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Abstract

Background: Extensive evidence demonstrates that neuronal autophagic and cytoskeletal elements play critical roles in
neuroplasticity. Dysregulation of neuroplasticity has been implicated in the pathology of depression and post-traumatic stress
disorder (PTSD). Transcription factor EB (TFEB) and stathmin are key regulators of autophagy and microtubule formation,
respectively.

Objectives: The current study aimed to compare the levels of hippocampal TFEB and stathmin proteins in PTSD and depressed
animal models of rats.

Methods: Three groups of male rat pups (n = 8) were used. The first group, designated as the depressed group, was exposed to
maternal separation stress and related stressors. The second group, representing the PTSD model, was exposed to single-
prolonged stress. The third group served as the control. Anxiety-like and depressive-like behaviors were evaluated using the
elevated plus maze (EPM) and forced swimming test (FST). Hippocampal TFEB and stathmin protein levels were measured using
western blotting. Data were analyzed using Prism software. One-way ANOVA and post hoc Tukey tests were performed to
evaluate statistical differences between groups in behavioral tasks. Independent t-tests were used to assess differences in
protein levels between groups.

Results: The TFEB protein levels were increased in both PTSD and depressed rats, while stathmin levels were decreased. The
effect of depression on TFEB expression was significantly higher than in PTSD. Conversely, stathmin reduction was more
pronounced in PTSD compared to depressed rats.

Conclusions: These results suggest that changes in stathmin and TFEB protein levels may be associated with anxiety- and
depression-like behaviors.
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1. Background

Post-traumatic stress disorder (PTSD) and depression
are stress-induced mood disorders that frequently co-
occur (1-3). Various studies have demonstrated that
anxiety and depression disorders are associated with
abnormalities in the structure and function of
corticolimbic areas involved in the stress response,

including the hippocampus (4-11). The hippocampus,
due to its plastic and sensitive nature throughout life, is
particularly prone to alterations in response to different
stimuli (12). Magnetic resonance imaging brain
volumetry has shown reduced hippocampal volume in
patients with psychiatric disorders (4, 5, 9, 10). At the
synaptic level, studies have revealed that stress-induced
disorders alter hippocampal plasticity (8, 13).
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Furthermore, a growing body of evidence indicates that
stress-induced deficits in synaptic plasticity are linked
to alterations in autophagy and cytoskeletal elements
(14-21).

Autophagy is a lysosomal degradation pathway that
removes damaged cellular proteins and organelles (22).
Transcription factors play a significant role in regulating
the autophagic process (23). One of the key regulators of
gene expression in autophagy is transcription factor EB
(TFEB) (24). The TFEB is critically involved in the
biosynthesis and function of lysosomes and
mitochondria (25). Additionally, the formation of
autophagosomes, their fusion with lysosomes, and
cargo identification in the autophagy process are TFEB-
dependent (25, 26). Studies have shown that TFEB-
mediated autophagy contributes to synaptic plasticity
(27). It is notable that many neurodegenerative diseases
result from abnormal protein accumulation (28),
reflecting neuronal autophagy dysfunction. Changes in
TFEB activity or the expression of its target genes play a
crucial role in neuronal diseases (29).

Microtubules and their associated proteins play a
crucial role in the development and maintenance of
synapses (30, 31). Stathmin, a regulatory protein of
microtubule dynamics, is essential for neural dendritic
growth and synapse formation (32). Additionally,
stathmin regulates the synaptic localization of the
GluA2 subunit of AMPA receptors (33). The dependency
of hippocampal plasticity on
microtubule dynamics has also been demonstrated (33).
On the other hand, evidence indicates that stathmin

stathmin-mediated

expression and activity are altered in mood disorders
(33-36).

There is a significant overlap between anxiety and
depression regarding their pathogenesis and
symptoms, suggesting that these conditions may share
common biological mechanisms. However, important
distinctions exist between the disorders. For instance,
large-scale neural circuit dysfunctions differ between
depression and anxiety (37, 38). Furthermore,
differences in theta oscillations (39) and emotional
states (40) have been identified in patients with
depression and anxiety.

Given the critical role of the hippocampus in the
pathogenesis of mental illnesses (41), identifying
disease-specific molecular changes in the hippocampus

and understanding the aspects of hippocampal
plasticity disrupted in anxiety or depression are

essential for developing effective treatments.

