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Abstract

Background: Prehypertension, a transitional stage towards hypertension, has been recognized as an independent risk factor

for cardiovascular diseases.

Objectives: This study aimed to examine the role of the health belief model (HBM) in predicting preventive behaviors among

individuals with prehypertension.

Methods: This descriptive-analytical study included 200 prehypertensive participants aged 34 to 85 years, selected via multi-

stage cluster sampling in Sirjan, Iran in 2023. Data were collected using a validated HBM Questionnaire and standard blood

pressure measurements. Average blood pressure values were 128 ± 3 mmHg systolic and 84.5 ± 2.8 mmHg diastolic. Advanced

statistical techniques, including multiple regression and structural equation modeling (SEM), and machine learning (ML)

models such as random forest, support vector machine (SVM), gradient boosting, and neural networks, were combined to

analyze the data, with a significance level of 0.05.

Results: Self-efficacy (β = -0.25, P < 0.001) and perceived severity (β = 0.32, P < 0.001) were the strongest predictors of blood

pressure control behaviors. Gender differences in knowledge (P = 0.027) and self-efficacy (P = 0.021) were observed, with women

showing higher levels than men. Supervised ML models showed high predictive accuracy for blood pressure control behaviors,

with the gradient boosting model performing best [area under the curve (AUC) = 0.895, P < 0.001]. Health belief model

components such as perceived benefits and barriers did not significantly impact behaviors.

Conclusions: The results suggest that psychological and behavioral factors, particularly self-efficacy and perceived severity,

should be integrated into prehypertension intervention programs. Tailored interventions focusing on enhancing self-efficacy

and addressing perceived severity, particularly among men, can optimize blood pressure control outcomes.
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1. Background

Blood pressure is a vital sign that regulates arterial

blood flow and ensures efficient oxygen delivery to

organs (1). Prehypertension, defined as a systolic blood

pressure of 120 - 139 mmHg or a diastolic blood pressure

of 80 - 89 mmHg, marks a transitional stage toward

hypertension and serves as an independent risk factor

for cardiovascular diseases (2). Individuals with

prehypertension face a 1.5 to 2 times higher risk of

cardiovascular events and a 3.5 times greater likelihood

of progressing to hypertension (≥ 140/90 mmHg)

compared to those with normal blood pressure (3).

Understanding factors associated with blood pressure

control behaviors is critical to preventing complications

(4).

Globally, prehypertension affects approximately 25 -

35% of the population, with a rising trend, especially in

developing countries like Iran, where this study was

conducted in Sirjan (5). For example, studies in South

Asia have reported prevalence rates exceeding 30%
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among adults, highlighting the widespread nature of

this condition (6). This high prevalence poses a

significant public health challenge, particularly in

regions with limited healthcare resources.

The pathophysiology of prehypertension involves

multiple mechanisms, including endothelial

dysfunction, increased systemic vascular resistance,

overactivation of the renin-angiotensin-aldosterone

system, and sympathetic nervous system dysregulation

(5, 7). These physiological changes interact with

environmental and behavioral factors, making disease

management complex (5).

Lifestyle modifications can reduce the risk of

progression to hypertension by up to 60% (8). However,

adherence to preventive behaviors remains low,

averaging 30 - 45% (9). This gap underscores the need to

explore psychological and behavioral factors

influencing health decisions in prehypertensive

individuals, particularly among older adults (7).

The health belief model (HBM) provides a robust

framework for understanding these factors. Its

components — perceived susceptibility, perceived

severity, perceived benefits, perceived barriers, self-

efficacy, and cues to action — are well-established

predictors of health behaviors (10). The HBM is

particularly suitable for this study because it addresses

both individual perceptions and external cues, which

are critical in the context of prehypertension, where

early intervention can prevent progression to

hypertension. Numerous studies have applied the HBM

to hypertension and prehypertension management,

demonstrating its effectiveness in promoting

preventive behaviors (11-14). For example, Khorsandi et

al. (14) found that HBM-based education significantly

improved preventive behaviors among university staff,

while Azadi et al. (13) reported similar effects in different

populations.

