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Abstract

and the molecular aspects that contribute to drug resistance.

Objectives:

resistance mechanisms.

real-time PCR in different treatment groups.

mechanisms.

impact on treatment outcomes.

Background: Glioma, the predominant type of tumor in the central nervous system (CNS), is commonly treated with temozolomide
chemotherapy, radiation therapy, and surgery. However, resistance to chemotherapy can sometimes lead to treatment failure and
cancer recurrence. To improve treatment strategies for glioma, it is important to understand the tumor microenvironment (TME)

The present study aimed to investigate the effects of sialic acid on drug resistance development in
temozolomide-treated cells by analyzing the expression patterns of ABCB1 and ABCCI genes, known for their role in drug

Methods: This study examined the effects of temozolomide, sialic acid, and the combination of both on cell viability and apoptosis.
IC50 and EC50 values were used to measure treatment effectiveness, and the expression of ABCB1 and ABCC1 genes was assessed by

Results: Temozolomide and sialic acid both had effects on cell viability, morphology, and the expression of ABCB1 and ABCC1 genes.
These alterations may be associated with the development of drug resistance in cancer cells, providing insight into the underlying

Conclusions: The study suggests that sialic acid promotes cancer progression and reduces the effectiveness of anticancer drugs.
Therefore, targeting sialic acid or its production and using combination drugs could be a promising strategy to counter its negative
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1. Background

Glioma, the predominant type of tumor in the central
nervous system (CNS), originates from glial cells (1).
Various therapeutic methods have been employed to treat
glioma, including temozolomide chemotherapy, radiation
therapy, and surgery (2). Temozolomide is an alkylating
agent that induces mutations in DNA strands, resulting in
cell cycle arrest and apoptosis. However, chemotherapy
resistance can occasionally lead to treatment failure and
cancer recurrence (2-4).

Therefore, to enhance treatment strategies for
glioma, it is essential to comprehend its fundamental
biology and the molecular factors contributing to drug

resistance. Recent research has been centered on the
tumor microenvironment (TME), recognized as a critical
element in drug resistance. Tumor microenvironment
components can trigger intracellular and intercellular
signals that regulate tumor development, progression,
metastasis, and treatment response.  Consequently,
grasping the biological interactions between cancer
cells and their surroundings is of utmost importance.
These experiments may offer insights into combinatorial
therapy and the long-term survival of glioma patients
(5-7).

According to the findings, tumor cells exhibit a
distinct glycosylation pattern (8). Sialylation is a form of
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terminal glycosylation that regulates numerous cellular
and biological processes. It involves the attachment of
sialic acid to glycoproteins and glycolipids (9). Sialic
acid has an impact on the structure and stability of
glycoconjugates, as well as interactions between cells,
including immune recognition (10). Abnormal sialylation
has been implicated in the development, progression,
invasion, and metastasis of various cancers, including
breast cancer, gastric cancer, and glioma (9, 11).

Studies have revealed that disruptions in glycosylation
and sialylation can profoundly affect the function
of drug transporters, resulting in changes in drug
absorption or efflux. This can potentially contribute
to chemotherapy resistance. Multiple studies suggest
that impaired glycosylation of ABC transporters, such
as ABCC1 and multidrug resistance-associated protein
(MRP)4, can lead to decreased cell surface expression and
altered subcellular localization, thereby contributing to
drug resistance in cancer cells. Consequently, further
investigations into the impact of sialylation on drug
transporters may uncover new mechanisms of resistance
and offer novel targets for therapeutic interventions (12).

Increased expression and enhanced effectiveness of
drug efflux pumps, particularly those belonging to the
ATP-binding cassette (ABC) superfamily, represent another
frequently observed mechanism of drug resistance (13,
14). The ABC transporters constitute a protein superfamily
with a long evolutionary history found in all living
organisms (15). Within the human genome, there are a
total of 48 ABC genes, classified into seven subfamilies,
denoted as ABCA to ABCG. Notably, ABCB1, ABCC1, and
ABCG2 have been identified as major contributors to the
development of multidrug resistance (MDR) in response to
cancer chemotherapy drugs (16).

