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Abstract

Background: Recent studies have shown that the cerebellum directly interacts with the ventral tegmental area, a critical
component of the reward system.

Objectives: This study aimed to explore potential changes in the expression of neurotrophic factors and various types of
voltage-gated calcium channels in the cerebellum following morphine dependence and withdrawal.

Methods: This study involved three groups of male Wistar rats. For ten consecutive days, the second and third groups were
administered morphine (10 mg/kg), while the first group received saline (1 mL/kg). Analgesic responses were assessed using a
hotplate test on days 1and 10 of the repeated injections and after a 30-day withdrawal period. Rats were sacrificed on day 10 of
the injections or on day 30 of withdrawal, and their cerebellum were dissected for analysis. Gene expression was analyzed using
the real-time PCR method.

Results: The study found that morphine analgesia decreased during the 10 days of repeated injections but partially recovered
after a 30-day withdrawal period. Morphine dependence led to a decrease in the expression of Cavi.1i, which increased after
withdrawal. The expression of Cavi.2 in the cerebellum consistently rose after both morphine dependence and withdrawal.
There were no significant changes in the expression of Cav2.2 due to morphine dependence or withdrawal. An increase in the
expression of Cav3.1 was observed following morphine dependence, which decreased after withdrawal. There were significant
reductions in the mRNA levels of neurotrophic factors (BDNF, GDNF, and NGF) and their receptors (TrkB, GFRA1, and NGFR)
following morphine dependence. However, the expression of almost all neurotrophic factors increased after morphine
withdrawal.

Conclusions: The findings suggest that changes in neurotrophic factors, their receptors, and specific types of voltage-gated
calcium channels in the cerebellum play roles in the processes of morphine dependency and withdrawal.
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1. Background

Morphine is widely regarded as the most effective
opioid analgesic for severe pain management. Despite
its efficacy, prolonged use often leads to tolerance,
dependence, addiction, and withdrawal symptoms
upon cessation (1, 2). Morphine exerts its rewarding
effects primarily by stimulating mu-opioid receptors on
GABAergic interneurons in the ventral tegmental area
(VTA). This action inhibits GABA release, leading to the
disinhibition of mesocorticolimbic dopaminergic

neurons projecting to the nucleus accumbens (NAc),
hippocampus, and prefrontal cortex (PFC) (3). Studies
indicate that morphine addiction and withdrawal
involve neuroadaptations at cellular and molecular
levels within the mesocorticolimbic pathway (4).
Traditionally known for its role in motor control and
coordination, the cerebellum has recently been
recognized for its broader impact on brain function,
influenced by a decade of research (5). Carta et al.
recently highlighted a direct synaptic connection
between the cerebellum and the VTA, suggesting the
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cerebellum's direct involvement in the reward system
(6).

Voltage-gated calcium channels are a diverse group
of cation channels that activate upon membrane
depolarization, facilitating the entry of calcium ions
into cells. These channels are categorized based on their
alpha subunits into Cavi.i, Cavi.2, Cavi.3, and Cavi4 (L-
type), Cav2.1 (P-type), Cav2.2 (N-type), Cav2.3 (R-type), and
Cav3.1, Cav3.2, and Cav3.3 (T-type) (7). The influx of
calcium ions triggered by these channels initiates
several vital physiological responses, including
neurotransmitter release, kinase activation, and gene
expression (8). Morphine analgesia is partially mediated
by its binding to mu-opioid receptors, which blocks
calcium channels and subsequently decreases
intracellular calcium concentrations (9). T-type calcium
channels have been shown to play a significant role in
the development of morphine antinociceptive
tolerance, dependence, and withdrawal syndrome (10).
Inhibition of the Cav2.3 calcium channel has been
shown to enhance morphine analgesia and reduce
tolerance in mice (11). Additionally, empirical studies
have demonstrated the involvement of T-type calcium
channels in the mechanism behind hyperalgesia
induced by low doses of morphine in adult male rats
(12).

Neurotrophic factors are crucial for physiological
and developmental processes in both the peripheral
and central nervous systems (13). Brain-derived
neurotrophic factor (BDNF) is essential for brain
plasticity, particularly in learning and memory
processes (14). Increasing evidence suggests that BDNF
expression rises after morphine administration in
various brain regions, including the nucleus
paragigantocellularis and the VTA (15, 16). Therefore,
BDNF plays a pivotal role in neuroadaptation within the
reward system and opioid addiction (17). Variations in
BDNF levels observed during morphine withdrawal
suggest that BDNF may contribute not only to opioid
addiction but also to the withdrawal process (18).

