - 40% of patients and is associated with

hepatic toxicity in 10 - 0% (8). Biologics like anti-tumor

necrosis factor-alpha (TNF-α) agents are more effective,

with response rates of 60 - 70% of cases, but increase

infection risks and are cost-prohibitive (6).

Nanotechnology has emerged as a transformative

approach to address these challenges, enabling targeted
drug delivery, enhanced pharmacokinetics, and reduced

side effects (7). Nanoformulations, including

nanoparticles, liposomes, micelles, and hydrogels, are

designed to target the distinct microenvironment of

inflamed joints, which is characterized by leaky
vasculature, a mildly acidic pH (~6.0), and elevated

reactive oxygen species (ROS), to improve therapeutic

efficacy (9). For example, nanoparticles leverage the

enhanced permeability and retention (EPR) effect to

accumulate in inflamed synovium, while stimuli-
responsive systems release drugs in response to specific

triggers, achieving a reduction in inflammation in

preclinical models (10).

Beyond drug delivery, nanotechnology facilitates

biomaterial-based immunotherapies that modulate

immune responses, targeting innate and adaptive
immune cells to restore immune balance (7). Recent

advances have demonstrated the potential of

nanotechnology to deliver small interfering RNAs

(siRNAs), gene-editing tools, and biologics with high

precision, paving the way for personalized RA therapies
(11).

This review synthesizes key studies published

between 2018 and 2025, focusing on the mechanisms,

therapeutic efficacy, and limitations of nanotechnology-

based RA therapies. It highlights critical challenges in

the field, including scalability, regulatory hurdles, and

clinical translation, and proposes future directions to

support the development of cost-effective and accessible

therapies. Nanotechnology’s potential to transform RA

management extends beyond high-income settings,

offering scalable solutions to reduce the global burden

of autoimmune diseases. Collaborative efforts among

researchers, clinicians, and policymakers are essential to
translate these innovations into clinical practice,

ensuring equitable access to advanced therapies
worldwide.

1.1. Pathogenesis of Rheumatoid Arthritis

The RA pathogenesis involves a complex interplay of

genetic, epigenetic, environmental, and immunological
factors (6). Genetic predispositions, such as HLA-DRB1

alleles, increase RA risk by 2 - 3-fold, while

environmental triggers like smoking and infections

initiate immune dysregulation (7). The RA is influenced

by epigenetic factors. DNA methylation, particularly in

CpG islands, regulates gene expression, with

hypomethylation in synovial fibroblasts and peripheral

blood mononuclear cells (PBMCs) contributing to

inflammation and joint damage. Distinct DNA

methylation patterns in T cells are associated with

altered immune responses and disease progression.

Additionally, histone modifications affect chromatin

structure, influencing gene accessibility related to

inflammation. DNA methyltransferases (DNMTs),

especially DNMT1, are essential for maintaining

methylation patterns, with a negative correlation

observed between DNMT1 and secreted frizzled-related

protein 2 (SFRP2) in RA. Non-coding RNAs (ncRNAs) also

modulate gene expression and inflammatory processes.

Environmental factors, such as diet and stress, can

induce epigenetic changes that exacerbate RA. Notably,

the reversibility of epigenetic modifications offers
promising therapeutic targets for RA management (12).

Innate immune cells, including macrophages and

neutrophils, release pro-inflammatory cytokines [TNF-α,

interleukin-1 (IL-1), interleukin-6 (IL-6)] that amplify

inflammation, promote synovial hyperplasia, and

recruit additional immune cells (7). The NF-κB signaling

pathway, activated in 80% of RA synovium, drives

cytokine production, while the Janus kinase (JAK)/signal

transducers and activator of transcription (STAT)

pathway mediates IL-6 signaling, contributing to

chronic inflammation (11).

Adaptive immune responses, mediated by T and B

cells, produce autoantibodies, including anti-

citrullinated protein antibodies (ACPAs) and
rheumatoid factor (RF), forming immune complexes

that exacerbate synovial damage (13). Approximately
70% of RA patients are ACPA-positive, correlating with

severe disease (13).