2. Objectives

In the present study, we aimed to compare the levels
of TFEB and stathmin proteins in animal models of PTSD
and depression.

Post-traumatic stress disorder is a psychological
disorder that occurs in some individuals after
experiencing or witnessing stressful events. The main
symptoms of PTSD include flashbacks, anxiety, negative
thoughts, and nightmares, which are associated with
various physiological effects (42, 43). The PISD and
depression-like disorders were induced using well-
established and widely used rat models, including the
single-prolonged stress (SPS) model for PTSD and the
maternal separation (MS) model for depression (44-49).

3. Methods

3.1. Animals

All experiments were conducted in accordance with
the Guide for the Care and Use of Laboratory Animals
(National Institutes of Health Publication No. 80-23,
revised 1996) and were approved by the Research
Committee of Tehran Medical Sciences, Islamic Azad
University. Adult male and female Wistar rats were
obtained from the Pasteur Institute, Tehran, Iran, and
mated in a controlled laboratory environment. The
room conditions included a 12-hour light/dark cycle, a
temperature of 22 + 1°C, and free access to water and
food. All experiments were carried out between 10:00
am. and 2:00 p.m. and each experimental group
comprised 6 to 8 animals.

3.2. Experimental Design

The male rat pups were randomly assigned to one of
three experimental groups (n = 8). The first group was
the depressed group, exposed to maternal separation
stress and other related stresses to create a depressed
animal model. The second group was the PTSD group,
exposed to single-prolonged stress. The remaining
group served as the control group.

3.3. Depression Animal Model

Jentashapir | Cell Mol Biol. 2025;16(1): 155637
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To induce depression, the maternal separation
procedure was performed on male rat pups. For this
purpose, on the 10th day after birth, male pups were
subjected to daily separations (30 or 60 minutes) from
their mother. The animals were also exposed to hitting,
shaking, tilting the cage, and placing them in a
moistened cage. This stress procedure was continued for
three weeks (50, 51).

3.4. Post-traumatic Stress Disorder Animal Model

The procedure for inducing PTSD was SPS. The
protocol involved multiple stressors,
including a 2-hour restraint stress followed immediately
by a 15-minute forced swim stress in an acrylic cylinder
(20 cm in diameter, filled two-thirds with water at a

consecutive

temperature of 24°C). Afterward, the animals were
allowed to recuperate for 15 minutes before being
exposed to isoflurane inhalation wuntil loss of

consciousness (52).

3.5. Behavioral Tests

Behavioral experiments included the elevated plus
maze (EPM) and forced swimming test (FST), conducted
with control, PTSD, or depressed rats as follows:

- Experiment 1 evaluated anxiety-like behaviors using
the EPM test in PTSD or depressed animals.

- Experiment 2 evaluated depressive-like behaviors
using the FST task in PTSD or depressed animals.

3.6. Elevated Plus Maze

The EPM test is a widely used method to measure
anxiety-related behavior. The EPM apparatus,
constructed from plexiglass, consists of two opposite
open arms and two opposite closed arms (50 x 10 cm)
arranged in a plus shape and elevated 50 cm above the
floor. The animal is placed in the center of the platform,
facing one of the open arms, and allowed to move freely
for a 5-minute period. Animal behavior is monitored
using EthoVision software (version 7.1). The percentage
of open arm entries [OAE, calculated as (entries into
open arms/total entries) x 100] and the percentage of
open arm time [OAT, calculated as (time spent in open
arms/total time spent in any arms) x 100] are used to
estimate anxiety-like behavior. Total arm entries are
recorded as an index of locomotor activity (53).
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3.7. Forced Swimming Test

The FST was conducted following the method
previously described (54, 55). The test consists of two
sessions: A 15-minute pretest habituation forced swim
session followed by a 5-minute test session conducted
24 hours later. Each rat was individually placed in a
water-filled glass cylinder (height 45 cm, diameter 19
cm) containing 28 cm of water maintained at 23 - 24°C.
During the test session, the duration of immobility and
swimming time was recorded.