P-glycoprotein (P-gp), also referred to as ABCB1 or
MDRI1 is an ABC transporter that plays a pivotal role in
cellular detoxification by actively expelling xenobiotic
compounds.  P-glycoprotein is typically present in
barrier tissues like the blood-brain barrier, liver, and
placenta, where it safeguards vital organs by preventing
the buildup of potentially harmful substances. This
transporter significantly influences the pharmacokinetics
of numerous drugs and is linked to chemotherapy
resistance in cancer cells (17, 18). According to reports,
patients with tumors expressing ABCB1 are three times
more likely to experience treatment failure compared to
those with tumors lacking ABCB1 expression (19).

ABCC], also known as MRP], represents a ubiquitous
ABC transporter present in all human tissues. It plays
a pivotal role in facilitating cellular detoxification and

the elimination of potentially harmful compounds from
within the cell (20). This transport mechanism has been
linked to chemoresistance and adverse clinical outcomes
in patients with neuroblastoma. Additionally, it has
been associated with increased tumor severity and poorer
patient outcomes in both primary and recurrent gliomas
(21). ABCC1 is often found to be overexpressed in various
types of tumors, including esophageal cancer, classical
Hodgkin lymphoma, lung cancer, and colorectal cancer.
This heightened expression has been correlated with
resistance to a wide range of anticancer medications (20,
22). These findings underscore the significance of ABCC1
in mediating drug resistance and underscore the need
for strategies to overcome this resistance and enhance
treatment outcomes (23).

The overexpression of these ABC transporters
empowers cancer cells to actively expel chemotherapy
drugs from the intracellular environment. This action
reduces the cytotoxic effects of the drugs, resulting in
therapeutic failure and the survival of drugresistant
cancer cells. Therefore, comprehending the role of these
transporters in drug distribution and resistance is crucial
for conquering drug resistance. It is essential to note
that drug resistance is a complex phenomenon, and its
development may be influenced by various mechanisms.
Other factors, such as modifications in drug targets,
metabolic changes, and epigenetic alterations, may also
contribute to chemoresistance (13, 14).

2. Objectives

In the current study, we evaluated the effects of
temozolomide, sialic acid, and their combination
(TMZ + sialic acid) on the viability and morphological
characteristics of 1321N1 cells. Additionally, we assessed the
expression of ABCB1 and ABCC1 using real-time PCR.

3. Methods

3.1. Cell Line and Cell Culture

We obtained the 1321N1 cell line from the National
Cell Bank of Iran at the Pasteur Institute in Tehran.
The cells were cultured in a DMEM low-glucose medium
from Gibco, USA, supplemented with 10% fetal bovine
serum (FBS) also from Gibco, USA. Additionally, 1% of each
penicillin (5000 U/mL) and streptomycin (5000 mg/mL)
were added to the medium. The cells were maintained in
a controlled incubation environment at 37°C, 5% CO,, and
95% humidity.
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3.2. MIT Cell Viability Assay (IC50 and EC50 Assessment)

We obtained temozolomide (TEMOZOLOMIDE ACTE 20
mg Capsule) from Acteropharma company (Iran) and sialic
acid (N-acetylneuraminic acid: NANA) from Sigma-Aldrich
company (Germany). We assessed cell viability using the
MTT assay. Specifically, we seeded 5 x 10° 132IN1 cells
per well in a 96-well plate and incubated them under
standard conditions for 24 hours. To determine the IC50
for temozolomide, we treated cells with concentrations
ranging from 50 to 800 xM and 10 to 1000 M for 48 and
72 hours, respectively (2). To establish the EC50 for sialic
acid, cells were exposed to concentrations ranging from
1to 600 1M and 1 to 300 M. For the IC50 assessment,
cells were treated with sialic acid concentrations ranging
from 600 to 2000 M and 300 to 2000 uM for 48 and
72 hours, respectively. Lastly, for assessing changes in
IC50 for temozolomide in combination with sialic acid,
cells were treated with twice the half-maximal effective
concentration (2*EC50) of sialic acid along with increasing
concentrations of temozolomide for each time point. The
IC50 and EC50 values were subsequently calculated using
an MTT solution, DMSO, and an ELISA reader.