The inflamed synovium exhibits leaky vasculature,

hypoxia, and acidic pH (~6.0 vs. 7.4 in healthy tissues),
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Figure 1. The role of key cells and inflammatory molecules in the pathogenesis of rheumatoid arthritis (RA). The image provides a comprehensive overview of the key cellular
and molecular players involved in the pathogenesis of RA, illustrating the complex interactions between different cell types and various inflammatory mediators that
contribute to the development and progression of the disease. Chondrocytes, the cartilage-producing cells, are affected in RA, leading to articular cartilage injury. Osteoclasts,

responsible for bone resorption, drive bone destruction in RA, influenced by factors like receptor activator of nuclear factor kappa-Β ligand (RANKL), interleukin-1 beta (IL-1β),

interleukin-6 (IL-6), and TGF-β. Fibroblasts secrete inflammatory cytokines and chemokines, such as tumor necrosis factor-alpha (TNF-α), IL-1β, and chemokine (C-X-C Motif)

ligand 8 (CXCL8), contributing to the inflammatory environment. Activated macrophages release pro-inflammatory mediators, including TNF-α, IL-1β, IL-6, and IL-15, fueling the

inflammatory cascade. Neutrophils, recruited to the inflamed joint, release factors like TNF-α, IL-1β, and CXCL8, exacerbating the inflammatory response. Plasma cells contribute
to the autoimmune component of RA by producing rheumatoid factor (RF) and anti-citrullinated protein antibodies (ACPAs). Dendritic cells, as antigen-presenting cells, play a

crucial role in activating T cells, leading to the differentiation of T helper 1 (Th1) and 17 (Th17) cells, which release inflammatory cytokines like interferon gamma (IFN-γ), TNF-α, IL-
17, and IL-22. Activated T cells, particularly Th1 and Th17 cells, perpetuate the inflammatory response in RA. B cells are involved in the autoimmune aspects of RA, producing
autoantibodies and contributing to the overall inflammatory environment. Additionally, the key pathological features of RA, such as fibroblast-like synoviocyte (FLS)
proliferation, hyperplastic synovial lining, articular cartilage injury, bone destruction, reduced joint space, swollen inflamed synovial membrane, and angiogenesis, are
highlighted.

creating opportunities for nanotherapeutics (7).

Nanoparticles exploit the EPR effect to accumulate in

inflamed joints, achieving 2 - 3-fold higher

concentrations than in healthy tissues (10). Stimuli-

responsive systems release drugs in response to low pH,

high ROS, or matrix metalloproteinases (MMPs),

enhancing precision (10).

The receptor activator of nuclear factor kappa-Β
ligand (RANKL)/RANK pathway drives

osteoclastogenesis, leading to bone erosion in 80% of

untreated patients within 2 years (13). Fibroblast-like

synoviocytes (FLSs) contribute to pannus formation and

matrix degradation through MMP-1 and MMP-3, with

expression levels 5 - 10 times higher in RA synovium

(Figure 1) (14). Recent studies highlight the role of

microRNAs (e.g., miR-146a, miR-155) in regulating

inflammation, with miR-146a suppressing NF-κB activity

in preclinical models (15).

Epigenetic modifications, such as DNA methylation

of pro-inflammatory cytokine genes (TNF-α, IL-6, and IL-

1β), further influence RA progression, suggesting targets

for nanotechnology-based gene regulation and

therapeutic intervention (11). Understanding these

molecular and cellular mechanisms is critical for

designing targeted interventions, with nanotechnology

offering a promising platform to deliver drugs, siRNAs,

or CRISPR/Cas9 tools to specific cellular targets.

1.2. Pharmacological Management of Rheumatoid Arthritis

The RA treatment relies on pharmacological agents,

including NSAIDs, conventional and biologic DMARDs,

glucocorticoids, and emerging RNA interference (RNAi)

therapies (5-8). Despite widespread use, these

treatments face significant limitations.

1. The NSAIDs (e.g., ibuprofen, naproxen): Provide

symptomatic relief by reducing pain and inflammation

but fail to modify disease progression. Long-term use
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correlates with gastrointestinal bleeding and elevated

cardiovascular risks, including myocardial infarction

(7).

2. Conventional DMARDs (e.g., methotrexate,

leflunomide, sulfasalazine): Methotrexate slows joint

damage and suppresses inflammation but causes

hepatic toxicity and bone marrow suppression, leading

to 30% treatment discontinuation within one year (8).