3.8. Brain Tissue Collection

At the end of the experimental sessions, the rats were
deeply anesthetized with a ketamine (120 mg/kg) and
xylazine (40 mg/kg) mixture. Subsequently, the animals
were euthanized using carbon dioxide. To evaluate TFEB
and stathmin protein expression, the hippocampi (n =
5) were dissected, immediately frozen in liquid
nitrogen, and then stored at-80°C.

3.9. Western Blotting

The extracted hippocampal tissues  were
homogenized in a lysis buffer and then centrifuged.
Protein samples were separated by electrophoresis on a
12% SDS polyacrylamide gel and transferred onto a PVDF
membrane. The membranes were fixed and blocked
using TBST for 60 minutes at room temperature. They
were then incubated overnight at 4°C with primary
antibodies (Cell Signaling Co., USA). After three washes
with TBST, the membranes were incubated with
secondary antibodies (Cell Signaling Co., USA) for 60
minutes at room temperature. Following another three
washes with TBST, the membranes were treated with ECL
Plus reagent for 1 - 30 minutes. R-actin was used as an
internal control for protein loading, ensuring that all
measurements were standardized against R-actin
values.

3.10. Statistical Analysis

The results were analyzed using Prism software (v).
One-way ANOVA and post hoc Tukey tests were
conducted to evaluate statistical differences between
groups in behavioral tasks. Additionally, statistical
differences between groups in protein levels were
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Figure 1. Anxiety-like behaviours in the post-traumatic stress disorder (PTSD) or depressed animals using elevated plus maze (EPM) test. A, percentage of time spent in open
arms (%0AT); B, percentage of entries into the open arms (¥OAE); and C, locomotor activity were measured during 5 min. Data are expressed as the means + SEM. *P < 0.05, **P <

0.01, **P < 0.001 vs. control group; ## P < 0.001and # P < 0.05 vs. PTSD group.

assessed using an independent t-test. Results are
expressed as mean + standard error of the mean (SEM.).

4. Results

4.1. Posttraumatic Stress Disorder Rats Displayed
Significantly Higher Anxiety Parameters in Elevated Plus
Maze Compared to the Depressed Group Rats

Figure 1 illustrates anxiety-like behaviors in PTSD or
depressed animals using the EPM test. Our results
revealed that PTSD rats exhibited anxiety-like behaviors
in the EPM test compared to control animals.
Specifically, the %0AT and %OAE (P < 0.001) decreased in
PTSD rats, indicating a PTSD-induced anxiogenic effect
(Figure 1A and B). In the depression paradigm, there was
a decrease in the percentage of time spent in the open
arms (%0AT) (P < 0.05), while the %OAE was not
significantly affected compared to the control group (P
> 0.05). It is important to note that PTSD or depression-
induced behavioral changes occurred without any
alterations in locomotor activity (Figure 1C).

4.2. Exposure to the Forced Swimming Test Resulted an
Increase in Depressive Behaviours in Post-traumatic Stress
Disorder and Depressed Rats

The FST findings demonstrated that in PTSD rats,
swimming time was significantly reduced (Figure 2A P <
0.001, effect size: 41.67%), while immobility time was
significantly increased (Figure 2B P < 0.001, effect size: 3)
compared to the control group. Depression induced a
similar effect on immobility time (Figure 2A P < 0.001,
effect size: 4.4) and swimming time (Figure 2B P < 0.001,
effect size: 68.75%) in the FST compared to the control
group (Figure 2). Furthermore, there were significant

differences between the PTSD and depressed rats in the
FST paradigm (P < 0.001).

4.3. The Level of Transcription Factor EB and Stathmin
Proteins Was Changed in the Hippocampus of Post-
traumatic Stress Disorder and Depressed Rats

Figure 3A shows that the hippocampal level of TFEB
was significantly increased in PTSD (P < 0.001, effect size:
1.87) and depression models in rats (P < 0.001, effect size:
2.5) compared to the control group (Figure 3B).
Additionally, the level of stathmin protein was
significantly decreased in PTSD (P < 0.001, effect size:
20%) and depression models in rats (P < 0.001, effect
size: 60%) compared to the control group (Figure 3C). A
comparison of stathmin protein levels between PTSD
and depressed rats also revealed a statistically
significant reduction in stathmin levels in the PTSD
group relative to the depressed group (P < 0.001). These
results indicate that PTSD and depressive disorders are
associated with increased TFEB levels and decreased
stathmin protein levels in the hippocampus.