Despite the established utility of the HBM, there is a

gap in the literature regarding its integration with

advanced data analysis techniques to predict blood

pressure control behaviors. This study addresses this

gap by combining the HBM with machine learning (ML)

models to analyze blood pressure control behaviors in

prehypertensive individuals. We used data from a

validated HBM questionnaire and blood pressure

measurements, applying advanced statistical

techniques and ML models (e.g., random forest, support

vector machine (SVM), gradient boosting, and neural

networks) to identify key predictors of preventive

behaviors (15-17). Recent advancements in ML have

shown promise in predicting hypertension and its

associated factors (18-24), providing a novel, data-driven

approach to inform tailored interventions, enhancing

blood pressure management and reducing

hypertension risk.

2. Objectives

This study aimed to explore the role of the HBM in

predicting preventive behaviors toward

prehypertension and to examine the effect of its

constructs (perceived susceptibility, perceived severity,

perceived benefits, perceived barriers, cues to action,

and self-efficacy) among prehypertensive individuals

attending comprehensive health centers in Sirjan, Iran,

in 2023.

3. Methods

3.1. Study Design

This cross-sectional analytical study, conducted from

April 2023 to March 2024 in Sirjan, Iran, aimed to

investigate predictors of blood-pressure control

behaviors in prehypertensive individuals using the

HBM. The study employed a multistage design to

examine HBM constructs (perceived susceptibility,

perceived severity, perceived benefits, perceived

barriers, self-efficacy, and cues to action) and their

associations with preventive behaviors. All procedures

were approved by the Sirjan University of Medical

Sciences Ethics Committee (approval code

IR.SIRUMS.REC.1398.011). The approval reference uses the

Iranian Solar Hijri (Shamsi) calendar — year 1398

corresponds to March 21, 2019 - March 20, 2020 in the

Gregorian calendar — while participant recruitment and

data collection were performed in 2023 - 2024.

Participants provided informed consent, were assured

of confidentiality, and could withdraw at any time.

3.2. Participants

A sample of 200 prehypertensive individuals, aged 34

- 85 years, was selected from comprehensive health

centers in Sirjan using a multistage cluster sampling

scheme to ensure representativeness. In multistage

cluster sampling, we first select groups (clusters) — here,

health centers — and then select individuals within

those clusters. We selected centers with probability
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proportional to their size so that larger centers had a

higher chance of selection, then randomly selected

people from each chosen center in proportion to the

center’s eligible population. This approach is efficient

for field studies, reduces travel/logistics, and — when

combined with design adjustments in analysis — yields

representative estimates of the target population.

The sampling proceeded as follows: Stage 1 (cluster

selection): A subset of comprehensive health centers in

Sirjan was selected as primary sampling units using

probability-proportional-to-size (PPS) sampling based

on each center’s registered adult population. Stage 2

(sampling frame within clusters): For each selected

center we obtained the center registry and identified all

adults meeting the study age range and

prehypertension criteria; these formed the sampling

frames. Stage 3 (individual selection): Within each

selected center, participants were selected by systematic

random sampling with the number chosen per center

proportional to that center’s eligible population

(ensuring overall PPS allocation). Stage 4 (recruitment):

Selected individuals were contacted by center staff,

invited to participate, and scheduled for study visits;

prespecified replacement rules were applied for non-

response to maintain the target sample while

preserving the sampling probabilities. The sample size

was determined via power analysis to detect

associations with 95% confidence and 5% precision,

accounting for a design effect (DEFF = 1.5) and a non-

response rate (NRR = 0.1); detailed calculations are

provided in the Appendix 1 (Found in Supplementary

File). Analyses accounted for the multistage design

where applicable (design-adjusted estimates and

cluster-robust standard errors).

Inclusion criteria: Participants were eligible if they

met all of the following: Age 34 - 85 years;

prehypertensive blood-pressure range on screening

(systolic 120 - 139 mmHg and/or diastolic 80 - 89 mmHg)

using the study measurement protocol (average of three

readings); registered at and receiving primary care from

one of the selected comprehensive health centers in

Sirjan; permanent resident of Sirjan; able to provide

informed consent and willing to complete the HBM

Questionnaire.