Combination regimens (e.g., methotrexate +

leflunomide) enhance efficacy but increase toxicity, with

15 - 20% of patients experiencing severe adverse events

(6). Low oral bioavailability (20 - 30%) necessitates high

doses, exacerbating toxicity and reducing adherence;

40% of patients show poor compliance (5, 6).

3. Biologics [e.g., TNF-α inhibitors (etanercept), IL-6R

blockers (tocilizumab)]: Effective in 60 - 70% of patients

but incur prohibitive costs ($20,000 - 50,000 annually),

limiting accessibility (only 10 - 20% treated in low-

resource settings) (5, 6). Safety concerns include a 2 - 3-

fold higher infection risk and tuberculosis reactivation

(1 - 2% incidence) (6).

4. The RNAi therapies: Enable precise cytokine

targeting (e.g., IL-6, TNF-α) but suffer rapid serum

degradation (< 1-hour half-life), poor cellular uptake,

and off-target effects, resulting in < 5% clinical success

(8). These limitations underscore the need for advanced

drug-delivery platforms. Nanotechnology-based systems

address these challenges through four key mechanisms:

1. Enhanced bioavailability: Protects therapeutic

molecules from metabolic degradation, improving

solubility and absorption.

2. Targeted delivery: Uses ligands (e.g., integrin-

binding peptides) for site-specific accumulation in

inflamed synovium.

3. Reduced toxicity: Minimizes systemic exposure via

controlled release, lowering dosing frequency and

adverse effects.

4. Cost efficiency: Cuts treatment expenses by 20 - 30%

in high-income countries through optimized drug

utilization (7).

These advancements improve patient quality of life

while reducing hospitalization rates and surgical

interventions, alleviating healthcare burdens.

1.3. Nanotechnology-Based Solutions for Rheumatoid
Arthritis

Nanotechnology addresses the limitations of

conventional RA therapies by improving drug solubility,

bioavailability, and targeting. Among these,

nanoparticles (20 - 200 nm) stand out for their

enhanced solubility and targeted delivery capabilities,

though they face challenges such as potential toxicity

and clearance by the mononuclear phagocyte system

(MPS) (7). Liposomes (50 - 200 nm) offer excellent

biocompatibility and drug encapsulation but are

limited by stability concerns (1). Micelles and

nanoemulsions provide high drug loading and

improved solubility, respectively, yet may be limited by

rapid clearance or complex formulation requirements.

Nanocrystals and solid lipid nanoparticles (SLNs)

further enhance bioavailability and biocompatibility

but face limitations like aggregation risk or low drug

loading capacity (16). Hydrogels, while variable in size,

are advantageous for their sustained release and

biocompatibility, especially in intra-articular

applications, though they require complex fabrication

(9). These nanoformulations represent a diverse toolkit

for tailoring RA treatment strategies toward more

effective, targeted, and patient-specific therapies.

1.3.1. Targeted Drug Delivery Systems

Targeted delivery systems enhance RA therapy by

directing drugs to inflamed tissues, reducing systemic

toxicity. These systems are categorized into passive,

active, and stimulus-responsive strategies (Figure 2).

1.3.1.1. Passive Targeting

Passive targeting leverages the EPR effect, allowing

nanoparticles to accumulate in inflamed joints due to

leaky vasculature (7). Polyethylene glycol (PEG)-modified

nanoparticles, such as dexamethasone-loaded

liposomes, enhance circulation time and efficacy in

collagen-induced arthritis (CIA) models, resulting in

reduced inflammation compared to unencapsulated

drug formulations (1). Chitosan-modified nanoparticles

enhance biocompatibility, as shown by glycol chitosan

formulations delivering methotrexate, achieving 2-fold

higher joint accumulation (1). Silica nanoparticles, with

high drug-loading capacity, deliver anti-inflammatory

agents, reducing TNF-α levels by 50% in murine models

(17). Selenium nanocrystals exhibit antioxidant

properties, alleviating oxidative stress in RA joints (16).

The SLNs delivering curcumin enhance stability and

reduce inflammation with minimal toxicity (18).

However, clearance by the MPS limits efficacy, with 40 -

50% of nanoparticles cleared within hours (19).