3.3. RNA Extraction and Real-time Quantitative PCR (RT qPCR)

The cells were divided into four groups: Control,
temozolomide, sialic acid, and temozolomide + sialic acid.
Six-well plates were seeded with 13 x 10* cells per well. After
24 hours, cancer cells were treated with temozolomide,
sialic acid, and temozolomide + sialic acid for 48 and
72 hours at concentrations equivalent to the IC50 of
temozolomide and twice the EC50 of sialic acid. The cells
were then observed and photographed using an inverted
microscope (Figure 1). Subsequently, total RNA extraction
was carried out following the manufacturer’s protocol
using QIAzol (Qiagen, Germany) reagent. The quality and
quantity of RNA were assessed through electrophoresis on
agarose gel and a NanoDrop instrument. Next, reverse
transcription was conducted using 2000 ng of RNA and
the Yektatajhiz cDNA synthesis kit (Iran) according to the
manufacturer’s instructions. Quantitative real-time PCR
was used to evaluate the expression of ABCB1and ABCCl in
1321N1 cells, with the amplification primers listed in Table
1.

3.4. Statistical Analysis

All experiments were conducted in duplicate, and
data collected from two independent experiments were
presented as mean + standard deviation (SD). Statistical
analyses were performed using GraphPad PRISM 9 and
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Table 1. Primer Sequences Used for Real-time PCR

Primer Sequence (5’ — 3’) ™ Product Size (bp)
ABCB1 220
F TGGCCTTCTGGTATGGGAC 58.69
R GGTTTGTGCCCACTICTTCG 59.05
ABCC1 128
F GGAGGACACGTCGGAACAA 59.64
R AACTCTCTTTCGGCTGGGC 60.00
ACTB 103
F GAGCATCCCCCAAAGTTCACA 60.55
R GGGACTTCCTGTAACAACGCA 60.54

evaluated using a one-way ANOVA test. A statistically
significant result was defined as a P-value less than 0.05.

4. Results

4.1. Cell Viability

In our study, the IC50 of temozolomide was
determined to be approximately 215 M for 48 hours
and 100 pM for 72 hours (Figure 2A and B). We evaluated
the metastatic potential of sialic acid by examining its
EC50 in a concentration and time-dependent manner. Our
findings demonstrate that the administration of sialic
acid significantly enhances the survival rate of the 1321N1
cell line, as indicated by the MTT assay. Consequently, IC50
values of sialic acid were observed to be approximately
835 uM and 525 M. Additionally, the EC50 values of sialic
acid were roughly 270 M and 150 M after 48 and 72
hours of treatment, respectively (Figure 2C - F). According
to the MTT results, the anticancer effect of temozolomide
was modulated in a time- and concentration-dependent
manner when combined with sialic acid treatment.
Therefore, the IC50 of temozolomide in combination with
sialic acid treatment was defined as about 720 uM for 48
hours and 530 uM for 72 hours, respectively (Figure 2G
and H). The findings of this research indicate that the IC50
values of temozolomide have shown a notable increase of
3-fold and 5-fold after 48 and 72 hours, respectively, upon
exposure to 2*EC50 of sialic acid. This evidence suggests
that the cells have acquired resistance to the drug due to
the presence of sialic acid in their microenvironment.

4.2. Morphology Analysis by an Inverted Microscope

After treatment with temozolomide, significant
changes in cellular morphology were observed, including
reduced cell size and number, increased programmed
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Figure 1. A and A’, cells with no treatment; B and B’, cells treated with IC50 of temozolomide; C and C’, cells treated with 2*EC50 of sialic acid; D and D’, cells treated with
temozolomide in combination with sialic acid at the same concentrations after 48 and 72 h of treatment, respectively. All images were captured at x4 magnification.
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Figure 2. A and B, the IC50 values for temozolomide; C and D, the IC50 values for sialic; E and F, the EC50 values for sialic acid; G and H, the IC50 values for temozolomide in
combination with 2*EC50 of sialic acid on the viability of 1321N1 cells after 48 and 72 h of treatment.