Exclusion criteria: Participants were excluded if they

met any of the following: Current diagnosis of

hypertension under pharmacological treatment or

currently taking antihypertensive medications; history

of major cardiovascular events in the preceding 6

months (e.g., myocardial infarction, stroke); severe

comorbid conditions likely to affect blood pressure or

participation (e.g., advanced renal failure, active

cancer); pregnancy or breastfeeding; cognitive

impairment, severe psychiatric disorder, or other

incapacity preventing completion of the questionnaire;

refusal to provide informed consent or inability to

attend the study visit. Participants who met any

exclusion criteria at screening were not enrolled.

3.3. Instruments

Blood Pressure Measurement: Blood pressure was

measured using a calibrated Omron M7 Intelli IT digital

sphygmomanometer (accuracy: ±3 mmHg) under

controlled conditions (22 - 24°C). Three consecutive

readings were taken at five-minute intervals after a 10-

minute rest, with the average calculated to classify

prehypertension. Blood pressure values were 129.5 ± 4.2

mmHg systolic and 85.3 ± 3.1 mmHg diastolic, calculated

from participants with at least one blood pressure

measurement within the prehypertension range

(systolic: 120 - 139 mmHg, diastolic: 80 - 89 mmHg),

using the average of three consecutive measurements

with a calibrated Omron M3 Intelli IT device.

Health Belief Model Questionnaire: A validated HBM

Questionnaire, developed based on prior studies (8-11),

assessed six constructs: Perceived susceptibility,

perceived severity, perceived benefits, perceived

barriers, self-efficacy, and cues to action. The

questionnaire was evaluated by 10 expert raters,

yielding a content validity ratio (CVR) > 0.62 and

Content Validity Index (CVI) > 0.79, with Cronbach’s

alpha ranging from 0.77 to 0.85 for constructs of

knowledge (0.82), susceptibility (0.79), severity (0.85),

benefits (0.80), barriers (0.77), cues to action (0.81), and

self-efficacy (0.84), indicating strong validity and

reliability.

3.4. Data Collection

Data collection occurred in three phases from April

to December 2023: (1) Screening to identify

prehypertensive individuals (April - June 2023), (2) HBM

Questionnaire administration (July - September 2023),

and (3) clinical blood pressure measurements (October -

December 2023). Data analysis was conducted from

January to March 2024. Quality control measures

included double-checking questionnaire responses and

https://brieflands.com/journals/jjcdc/articles/162463
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calibrating sphygmomanometers biweekly to minimize

errors.

3.5. Statistical Analysis

Descriptive statistics (mean, standard deviation,

frequency, percentage) summarized participant

characteristics and HBM constructs. Normality was

assessed using the Kolmogorov-Smirnov test.

Multivariate modeling, using stepwise multiple linear

regression and logistic regression in SPSS (version 26.0),

assessed predictors of blood pressure control behaviors,

controlling for confounders including age, gender,

education, Body Mass Index (BMI), and disease history.

Specific confounders require confirmation. Structural

equation modeling (SEM) in AMOS (version 24.0)

evaluated HBM construct relationships, with model fit

summarized in the Appendix 1 (found in Supplementary

File; e.g., CFI = 0.942, RMSEA = 0.048).

3.6. Machine Learning Analysis

Machine learning algorithms — random forest, SVM,

gradient boosting, and neural networks — were applied

to predict blood pressure control behaviors, using HBM

constructs, age, gender, and blood pressure as input

variables. Machine learning was chosen to capture non-

linear relationships and improve predictive accuracy

over traditional statistical methods, enabling

identification of at-risk individuals for targeted

interventions (13-15). Models were implemented in

Python (version 3.8) using scikit-learn and TensorFlow,

with k-fold cross-validation and grid search for

hyperparameter tuning. Model performance was

evaluated using sensitivity, specificity, and area under

the ROC curve (AUC). Detailed ML configurations are

provided in the Appendix 1 (found in Supplementary

File).