2. Objectives

The aim of our study was to explore potential
changes in the expression of calcium channels and
neurotrophic factors in the cerebellum following
morphine dependence and subsequent withdrawal. To
this end, we assessed the mRNA levels of Cav1.1, Cavi.2,
Cav2.2, and Cav3.1 calcium channels. Additionally, we
measured the mRNA levels of BDNF and its receptor,
tropomyosin-like receptor kinase B (TrkB), glial cell-
derived neurotrophic factor (GDNF) and GDNF family
receptor alpha-1 (GFRA1), nerve growth factor (NGF), and

NGFR in the cerebellum after morphine dependence and
a30-day withdrawal period.

3.Methods

3.1. Subjects

Male Wistar rats with an average weight of 240+20 g
at the beginning of the experiments were used. The
animals were kept in a controlled environment with a
constant temperature of 22 + 2°C and humidity levels
between 50% and 60%. Lighting was programmed to
maintain a 12-hour light/dark cycle, with lights on at
7:00 AM and off at 19:00 PM. The rats had continuous
access to animal feed pellets and water. The use of
laboratory animals followed international standards,
according to the guidelines established by the National
Academy of Sciences' Institute for Laboratory Animal
Research (2011). The experimental protocol was
approved by the Research Ethics Committee (REC) of the
University of Kurdistan (ethical approval codes:
IR.UOK.REC.1399.012 and IR.UOK.REC.1399.014.

3.2. Drug Treatments

Morphine sulfate was obtained from Temad
(Daroopakhsh Co., Tehran, Iran) and dissolved in
physiological saline prior to administration. Five
experimental groups were used, each consisting of eight
rats. Initially, two groups received intraperitoneal
injections of either saline (1 mL/kg, i.p.) or morphine (10
mg/kg, i.p.) twice daily for 10 days, followed by a 30-day
withdrawal period without treatment. A hotplate test of
analgesia was conducted on days 1 and 10 of the
injections and on day 30 of withdrawal to assess
antinociception in the experimental groups.

The study was expanded to include three additional
experimental groups for molecular analysis. The first
group received saline, while the next two groups
received morphine for 10 days as described above. Two
hours after the last injection on the tenth day, rats in the
morphine-treated (dependent) and saline-treated
control groups were euthanized. Another group, the
withdrawal group, received morphine for 10 days
followed by a 30-day withdrawal period before
undergoing brain dissection.

3.3. Brain Dissection

Gene expression analysis was performed on the
cerebellum from eight rats in each experimental group.
The entire brain was swiftly removed from the cranium,
and the cerebellum was dissected bilaterally on a
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chilled, sterile surface (19, 20). Each dissected tissue was
then immediately placed in liquid nitrogen for rapid
cryopreservation and subsequently stored at -80°C until
total RNA extraction.

3.4. Real-time Polymerase Chain Reaction (RT-PCR)

Total RNA was extracted from twenty milligrams of
each tissue sample using a high purity RNA isolation kit,
following the protocol provided by Roche, Germany.
Complementary DNA (cDNA) synthesis was carried out
using a kit from Thermo Fisher Scientific (USA),
according to the included instructions. Real-time PCR
was performed on a LightCycler 96 system by Roche
(Germany). Each biological sample obtained from the
rats was assessed in three technical replicates. The PCR
reaction volume was 20 pl, including 2 pL of gene-
specific primers (5 uM), 8 puL of cDNA (4 ng/uL), and 10 pL
of MasterMix (Amplicon, Denmark) (21). The thermal
cycling started with a pre-incubation at 95°C for 15
minutes, followed by 40 cycles of denaturation at 95°C
for 5 seconds and annealing/extension at 60°C for 30
seconds. The procedure terminated with cooling and
melting phases. Gene expression levels were analyzed

using the Livak (222€T) method (22). Table 1 lists the
primer sequences specific to the genes.