Biomimetic nanoparticles, such as neutrophil

membrane-coated poly(lactic-co-glycolic acid) (PLGA)

nanoparticles, reduce immunogenicity and improve

targeting, achieving 3-fold higher joint accumulation

(19). Previous studies demonstrated PEGylated lipid

nanoparticles delivering tofacitinib, reducing synovial

inflammation in CIA models (20).
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Figure 2. Targeted therapeutic approaches for rheumatoid arthritis (RA). This image outlines the targeted drug delivery systems and biomaterial-based immunotherapies being
explored for RA treatment. Targeted drug delivery: Passive targeting, active targeting, stimuli-responsive, scaffolds, and hydrogels; biomaterial-based immunotherapies.

1.3.1.2. Active Targeting

Active targeting uses ligands to bind specific

receptors on inflamed cells, enhancing precision. Folate-

conjugated nanoparticles target macrophages

expressing folate receptor β, reducing pro-

inflammatory cytokines (TNF-α, IL-6) in CIA models (21).

Hyaluronic acid (HA)-coated nanoparticles target CD44

receptors, decreasing inflammation and cartilage

damage (22). Mannose-modified liposomes delivering p-

coumaric acid enhance drug retention in joints,

reducing osteoclastogenesis compared to

dexamethasone (23). Dextran sulfate-modified

nanocomposites target scavenger receptor class A on

macrophages, improving methotrexate delivery by 3 - 4-

fold (24).

1.3.1.3. Stimuli-Responsive Systems

Stimuli-responsive systems release drugs in response

to environmental cues, such as low pH (~6.0 in inflamed

joints), high ROS, or enzyme activity. The pH-sensitive

micelles deliver siRNA at pH 5.0, silencing inflammatory

genes like IL-6 (10). Redox-responsive nanoparticles,

triggered by glutathione, release drugs in ROS-rich

environments, as shown by indomethacin-loaded

polyprodrug amphiphiles reducing inflammation (6).

Enzyme-responsive liposomes, activated by

phospholipases or MMPs, enable precise drug release,

minimizing off-target effects (25). The ROS-responsive

nanogels delivering superoxide dismutase reduce

oxidative stress in RA models (26). Temperature-

responsive liposomes releasing methotrexate at 40°C

exploit joint hyperthermia, achieving inflammation

reduction (27). Dual-responsive (pH/ROS) nanoparticles

deliver tofacitinib, reducing cytokine levels (28). These

systems enhance therapeutic precision, but clinical

translation requires optimization for stability and

reproducibility (7).

1.3.2. Biomaterial-Based Immunotherapies

Biomaterials enable precise modulation of immune

responses in RA, targeting innate and adaptive immune

cells to restore immune balance.

1.3.2.1. Targeting Innate Immune Cells

1.3.2.1.1. Neutrophils
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Doxorubicin-conjugated albumin nanoparticles

induce neutrophil apoptosis, reducing inflammation in

murine models (29). Sialic acid-decorated liposomes

delivering dexamethasone palmitate reduce IL-1β and

TNF-α levels (30). Neutrophil membrane-coated

nanoparticles act as cytokine sinks, reducing synovial

inflammation (19). Lipid nanoparticles delivering IL-10

suppress neutrophil activation. The ROS-scavenging

nanoparticles reduce neutrophil-driven oxidative

damage (31).

1.3.2.1.2. Macrophages

Folate-decorated liposomes co-delivering

methotrexate and NF-κB siRNA target inflammatory M1

macrophages, reducing cytokine production. ROS-

sensitive nanoparticles promote M2 macrophage

polarization, alleviating arthritis (14). Catalase-

incorporated liposomes exploit hydrogen peroxide,

enhancing methotrexate release by 3-fold. IL-10-loaded

nanoparticles repolarize macrophages, reducing joint

swelling (14). Macrophage-derived extracellular vesicles

deliver anti-inflammatory miRNAs, reducing

inflammation by shifting synovial macrophages from

M1 to M2 population (32). Dual-targeting nanoparticles

(folate and mannose) enhance macrophage specificity,

achieving cytokine reduction (33).

1.3.2.1.3. Dendritic Cells

The PLGA microparticles induce tolerogenic

dendritic cells (tDCs), promoting regulatory T cell (Treg)

expansion and reducing arthritis symptoms. Liposomes

delivering NF-κB inhibitors suppress inflammatory

arthritis (14). A clinical trial demonstrated that

autologous tDCs treated with vitamin D3 reduced RA

disease activity scores (DAS28) (34). Peptide-loaded

nanoparticles inducing tDC tolerance enhance Treg

function (35). Nanoparticle-based vaccines delivering

autoantigens induce tDC-mediated tolerance, reducing

inflammation (14).