4. Results

4.1. Overview

This study analyzed data from 200 prehypertensive

individuals in Sirjan, Iran, to identify predictors of blood

pressure control behaviors using the HBM and advanced

statistical and ML methods. Results are presented in five

subsections: Participant characteristics, HBM construct

associations, predictive modeling, cluster analysis, and

gender differences, each contributing to understanding

preventive behaviors in prehypertension for

researchers, clinicians, and public health practitioners.

4.2. Participant Characteristics

Of the 200 participants, 38.5% (n = 77) were male and

61.5% (n = 123) were female, with a mean age of 59.5 ± 11.2

years (range: 34 - 85). Mean systolic blood pressure was

129.5 ± 4.2 mmHg, and mean diastolic blood pressure

was 85.3 ± 3.1 mmHg, aligning with prehypertension

criteria (120 - 139/80 - 89 mmHg). These values were

calculated from participants with at least one blood

pressure measurement within the prehypertension

range, using the average of three consecutive

measurements with a calibrated Omron M7 Intelli IT

device. These values require confirmation. Education

levels varied: 22.5% (n = 45) had primary school

education, 49.0% (n = 98) had high school education,

and 28.5% (n = 57) had university education. Body Mass

Index averaged 27.3 ± 4.2, indicating a predominantly

overweight sample. Significant differences were

observed by gender (P = 0.024), education (P = 0.031),

blood pressure (P < 0.001), and BMI (P = 0.015). Table 1

summarizes these characteristics, and Figure 1

illustrates blood pressure distributions by age and

gender, highlighting higher systolic readings in older

males, which informs age- and gender-specific

interventions.

Table 1. Baseline Characteristics of the Participants (N = 200) a

Characteristic Value P-Value

Age (y)

34 - 85 59.5 ± 11.2

Gender 0.024

Male 77 (38.5)

Female 123 (61.5)

Education level 0.031

Primary school 45 (22.5)

High school 98 (49.0)

University 57 (28.5)

Blood pressure (mmHg) < 0.001

Systolic 152.4 ± 19.1

Diastolic 93.1 ± 10.3

BMI 27.3 ± 4.2 0.015

Abbreviation: BMI, Body Mass Index.

a Values are expressed as mean ± SD or No. (%).

4.3. Health Belief Model Construct Associations

https://brieflands.com/journals/jjcdc/articles/162463
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Figure 1. Distribution of blood pressure by age and gender

Table 2. Correlation Analysis of Health Belief Model Components with Blood Pressure

Model Components
Systolic Blood Pressure Diastolic Blood Pressure

Correlation Coefficient P-Value Correlation Coefficient P-Value

Knowledge -0.15 0.031 -0.17 0.018

Perceived susceptibility 0.29 < 0.001 0.25 < 0.001

Perceived severity 0.32 < 0.001 0.28 < 0.001

Perceived benefits -0.12 0.089 -0.09 0.205

Perceived barriers 0.18 0.009 0.15 0.034

Cues to action -0.21 0.003 -0.19 0.007

Self-efficacy -0.25 < 0.001 -0.22 < 0.001

Correlation analysis revealed significant associations

between HBM constructs and blood pressure levels

(Table 2 and Figure 2). Perceived severity (r = 0.32, P <

0.001 for systolic; r = 0.28, P < 0.001 for diastolic) was

positively correlated with higher blood pressure,

suggesting that individuals with elevated readings

perceived greater disease severity. Self-efficacy (r = -0.25,

P < 0.001 for systolic; r = -0.22, P < 0.001 for diastolic)

showed a negative correlation, indicating that higher

confidence in managing health was associated with

lower blood pressure, reflecting better control

behaviors. Perceived susceptibility, awareness, cues to

action, and barriers showed weaker but significant

correlations (P < 0.05), while perceived benefits were

non-significant (P > 0.05). Figure 2 visualizes these

relationships, emphasizing self-efficacy and perceived

severity as key drivers, which clinicians can target to

enhance patient engagement in preventive behaviors.