Table 1. The Primer Sequences That Were Used for Amplifying the Specified Genes in
Real-Time PCR

Gene and Sequences (5™-3") Amplicon Size, bp

GAPDH

F: AGTGCCAGCCTCGTCTCATA 77
R: GGTAACCAGGCGTCCGATAC

Cavi.1
F: ACGTTGACCCAGATGAGAGC 72
R: TGATCAGTCGCATGACTCGG

Cavi.2
F: TTATGGCCTTCAAACGTGGC 89
R: CACAACTGAACAGCTATCCCAC

Cav2.2
F: TTCAGAGATGCCTGGAACGTC 84
R: CGTTTCCGCAATCTCCGTTAC

Cav3.1
F: AGAGCGAGATTCCTGGTCG 80
R: TGTGGGTGATGATCCGGTG

BDNF
F: CAGGTCACTCTTCTGGCATGG 90
R: GGAGGAGGGAGGGAAAGAATGT

TrkB
F: TGGAGGATCATGTTCGGCAC 103
R: GGCCAGTATCTGTGATCGA

GDNF
F: CGGACGGGACTCTAAGATGAAG 107

R: CTTCGAGAAGCCTCTTACCGG

GFRA1

Jentashapir ] Cell Mol Biol. 2024;15(2): €146400.

Gene and Sequences (5-3") Amplicon Size, bp

F: GTAAATGGTTGCGTCCTGGC 75
R: CAGGGCTCAATGGAGGAAAGA

NGF
F: CTCTGAGGTGCATAGCGTAATG 89
R: TATCTGTGTACGGTTCTGCCTG

NGFR
F: GCTGCTGCTGCTGATTCTAG 83

R: ACTCTCCGCTGTGGGTGTA

Abbreviations: GAPDH, glyceraldehyde-3-phosphate dehydrogenase; Cavi.,
voltage-gated calcium channel 1.1; Cavi.2, voltage-gated calcium channel 1.2; Cav2.2,
voltage-gated calcium channel 1.2; Cav3., voltage-gated calcium channel 3.1; BDNF,
brain-derived neurotrophic factor; >NTRK2, neurotrophic receptor tyrosine kinase 2;
GDNF, glial cell-derived neurotrophic factor; GFRA1, GDNF family receptor alpha 1;
NGF, Nerve growth factor; NGFR, Nerve growth factor receptor.

3.5. Statistical Analysis

Data were analyzed starting with the Shapiro-Wilk
test to confirm their normal distribution. The Brown-
Forsythe test was used to check for equality of variances.
Mixed between-within subjects ANOVA was conducted,
analyzing hotplate data with two factors: "The drug"
with two levels (saline and morphine) and "days of
testing" with three levels (days 1, 10, and 30). Gene
expression differences among the three experimental
groups were compared using one-way ANOVA. Post hoc
comparisons were performed using Tukey's test. A
significance level was set at P < 0.05. Data analysis and
graphical presentations were performed using
GraphPad Prism version 9.5 (San Diego, California, USA).
The dataset is available upon request from the
corresponding author either during review or after
publication.

4.Results

4.1. Repeated Morphine Injections and Analgesic Response

Repeated morphine injections resulted in decreased
analgesic effects, which partially recovered after a 30-
day withdrawal period. The hotplate test data were
analyzed using a two-way repeated measures ANOVA,
which revealed a significant interaction between the
type of drug administered and the days of testing [F (2,
23) =122, P < 0.001]. There was a statistically significant
main effect for the drug type [saline vs. morphine, F (1,
14) =804, P < 0.001] and the days of testing [F (2, 23) =137,
P < 0.001]. Post hoc analysis with Tukey’s test indicated
significant analgesia from morphine on the first day of
injection compared to the saline-treated control group
(P < o0.001). However, the efficacy of morphine
diminished significantly over 10 days of repeated
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Figure 1. Effect of 10 days of morphine treatment (10 mg/kg) and a 30-day withdrawal period on morphine analgesia. The data are presented as the mean + standard deviation (n
= 8 per experimental group). Circle or diamond dots on each bar represent the distribution of individual data in each experimental group. A two-way repeated measure using a
mixed between-within subject design was employed. Analysis of variance (ANOVA) was used to ascertain the general disparities among the groups. *** P < 0.001 indicates a

statistical difference between the specified groups

remained significantly less effective compared to the
initial day of administration (P < 0.001) (Figure 1).

4.2. Changes in Voltage-Gated Ca2+ Channel Expression
After Morphine Dependence and Withdrawal

Quantitative PCR results from the cerebellum
indicated that continuous morphine administration for
10 days significantly reduced Cavi.i expression, which
then significantly increased after a 30-day withdrawal
compared to both the control and dependent groups [F
(2, 21) = 11, P < 0.001]. Cav1.2 expression significantly
increased in the dependent group compared to the
control, with further significant elevation observed in
the withdrawal group [F (2, 21) = 96.26, P < 0.001]. No
significant differences were found in the expression of
Cav2.2 across the groups [F (2, 21) = 2.395, P> 0.05]. Cav3.1
expression was significantly higher in the dependent
group compared to the control and significantly
decreased in the withdrawal group compared to both
the dependent and control groups [F (2, 21) = 273.6, P <
0.001] (Figure 2).