1.3.2.2. Targeting Adaptive Immune Cells

1.3.2.2.1. T Cells

Nanoparticles encapsulating siRNA targeting c-Rel

effectively suppress T helper 1 (Th1)/17 (Th17) cytokines

[interferon gamma (IFN-γ), IL-17], halting disease

progression in CIA models. Liposome-gold

nanoparticles delivering coenzyme Q10 inhibit Th17 cell

activity, a key contributor to inflammation at the disease

site (36). The PLGA nanoparticles recruiting Tregs via

CCL22 enhance immune tolerance and mitigate joint

inflammation (36). Nanoparticles delivering STAT3

inhibitors reduce T cell infiltration in synovial tissues

(37). Lipid-based nanoparticles silencing PD-1 expression

promote Treg differentiation, reducing RA severity (38).

Nanovaccines delivering T cell-specific epitopes induce

antigen-specific tolerance and significantly lower

inflammatory responses in preclinical models (39).

1.3.2.2.2. B Cells

The PEGylated PLGA nanoparticles targeting BAFF (B

cell-activating factor of the TNF family) reduce

autoreactive B cells and anti-collagen antibodies.

Bifunctional nanoparticles combining fibrin peptides

and HIV-1 peptides deplete citrullinated protein-specific

B cells. Liposomes targeting CD22 receptors induce B cell

tolerance, restoring immune balance (40).

Nanoparticles neutralizing ACPAs reduce autoantibody-

driven inflammation (14).

1.3.2.3. Targeting Non-immune Cells

1.3.2.3.1. Osteoclasts

Mannose-coated liposomes delivering p-coumaric

acid impair osteoclastogenesis, reducing bone

resorption (14). Berberine-loaded mannosylated

liposomes silence inflammatory genes via miR-23a,

reducing bone erosion. Gold nanoparticles inhibit

osteoclast formation through antioxidant effects,

achieving a significant reduction. Zoledronate-loaded

nanoparticles prevent bone erosion (14). Alendronate-

functionalized nanoparticles target RANKL signaling,

reducing osteoclast activity (40). Bisphosphonate-

loaded nanoparticles inhibit osteoclastogenesis (41).

1.3.2.3.2. Fibroblast-Like Synoviocytes

Photosensitive PLGA nanoparticles induce ROS-

mediated FLS death via photodynamic therapy, reducing

inflammation (14). The siRNA-loaded nanoparticles

silencing MMP-9 in FLSs reduce tissue remodeling (42).

Aptamer-functionalized nanoparticles targeting FLSs

deliver JAK inhibitors, alleviating synovial hyperplasia

(43). Nanoparticle-delivered miR-124 suppresses FLS

proliferation (44).

1.3.3. Scaffolds and Hydrogels

Scaffolds and hydrogels provide localized drug

delivery and tissue regeneration, addressing RA’s joint-

specific pathology. The HA hydrogels encapsulating

methotrexate offer sustained release, reducing joint

inflammation in CIA models (45). Thermo-responsive
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hydrogels combining platelet-rich plasma and black

phosphorus nanosheets promote osteogenesis,

improving bone repair (46). Transdermal hydrogels

enhance methotrexate penetration, improving

pharmacokinetics and reducing hepatotoxicity (47).

Hydrogels delivering DMARDs, such as iguratimod,

reduce cytokine production and promote bone

regeneration (48). Infliximab-loaded hydrogels alleviate

joint inflammation with minimal systemic exposure

(49). Nitric oxide (NO)-scavenging hydrogels modulate

cytokine levels, reducing inflammation (50). Smart

hydrogels responding to ROS or pH enable on-demand

drug release, reducing inflammation (14). Self-healing

hydrogels maintain structural integrity under joint

stress, enhancing drug delivery (51). 3D-printed scaffolds

seeded with mesenchymal stem cells support cartilage

regeneration, restoring cartilage thickness (49).

Nanofiber scaffolds delivering anti-TNF-α antibodies

reduce inflammation and promote tissue repair (52).

Nanocomposite hydrogels combining nanoparticles

and biologics achieve inflammation reduction and

cartilage repair. These systems enhance treatment

efficacy, but complex fabrication and high costs limit

scalability (53).