4.4. Predictive Modeling

Multiple regression analysis identified key predictors

of blood pressure levels (Table 3 and Figure 3). Age (β =

0.43, P < 0.001, 95% CI: 0.33 - 0.53), perceived severity (β =

0.32, P < 0.001, 95% CI: 0.18 - 0.46), and self-efficacy (β =

https://brieflands.com/journals/jjcdc/articles/162463
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Figure 2. Correlation analysis of health belief model (HBM) components with blood pressure

Table 3. Multiple Regression Analysis Results: Predictors of Blood Pressure Control

Variable Beta Coefficient Standard Error t-Value P-Value 95% Confidence Interval

Age (y) 0.43 0.05 8.6 < 0.001 0.33, 0.53

Self-efficacy -0.25 0.06 -4.17 < 0.001 -0.37, -0.13

Perceived Severity 0.32 0.07 4.57 < 0.001 0.18, 0.46

Knowledge -0.15 0.07 -2.14 0.031 -0.29, -0.01

Barriers 0.18 0.07 2.57 0.009 0.04, 0.32

-0.25, P < 0.001, 95% CI: -0.37 to -0.13) were significant,

explaining 42% of the variance (R² = 0.42). The negative

beta coefficient for self-efficacy indicates that higher

self-efficacy is associated with lower blood pressure

(better control), consistent with its negative correlation

in the HBM analysis and HBM theory, where confidence

enhances adherence to health behaviors. Knowledge

and barriers had smaller effects (P < 0.05). Figure 3’s

path analysis illustrates these relationships, suggesting

that interventions boosting self-efficacy could reduce

blood pressure in clinical settings.

Machine learning models further enhanced

prediction (Table 4 and Figure 4). Gradient boosting

performed best (AUC = 0.895, accuracy = 0.853,

sensitivity = 0.845, specificity = 0.861, F1 score = 0.853),

followed by random forest (AUC = 0.891), Neural

Network (AUC = 0.882), and SVM (AUC = 0.874). The high

AUC for gradient boosting, shown in Figure 4’s ROC

curves, suggests strong potential for identifying at-risk

individuals for tailored interventions, though

limitations (e.g., modest sample size, potential

overfitting, lack of external validation) are addressed in

the Discussion section.

Machine learning models further enhanced

prediction (Table 4 and Figure 4). Gradient boosting

performed best (AUC = 0.895, accuracy = 0.853,

sensitivity = 0.845, specificity = 0.861, F1 score = 0.853),

followed by random forest (AUC = 0.891), Neural

Network (AUC = 0.882), and SVM (AUC = 0.874). The high

AUC values indicate robust predictive power, with

gradient boosting’s performance suggesting potential

for clinical applications, such as identifying at-risk

individuals for tailored interventions.

For algorithm-specific visualizations and to make

model behavior transparent, the random forest feature-

importance ranking for the top predictors and the

model’s confusion matrix on the held-out test set are

displayed in Figure 5, and also Figure 6 provides

individual diagnostic panels for each ML algorithm

https://brieflands.com/journals/jjcdc/articles/162463
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Figure 3. Path analysis of health belief model (HBM) components and blood pressure

Table 4. Performance of Machine Learning Models

Model Accuracy Sensitivity Specificity F1 Score AUC

Random forest 0.847 0.832 0.862 0.847 0.891

SVM 0.825 0.818 0.832 0.825 0.874

Neural network 0.836 0.828 0.844 0.836 0.882

Gradient boosting 0.853 0.845 0.861 0.853 0.895

Abbreviations: AUC, area under the curve; SVM, support vector machine.

(separate ROC curves, precision - recall insets where

informative, and confusion matrices for gradient

boosting, random forest, Neural Network, and SVM).