4.3. Changes in BDNF and TrkB Expression During Morphine
Dependency and Withdrawal

BDNF and TrkB expression in the cerebellum reduced
considerably during morphine dependency, but
increased markedly after a 30-day withdrawal period.
The cerebellar qPCR data indicated that the expression
of BDNF and its receptor, TrkB, significantly decreased
during morphine dependency [BDNF: F (2, 21) = 311.0, P <
0.001; TrkB: F (2, 21) = 545.3, P < 0.001], relative to the
control group. Notably, both BDNF and TrkB levels

increased markedly after a 30-day withdrawal period
compared to their levels during dependence and in
control conditions (Figure 3).

4.4. GDNF and GFRA1 Expression Changes in Response to
Morphine

Expression levels of GDNF in the cerebellum were
significantly lower in the morphine-dependent group
compared to controls but increased substantially after a
30-day withdrawal [F (2, 21) = 744.9, P < 0.001]. Similarly,
the expression of GDNF's receptor, GFRAI, decreased
dramatically during dependence but approached
control levels after withdrawal [F (2, 21) = 95.03, P <
0.001] (Figure 4).

4.5. Effects of Morphine Dependency and Withdrawal on NGF
and NGER Expression

Following morphine dependency, NGF expression in
the cerebellum significantly decreased but increased
sharply after 30 days of withdrawal [F (2, 21) = 381.8, P <
0.001]. In contrast, NGFR expression remained
significantly reduced in both the dependent and
withdrawal groups compared to the control group [F (2,
21)=34.77,P < 0.001] (Figure 5).

5. Discussion

This study demonstrated that repeated morphine
injections lead to diminished analgesia after 10 days,
indicating tolerance. The analgesic effects of morphine
were partly restored 30 days post-withdrawal, though
not to the levels seen on the first day of administration.
Chronic morphine use alters molecular and cellular
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Figure 2. Gene expression of Cavl.1, Cavi.2, Cav2.2, and Cav3.1 in the cerebellum after morphine dependence and withdrawal. The data are presented as the mean + standard
deviation (n = 8 per group). Dots on each bar represent the distribution of individual data within each experimental group. A, Cav1.1 (voltage-gated calcium channel 1.1); B, Cav1.2
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Figure 3. Gene expression of BDNF and its receptor, TrkB, in the cerebellum after morphine dependence and withdrawal. The data are presented as the mean * standard deviation
(n =8 per group). Dots on each bar show the distribution of individual data. A: BDNF (brain-derived neurotrophic factor), B: TrkB (tropomyosin receptor kinase B), *** P < 0.001

pathways, especially in brain regions involved in reward
and pain processing (23-25), thus changing the brain’s
response to the drug (26). Prior research has shown that
an eight-day regimen of morphine injections induces
tolerance and dependence (26). Frequent morphine use
reduces its therapeutic effects and increases addiction
risk (27). Extensive studies suggest morphine primarily
impacts the reward system, targeting areas like the VTA,
striatum, and PFC (26, 27). Recent findings highlight a
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direct link between the cerebellum and VTA, suggesting
novel pathways for exploring the cerebellar cortex's role
in morphine's effects on the reward system (6).
Accumulating evidence suggests that chronic
exposure to morphine leads to changes in gene
expression in various brain areas involved in addiction
(26, 28). Furthermore, discontinuing morphine use
triggers withdrawal symptoms, which are associated
with alterations in gene and protein expression (29).
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Figure 5. Gene expression of NGF and NGFR in the cerebellum after morphine dependence and withdrawal. The data are presented as the mean + standard deviation (n = 8 per
group). Dots on each bar indicate the distribution of individual data. A, NGF (nerve growth factor); B, NGFR (nerve growth factor receptor), ** P < 0.01, *** P < 0.001

Our findings revealed that prolonged morphine
treatment significantly reduced Cav1.1 expression in the
cerebellum, which not only returned to baseline but
also increased sharply after a 30-day withdrawal period
compared to the saline-treated control group.
Expression of Cavi.2 was significantly elevated in both
the dependent and withdrawal groups compared to the
control group. However, Cav2.2 expression did not show
significant changes across the groups. Additionally,
Cav3.1 expression markedly increased in the morphine-
dependent group but significantly declined in the
withdrawal group compared to both dependent and
control groups.