cell death, and increased distances between cells
compared to the control group (Figure 1A, A, B, and
B’). Sialic acid treatment caused significant changes in
cellular characteristics, including increased size and
hypercellularity, reduced mortality, and elevated cell
aggregation with less extracellular space (Figure 1A, A’,
C, and C'). The combination of temozolomide and sialic

acid treatment also resulted in significant changes in
cell characteristics compared to temozolomide alone,
including increased cell size and number, decreased
apoptosis, and increased cellular accumulations.
Interestingly, the cells behaved similarly to the control
cells (Figure 1A, A’, D, and D’). According to the findings
of this research, it is suggested that sialic acid has the
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ability to increase cellular drug resistance and diminish
apoptosis. In summary, our team’s extensive research
has highlighted the crucial role of sialic acid in cellular
processes such as growth, angiogenesis, adhesion,
metastasis, and invasion. Therefore, understanding the
role of sialic acid is crucial for unraveling biological
mechanisms and developing targeted cancer therapies
(24).

4.3. Effect of Temozolomide and Sialic Acid Treatment on the
Relative Expression of ABCB1 and ABCC1 Genes in the 1321N1 Cell
Line
4.3.1. ABCB1 Expression

The investigation found that both sialic acid and
temozolomide caused a significant decrease in the
expression of the ABCB1 gene at 48 and 72 hours. Sialic acid
alone led to a decrease compared to the control group but
an increase compared to other treatments. Temozolomide
alone also reduced gene expression, and when combined
with sialic acid, there was an even greater decrease. The
time and concentration of the treatments influenced
the expression of the ABCB1 gene, with higher levels of
expression observed at 72 hours (Figure 3).

4.3.2. ABCC1 Expression

The analysis of ABCC1 gene expression in cells treated
with sialic acid and temozolomide reveals a significant
increase in gene expression compared to the control
group. Specifically, temozolomide treatment leads to a
3.8-fold increase in ABCC1 gene expression after 72 hours.
Sialic acid, whether used alone or in combination with
temozolomide, also upregulates ABCC1 gene expression.
This finding is significant because the ABCC1 gene is
associated with drug resistance, and its expression is
influenced by both time and concentration (Figure 4).

5. Discussion

Cancer represents a major global health challenge, and
chemotherapy stands as the most frequently employed
treatment method. Unfortunately, this therapy does
not substantially enhance patient outcomes, as 70 -
80% of advanced cancer patients encounter tumor
recurrence, resulting in more severe disease states and,
often, fatal consequences. One of the primary reasons
for disease recurrence is the survival of cells capable
of withstanding treatment, which endure the initial
therapeutic intervention. These resilient cells serve as the
groundwork for the development of future relapses (25).
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The role of epigenetic mechanisms in the TME has been
the subject of extensive research, and their involvement
in tumor growth has been well-documented. Drug
resistance in glioma cells is a complex phenomenon, with
various pathways employed to evade apoptosis induced
by temozolomide (12).

Experimental evidence suggests that the TME
possesses the capability to initiate cell signaling, thereby
regulating tumor angiogenesis, cancer progression, and
resistance to therapy (26). Within the TME, glycan
networks, a prominent component, envelop cells,
promote responses to the extracellular environment,
evade detection by the immune system, and facilitate
metastasis (7, 8, 27). Glycans play a pivotal role in
mediating cell-cell recognition, = communication,
aggregation, and development, as well as regulating
interactions between carbohydrates and proteins within
organisms. Sialic acids, a type of glycan, hold a crucial
role in tumor growth and metastasis and exert notable
effects on immunology, cell signaling, reproduction, and
nervous system biology (28). In cancer cells, the expression
of sialic acids is often disrupted, leading to alterations
in cell adhesion properties and immune surveillance,
thereby promoting cancer progression. Recent research
has revealed increased sialic acid levels in various types
of cancer, including breast, ovarian, and colorectal cancer
(29-31). The hypothesis is that sialic acid may play a pivotal
role in the development of drug resistance by serving
as a significant component within the architecture
of cellular and molecular signaling crosstalk (6).
Furthermore, disruptions in glycosylation and sialylation
can impact ABC transporter genes, potentially leading
to chemotherapy resistance. Therefore, identifying key
elements in tumor development is crucial for advancing
diagnostic techniques and treatments. Consequently,
sialic acids have become a focal point of investigation
in cancer biology, with researchers exploring their
potential as diagnostic markers or targets for therapeutic
interventions.