1.4. Clinical Applications of Nanomedicine in Rheumatoid
Arthritis

1.4.1. Approved Nanomedicines

Between 2012 and 2024, the approval of

nanomedicines for RA has been limited (Table 1), with

most advancements remaining in preclinical or clinical

trial phases. These formulations utilize nanocarriers

such as liposomes and polymeric nanoparticles to

enhance bioavailability and target joint tissues, aiming

to reduce systemic toxicity and dosing frequency.

However, regulatory challenges persist due to stringent

safety requirements for new nanomaterials.

Additionally, no new nanomedicines have been

approved by the Food and Drug Administration (FDA) or

European Medicines Agency (EMA) for RA between 2023

and 2025, highlighting significant gaps in translating

laboratory innovations into clinical practice (54).

1.4.2. Ongoing Clinical Trials

As of December 2024, over 30 active clinical trials are

investigating nanomedicine-based RA therapies,

spanning phase I-IV and observational studies (54). Key

approaches include:

1. Targeted biologics: Nanoparticles functionalized

with peptides or antibodies to selectively deliver

methotrexate or tofacitinib to synovial tissue.

2. Stimuli-responsive systems: The pH-sensitive

nanocarriers releasing drugs in inflamed joints (e.g.,

dexamethasone-loaded liposomes in phase II).

3. Novel formulations: A groundbreaking phase I trial

(NCT04877274) evaluates a cinnamaldehyde-based

prodrug nanosystem, leveraging FDA-approved food

additives for anti-inflammatory effects with reduced

hepatotoxicity.

4. Combination therapies: Co-delivery of DMARDs

and siRNA via gold nanoparticles to simultaneously

suppress inflammation and joint erosion (phase III).

These trials prioritize patient-centric endpoints (e.g.,

DAS28 scores and quality-of-life metrics) but face

recruitment challenges due to RA heterogeneity and

stringent inclusion criteria (54).

1.5. Challenges and Future Directions in Nanotechnology-
Enabled Combination Therapy for Rheumatoid Arthritis

1.5.1. Current Challenges

1. Safety concerns: Nanomaterials may induce

inflammation or oxidative stress, necessitating

thorough toxicity evaluations and a deeper

understanding of nanomaterial-biological interactions.

2. Drug-drug interactions (DDIs): Co-delivery systems

face challenges due to variability in physicochemical

properties (e.g., solubility, molecular size), which can

impair therapeutic efficacy and pharmacokinetics.

3. Clinical translation: Inconsistent drug delivery

within RA's complex microenvironment, patient

diversity, manufacturing scalability issues, and stability

limitations hinder effective treatment.

4. Regulatory and market barriers: Reluctance from

pharmaceutical companies to invest in costly trials and

difficulties in demonstrating superiority over

conventional therapies impede commercialization (54).

Challenges and limitations of nanotechnology for

targeted RA therapy are demonstrated in Figure 3.

1.5.2. Future Integration Strategies

1. Innovative nanocarriers: Development of biosafe,

biomimetic nanocarriers to mitigate safety risks and

enhance targeting of joint tissues.

2. Artificial intelligence (AI): Utilizing AI and digital

twins to optimize drug design, predict DDIs, and

simulate in vivo processes, thereby accelerating clinical

translation.

3. Stability and release mechanisms: Enhancing

nanocarrier stability and designing stimuli-responsive
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Table 1. Approved Nanomedicines for Rheumatoid Arthritis Therapy

Nanomedicines Therapeutic Approaches

Abraxane (nanoparticle albuminbound paclitaxel) Used off-label for autoimmune disorders; utilizing nanoparticles for improved delivery

Certolizumab pegol (Cimzia) PEGylated antibody fragment targeting TNFα, enhancing drug delivery and reducing immunogenicity

Methotrexate nanoparticles Nanoparticle formulation of Methotrexate for targeted drug delivery in RA, improving Therapeutic Index

Liposomal prednisolone (Nanocort) Liposomal formulation for enhanced delivery to inflamed tissues, reducing systemic side effects

Tofacitinib citrate (Xeljanz) Nanotechnology-based modifications to improve bioavailability; oral JAK inhibitor

Golimumab (Simponi Aria) Utilizes nanotechnology-enhanced delivery mechanisms for anti-TNFα therapy

Nanoparticle-based hyaluronic acid Nanocarrier for enhanced joint delivery; used in conjunction with other treatments to reduce symptoms

Baricitinib (Olumiant) JAK inhibitor with enhanced drug delivery formulations through nanotechnology approaches

Filgotinib (Jyseleca) Oral JAK inhibitor employing advanced formulation strategies to improve bioavailability

Ozoralizumab (Nanozora) Trivalent anti-TNFα nanobody, specifically designed for inflammatory diseases like RA

Abbreviations: PEG, polyethylene glycol; RA, rheumatoid arthritis; JAK, Janus kinase.