Calcium channels facilitate cell membrane
depolarization by allowing the influx of calcium ions,
which is crucial for secretion, contraction,
6

neurotransmission, gene expression, and various other
physiological processes (30, 31). Morphine acts by
activating mu-opioid receptors, which block calcium
channels and inhibit the release of neurotransmitters
from axon terminals. This activation sets off a molecular
cascade that ultimately influences gene expression (9).
Various studies have highlighted the role of T-type
calcium channels in antinociception, tolerance, pain
behavior, and dependence (12). These channels can affect
neuronal excitability, suggesting their role in pain
signal transmission at multiple levels, including
peripheral nociceptors, the spinal cord, and the brain
(32). Research has shown that expression of Cavi.2 and
Cav1.3 increases with the development of morphine
tolerance. However, blocking these channels with
fluoxetine delayed morphine-induced antinociception,
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tolerance, and dependence (33). Considering the data
cited above and the changes in the expression of
calcium channels in the cerebellum observed in this
study, we propose a critical role for these calcium
channels in cerebellar neuroadaptation associated with
morphine tolerance, dependence, and withdrawal.

Research has shown that calcium channels can be
influenced by various substances, either directly or
indirectly. Specifically, BDNF can inhibit the function of
calcium channels in nerve terminals in the CNS (34). Our
results also demonstrated that prolonged morphine
treatment significantly reduced the expression of BDNF
and its receptor, TrkB, in the dependent group compared
to the control group. However, their expression
markedly increased after a 30-day withdrawal period
relative to both the control and dependent groups.
Additionally, the expression of GDNF notably decreased
in the dependent group compared to the control group
but significantly increased after the 30-day withdrawal
period relative to both control and dependent groups.
The expression of GFRAI decreased in the dependent
group but partially recovered after the withdrawal
period, although it did not return to control levels.
Furthermore, NGF expression substantially decreased in
the dependent group compared to the control group.
However, after the 30-day withdrawal period, NGF
expression significantly increased compared to both the
control and dependent groups. Additionally, there was a
notable reduction in NGFR expression at mRNA levels in
both the dependent and withdrawal groups compared
to the control group.

Neurotrophic factors such as BDNF, GDNF, NGF, and
their receptors NGFR, TrkB, and GFRAI1 play crucial roles in
regulating brain survival, plasticity, and signaling (35).
These neurotrophic factors, by regulating dopaminergic
transmission in the NAc, which receives projections
from the VTA, have been linked to the addiction process
(17). BDNF is important for survival, cell growth, and
differentiation (36). Studies on acute cocaine exposure
have shown significant expression of BDNF in the VTA,
NAc, and PFC (37). Grimm et al. observed that BDNF
expression within the mesolimbic dopaminergic system
increased for 90 days following cocaine cessation,
whereas long-term morphine administration led to a
reduction in BDNF expression in the VTA in mice (38).
Moreover, clinical studies have reported both increases
and decreases in serum BDNF levels in heroin addicts
(35).

According to the current results, we observed a
general decrease in the expression of neurotrophic
factors in the cerebellum following morphine
dependence, suggesting adverse effects of prolonged
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morphine exposure on neuronal survival. However, a 30-
day withdrawal period appears to restore nearly all the
examined neurotrophic factors in the cerebellum,
supporting the hypothesis that cessation of morphine
triggers homeostatic processes in the cerebellum.
Supporting our findings, other researchers have
demonstrated that morphine withdrawal increases the
precursor of BDNF in the striatum and frontal cortex
(18). Our recent studies have shown that repeated
morphine exposure reduces BDNF protein levels in the
cerebellum but increases TrkB expression there.
Nevertheless, a 30-day withdrawal period partially
restored the expression of BDNF and TrkB (39). Further
research is needed to clarify the specific impact of
morphine on the expression of neurotrophic factors in
the cerebellum and their roles in morphine dependency
and withdrawal.

5.1. Conclusions

The results of this experiment show that 10 days of
morphine treatment induces analgesic tolerance and
dependence, significantly affecting the gene expression
of voltage-gated calcium channels and neurotrophic
factors in the cerebellum. However, a 30-day withdrawal
period in most cases not only restored the decreased
levels of these factors but also sharply increased them
above control levels. Our findings suggest that
prolonged morphine therapy disrupts homeostatic
mechanisms by altering the expression of voltage-gated
calcium channels and neurotrophic factors in the
cerebellum. This results in adverse consequences
following morphine withdrawal and dependence.
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