The results of this study suggest that the incorporation
of sialic acid into temozolomide significantly increases
the IC50 value of temozolomide at 48 and 72 hours, in
contrast to temozolomide treatment alone. Furthermore,
cell morphology analysis revealed that cells treated with
temozolomide in combination with sialic acid behaved
similarly to untreated cells. Notably, these cells exhibited
lower levels of apoptosis compared to cells treated with
temozolomide alone.

On the other hand, molecular biological analysis
showed that ABCBI1 expression was decreased, and ABCC1
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Figure 3. The ABCB1 gene was analyzed in 1321N1 through qRT-PCR expression analysis. A, the cells were treated with TMZ, sialic acid, and TMZ + sialic acid, while untreated
cells were used as the control. The IC50 of temozolomide (215 uM) and 2*EC50 of sialic acid (2*270 uM) on 1321N1 were used for 48 h; B, the cells were treated with TMZ, sialic
acid, and TMZ + sialic acid, while untreated cells were used as the control. The IC50 of temozolomide (100 uM) and 2*EC50 of sialic acid (2*150 uM) on 1321N1 were used for 72

h; C,Aand B (***P-value < 0.0001).
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Figure 4. The ABCC1 gene was analyzed in 1321N1 through qRT-PCR analysis. A, the cells were treated with TMZ, sialic acid, and TMZ + sialic acid, while untreated cells were used
as the control. The IC50 of temozolomide (215 uM) and 2*EC50 of sialic acid (2*270 uM) on 1321IN1 were used for 48 h; B, the cells were treated with TMZ, sialic acid, and TMZ +
sialic acid, while untreated cells were used as the control. The IC50 of temozolomide (100 uM) and 2*EC50 of sialic acid (2150 uM) on 1321N1 were used for 72 h; C,A and B (***

P-value < 0.001and ****P-value < 0.0001).

expression was increased in all treatment groups at 48
and 72 hours. Temozolomide treatment had the most
significant effect on gene expression compared to sialic
acid alone or in combination. In fact, there were no
significant changes in gene expression after 72 hours of
sialic acid administration alone compared to 48 hours.
The ability of sialic acid to modulate gene expression,

either alone or in combination with temozolomide, is
indicated by its capacity to induce slight changes at 72
hours. This finding contrasts with the gene expression
changes observed at 48 hours.

Furthermore, sialic acid may regulate drug resistance

by impacting the expression, structure, and function of
transporter genes through direct or indirect mechanisms.
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Therefore, measuring protein production and activity
is important to understand the differences in gene
expression of ABC transporters, as sialic acid may affect
drug resistance through other molecular pathways.
Hence, comprehending the mechanisms leading to the
downregulation of ABCB1 and upregulation of ABCCI is
essential for developing effective strategies to reverse
TMZ resistance in glioma cells. It is important to consider
that the presence of sialic acid in the brain, especially
in glioma, may interfere with the effects of anticancer
drugs by modulating the cellular microenvironment. As
a result, the use of sialic acid inhibitors in combination
with anticancer drugs like temozolomide has emerged as
a promising strategy for multidrug therapy.

5.1. Conclusions

Our research demonstrates that the presence of
sialic acid increases cancer growth and interferes with
the functionality and efficacy of anticancer drugs over
an extended period, ultimately resulting in ineffective
treatment. Therefore, it is essential to focus on sialic acid
or its production factors for therapeutic purposes.
Consequently, the use of combination therapy is
recommended for effective cancer treatment.  This
study provides a theoretical and empirical basis for
understanding the effects of sialic acid on glioma cells
and may lead to the identification of therapeutic targets
for glioma treatment.
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