Figure 3. Challenges and limitation of nanotechnology for targeted rheumatoid arthritis (RA) therapy. Despite advancements in nanotechnology for combination therapy in RA,
several challenges remain (53).

release mechanisms for personalized treatments

adaptable to disease progression.

4. Therapeutic potential of nanomaterials: Exploring

the intrinsic anti-inflammatory and tissue-repair

properties of nanomaterials, alongside facilitating rapid

diagnostics for real-time monitoring (54).

Key strategies for advancing nanotechnology for

targeted RA therapy are summarized in Figure 4.

1.5.3. Addressing Clinical Translation Challenges

1. Heterogeneity and biomarker limitations: Diverse

RA subtypes and lack of validated biomarkers

complicate trial designs and patient stratification.

2. Long-term safety and drug delivery: Chronic
management requires therapies with sustained efficacy,

yet biodegradation profiles of nanomaterials remain
poorly characterized beyond 24 months.
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Figure 4. Key strategies for advancing nanotechnology for targeted rheumatoid arthritis (RA) therapy. The RA presents significant challenges in treatment due to its complexity
and diversity. While pharmaceutical therapies dominate current clinical practice, nano-empowered combination therapy offers promising solutions to overcome the
limitations of monotherapy and associated side effects. This approach leverages synergistic pharmacological mechanisms with minimal overlapping toxicities, enhancing
therapeutic efficacy (53).

3. Regulatory hurdles: Extensive safety data

requirements delay approvals, and manufacturing

scalability issues, along with high production costs,
limit accessibility, especially in low-income regions.

4. Patient acceptance: Limited real-world efficacy data

and insurance coverage disparities hinder patient

acceptance of novel nanotherapies.

To advance nano-empowered combination therapy

for RA, it is crucial to implement dynamic, stage-

targeted strategies and integrate diagnostics with

therapeutics to achieve precision medicine in RA

management (53).

2. Conclusions

Nanotechnology represents a transformative frontier

in the management of RA, addressing the critical

limitations of conventional therapies through

innovative drug delivery systems and biomaterial-based

immunotherapies. This review highlights the

multifaceted role of nanotechnology in enhancing

therapeutic efficacy, improving bioavailability, and

minimizing systemic toxicity. By leveraging the unique

properties of nanoparticles, liposomes, and hydrogels,

researchers are developing targeted interventions that

can deliver therapeutic agents directly to inflamed

tissues, thus maximizing treatment outcomes while

reducing adverse effects.

Despite the promising advancements in

nanomedicine, several challenges remain in translating

these innovations from the laboratory to clinical

practice. Safety concerns regarding the biocompatibility

of nanomaterials, the complexities of DDIs, and

regulatory hurdles pose significant barriers to

widespread adoption. Furthermore, the heterogeneity

of RA and the absence of validated biomarkers

complicate patient stratification and trial design,

underscoring the need for tailored approaches to

treatment.

Future directions in nanotechnology-enabled RA

therapies should focus on the development of biosafe,

biomimetic nanocarriers that enhance targeting

precision and minimize safety risks. Integrating AI in

drug design and utilizing real-time diagnostic tools will

further optimize therapeutic strategies, paving the way

for personalized medicine in RA management.

In conclusion, the potential of nanotechnology to

revolutionize RA therapy is vast, offering scalable

solutions that can significantly alleviate the global

burden of this debilitating disease. Collaborative efforts

among researchers, clinicians, and policymakers are
essential to overcome existing challenges, ensuring

equitable access to advanced therapies for all patients,
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regardless of their socioeconomic status. As we continue

to explore the intersection of nanotechnology and

rheumatology, we move closer to achieving more

effective, personalized, and accessible treatments for

individuals suffering from RA.
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