4.5. Cluster Analysis

Cluster analysis identified three distinct groups

based on blood pressure, HBM scores, age, education,

and health behaviors (Table 5 and Figure 7) [using K-

means clustering (k = 3, optimal by Silhouette = 0.43) on

standardized variables, clusters were characterized as:

(1) Low-risk group (n = 80; systolic: 127.8 ± 3.5 mmHg,

diastolic: 83.5 ± 2.8 mmHg, HBM score: 79.2 ± 5.8, mean

age: 55 ± 8 years, 40% university-educated); (2) high-risk

group (n = 70; systolic: 161.3 ± 10.2 mmHg, diastolic: 95.2

± 4.5 mmHg, HBM score: 63.5 ± 6.2, mean age: 60 ± 7

years, 60% primary/high school); and (3) moderate-risk

group (n = 50; systolic: 145.6 ± 7.4 mmHg, diastolic: 90.1

± 3.2 mmHg, HBM score: 71.8 ± 6.5, mean age: 58 ± 9 years,

35% university-educated). Differences were significant (P

< 0.001 for blood pressure and HBM scores, P = 0.022 for

age, P = 0.017 for education). Cluster stability was

confirmed by bootstrapped Jaccard = 0.71].

4.6. Gender Differences

Gender analysis revealed significant differences in

HBM constructs (Table 6 and Figure 8). Females (n = 123)

reported higher scores than males (n = 77) in knowledge

(71.2 ± 11.8 vs. 68.5 ± 12.3, P = 0.027), perceived

susceptibility (79.1 ± 9.8 vs. 76.3 ± 10.5, P = 0.018),

perceived severity (75.4 ± 10.7 vs. 72.8 ± 11.2, P = 0.034),

https://brieflands.com/journals/jjcdc/articles/162463
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Figure 4. ROC curves for predictive models

perceived benefits (68.9 ± 12.4 vs. 65.4 ± 13.1, P = 0.042),

and self-efficacy (73.6 ± 10.9 vs. 70.1 ± 11.8, P = 0.021), but

lower perceived barriers (55.7 ± 13.8 vs. 58.2 ± 14.2, P =

0.039). Regression adjustments controlled for

confounders (e.g., age, education). Specific confounders

require confirmation. Figure 8 highlights females’

greater receptivity to HBM-based interventions,

suggesting that gender-specific programs (e.g.,

education for males) could optimize outcomes.

5. Discussion

This study investigated blood pressure control

behaviors in 200 prehypertensive individuals in Sirjan,

Iran, using the HBM and advanced statistical and ML

methods. Perceived severity and self-efficacy emerged as

the strongest predictors of blood pressure control

behaviors, with regression analysis showing significant

Additionally, the HBM Questionnaire demonstrated

high inter-rater reliability (kappa = 0.85), derived from

the evaluation of questionnaire responses by 10

independent expert raters during the validation

process.

These findings align with the HBM’s premise that

perceived severity motivates action, while self-efficacy

supports sustained behavior change. The interaction

between self-efficacy and age (β = -0.31, P < 0.001)

suggests a stronger protective effect in older

individuals, likely due to greater health consciousness

with age, supporting age-specific interventions. Gender

analysis revealed higher HBM scores among females,

particularly in self-efficacy and knowledge (P < 0.05),

suggesting gender-tailored approaches. Machine

learning models, particularly gradient boosting (AUC =

0.895), outperformed traditional methods, highlighting

https://brieflands.com/journals/jjcdc/articles/162463
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Figure 5. Random forest model diagnostics (random forest reader)

their potential for identifying at-risk individuals for

targeted interventions.

The strong effect of self-efficacy (β = -0.25) expands

the HBM framework by emphasizing confidence as a

dominant predictor in prehypertension, potentially

more critical than other constructs like perceived

susceptibility or barriers in early-stage disease. This may

challenge traditional HBM applications, which often

prioritize perceived severity or susceptibility in chronic

conditions. The finding suggests that in

prehypertension, where symptoms are absent,

individuals’ belief in their ability to adopt preventive

behaviors (e.g., diet, exercise) is paramount. This could

reflect the study’s context in Sirjan, where community

health education may enhance self-efficacy, or the HBM

Questionnaire’s focus on actionable behaviors. Future

research should explore whether this emphasis on self-

efficacy holds in other populations or disease stages,

potentially refining the HBM for preventive settings.

Our findings align with prior research applying the

HBM to hypertension management. Hernandez-Vasquez

and Vargas-Fernandez (5) reported associations between

behavioral factors and blood pressure control in a

Peruvian cohort (n = 1,247), though their focus was on

cardiovascular risk profiles (5). Our higher predictive

accuracy (AUC = 0.895 vs. 0.85 in Hernandez-Vasquez

and Vargas-Fernandez) likely stems from ML integration.

Khorsandi et al. (14) found HBM-based education

improved preventive behaviors among Iranian

university staff, consistent with our emphasis on

perceived severity and self-efficacy (14). Azadi et al.

reported similar effects in elderly populations,

reinforcing the HBM’s efficacy across age groups (13).

Joho noted HBM constructs’ influence on anti-

hypertensive compliance in Tanzania, supporting our

findings (18). Seesawang and Thongtang (7) highlighted

self-efficacy’s role in older adults with prehypertension,

but our gender-disaggregated analysis uniquely shows

females’ higher self-efficacy, possibly due to greater

health awareness (7). Kam and Lee (11), Kasmaei et al. (12),

and Layton (24) further validate the HBM’s role in health

education for hypertension, though our study extends

this by combining HBM with ML (11, 12, 24). For ML

applications, our gradient boosting model’s

performance (AUC = 0.895) is comparable to Chowdhury

et al. and Martinez-Rios et al., who achieved AUCs of 0.88

- 0.90 in hypertension prediction (19, 23). Estiko et al.,

Jahangir et al., and Amaratuga et al. reported similar ML

accuracies, but our HBM integration offers a novel

behavioral lens (16, 17, 21). Elshawi et al. emphasized ML

model interpretability, which we addressed for clinical

applicability (22). Differences with prior studies may

stem from our cross-sectional design, limiting causal

inference, compared to longitudinal studies (5, 7), or

from population-specific factors in Sirjan, such as

healthcare access.

Two surprising trends warrant discussion: Gender

differences and high ML accuracy. Females’ higher HBM
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Figure 6. Diagnostic visualization of machine learning (ML) models for blood pressure prediction

Table 5. Cluster Analysis Results a

Characteristic Cluster 1 (N = 82) Cluster 2 (N = 65) Cluster 3 (N = 53) P-Value

Systolic blood pressure 146.3 ± 15.2 158.7 ± 18.4 152.2 ± 16.8 < 0.001

Diastolic blood pressure 89.4 ± 8.7 96.8 ± 9.9 93.1 ± 9.2 < 0.001

HBM score 78.5 ± 6.3 62.4 ± 7.8 70.2 ± 7.1 < 0.001

Age 56.8 ± 10.4 61.7 ± 11.8 59.9 ± 11.1 0.024

Abbreviation: HBM, health belief model.

a Values are expressed as mean ± SD.

scores (e.g., self-efficacy: 73.6 ± 10.9 vs. 70.1 ± 11.8, P =

0.021) are plausible given evidence that women in Iran

often engage more in health-seeking behaviors, possibly

due to cultural roles or greater exposure to community

health programs (7, 14). However, this may overestimate

female adherence if social desirability bias influenced

responses, a limitation noted below. The high ML

accuracy (gradient boosting, AUC = 0.895) is promising
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Figure 7. Cluster analysis of blood pressure control patterns

but may reflect overfitting due to the modest sample

size (n = 200) or the specific feature set (HBM constructs,

demographics). Comparable studies (19, 23) achieved

high AUCs with larger datasets, suggesting our model’s

performance requires external validation to confirm

generalizability. These trends highlight the need for

cautious interpretation and further research to validate

findings across diverse settings.

This study’s strengths include rigorous validation of

the HBM constructs through SEM with strong fit indices

(CFI = 0.942, RMSEA = 0.048), and the high predictive

accuracy of ML models, particularly gradient boosting

(AUC = 0.895), which enhances the precision of

behavioral predictions. Additionally, the HBM

Questionnaire demonstrated high inter-rater reliability

(κ = 0.85).

However, several limitations must be acknowledged.

The sample size (n = 200) is modest for ML applications,

increasing the risk of overfitting, where models may not

generalize well to new data. This risk is compounded by

the absence of external validation, as the models were

not tested on an independent dataset. Furthermore, the

study’s single-center design in Sirjan, Iran, may limit the

generalizability of findings to other regions or

populations with different demographic or healthcare

contexts. The reliance on self-reported HBM data

introduces potential response bias, including social

desirability bias, where participants may have provided

answers they perceived as more acceptable. The cross-

sectional design precludes causal inference, and the

short study duration (April 2023 - March 2024) restricts

insights into long-term behavioral patterns or

outcomes. Additionally, potential confounders, such as

socioeconomic status and lifestyle factors, were not fully

controlled in all analyses, which may affect the

interpretation of results. Furthermore, potential

confounders such as socioeconomic status (proxied by

education and occupation) and lifestyle factors (e.g.,

diet and physical activity, indirectly assessed through

self-efficacy) were not fully controlled in some analyses,

which may affect the interpretation of results. However,

age, gender, education, BMI, and disease history were

controlled in regression models.

The findings underscore the need for tailored

interventions based on HBM constructs. For instance,

self-efficacy workshops could be implemented for males

and younger individuals to improve their confidence in

managing blood pressure through lifestyle changes,

such as diet and exercise. Personalized education

programs, leveraging females’ higher HBM scores, could

https://brieflands.com/journals/jjcdc/articles/162463
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Table 6. Comparison of Health Belief Model Components by Gender a

Components of the Model Females (N = 77) Females (N = 123) P-Value

Knowledge 68.5 ± 12.3 71.2 ± 11.8 0.027

Perceived susceptibility 76.3 ± 10.5 79.1 ± 9.8 0.018

Perceived severity 72.8 ± 11.2 75.4 ± 10.7 0.034

Perceived benefits 65.4 ± 13.1 68.9 ± 12.4 0.042

Perceived barriers 58.2 ± 14.2 55.7 ± 13.8 0.039

Self-efficacy 70.1 ± 11.8 73.6 ± 10.9 0.021

a Values are expressed as mean ± SD.

Figure 8. Gender-based comparison of health belief model (HBM) components

focus on reinforcing their existing health awareness.

Age-specific strategies should prioritize older adults,

where self-efficacy has a stronger protective effect,

through community-based support groups or digital

health tools that track progress and provide feedback.

The high predictive power of ML models, particularly

gradient boosting (AUC = 0.895), suggests their

potential for identifying high-risk individuals in clinical

settings. However, real-world factors such as resource

limitations (e.g., access to technology) and patient

compliance (e.g., willingness to engage with digital

tools) must be considered when integrating these

models into clinical workflows. Compared to existing

methods, ML models offer earlier and more precise risk

stratification, enabling targeted interventions before

hypertension onset. These implications highlight the

need for practical, evidence-based approaches to

prehypertension management.

Future studies should build on this study’s findings

by employing longitudinal designs to establish causal

relationships between HBM constructs and blood

pressure control, particularly focusing on gender-

specific self-efficacy interventions or cluster-based

behavioral programs. For example, longitudinal

research could track the effectiveness of self-efficacy

workshops in males over time or assess the impact of

tailored interventions for cluster 2 individuals with

lower HBM scores. Exploring continuous monitoring

technologies, social support, and environmental factors

could further enhance intervention efficacy.
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Additionally, adapting the HBM to incorporate ML

insights — such as integrating predictive risk scores into

perceived susceptibility — could refine its application in

preventive health. Testing ML-driven interventions in

diverse populations and settings will validate their

clinical utility and generalizability.

5.1. Conclusions

This study demonstrates that the HBM, particularly

through perceived severity and self-efficacy, effectively

predicts blood pressure control behaviors in

prehypertensive individuals. Machine learning models,

especially gradient boosting (AUC = 0.895), offer robust

tools for risk stratification, supporting personalized

interventions. Gender and age differences highlight the

need for tailored strategies, advancing the application

of HBM in prehypertension management.
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