5. Discussion

To date, various animal models have been developed
to understand the molecular mechanisms involved in
the pathogenesis of depression and PTSD (27, 48). Daily
repeated MS is one of the most commonly used
experimental procedures in depression studies (45, 47).
Both human and animal studies have shown that MS
increases the tendency toward depression- and anxiety-
like behaviors in adulthood (7, 56-60). Consistent with
these findings, our study demonstrated that postnatal
maternal separation induced anxiety- and depressive-
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Figure 2. Depressive -like behavior of post-traumatic stress disorder (PTSD) or depressed animals using forced swimming test (FST) test. A, immobility time; and B, swimming
time were measured during 5 min. Data are expressed as the means + SEM. *** P < 0.001 compared with control group. ### P < 0.001 vs. PTSD group.

like behaviors in adult animals. Specifically, we found
that rats subjected to maternal separation stress spent
less time in the open arms of the EPM task compared to
the control group, without any changes in locomotor
activity, reflecting anxiety-like behavior. Additionally, in
the FST, maternal separation increased immobility time
while reducing swimming time compared to the
control group, correlating with depressive-like
behaviors.

In PTSD animals, we observed elevated levels of
anxiety and depression in both EPM and FST tasks
compared to the control group, aligning with previous
studies (44, 46, 48, 49). The behavioral results from our
study support the co-occurrence of anxiety and
depression under stress conditions (61). Notably, PTSD
rats exhibited greater anxiety behavior on the EPM
compared to the depressed group, while both groups
displayed similar behaviors in the FST.

It is well-established that wunder anxious or
depressive conditions, autophagic mechanisms are
impaired hippocampus (8, 62, 63). This
impairment may stem from the parallel roles of the

in the

hippocampus and autophagy in the stress response.
Autophagy serves as a major stress response in the
central nervous system (64), and the hippocampus is
central to processing stress responses (as reviewed in
the introduction). Interestingly, pharmacotherapies
that reduce depression-like symptoms often affect the
autophagy-lysosomal pathway (65).

TFEB is a transcriptional regulator of autophagy, and
upon activation, it enhances autophagosome formation,

Jentashapir J Cell Mol Biol. 2025;16(1): 155637

lysosome function, and autophagic flux (66). Recently,
TFEB overexpression has been proposed as a therapeutic
intervention for neurodegenerative diseases (15, 67, 68).
Our previous study revealed that TFEB signaling in the
amygdala and medial prefrontal cortex (PFC) plays a
pivotal role in processing anxiety and depression (69).
However, to our knowledge, changes in hippocampal
TFEB protein levels in PTSD or depression have not been
studied.

Our results showed that PTSD or depressed rats
exhibited an increase in the hippocampal level of TFEB.
These findings align with the study by Wan et al., which
reported an increase in hippocampal autophagosomes
in SPS-exposed rats (70). However, they contrast with our
previous study that observed decreased TFEB mRNA
levels in the amygdala or PFC regions (69). Previous
studies have also demonstrated a decrease in
hippocampal mammalian target of rapamycin (mTOR),
an inhibitor of TFEB, in maternally separated mice and
in major depressive disorder (71). When mTOR is
inhibited, TFEB is activated and translocates to the
nucleus, triggering the expression of its target genes
(68). Interestingly, TFEB can increase its own expression
by binding to its promoter (26).

In contrast, Zhang et al. reported an increase in
mTOR levels in the hippocampus of stressed mice in the
chronic restraint stress model of depression (72).
Furthermore, Liu et al. showed region-dependent
changes in autophagic marker expression in MS-treated
animals (7). These findings suggest that the TFEB
response during anxiety or depression is complex. Given
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». A, hippocampal level of transcription factor EB (TFEB) and stathmin in post-traumatic
stress disorder (PTSD) and depressed rats. B and C, bars represent fold differences of
mean normalized expression value + SEM. * P < 0.05 vs. control group, *** P < 0.001
compared with control group. ### P < 0.001 compared with PTSD group.

Figure 3. A, hippocampal level of transcription factor EB (TFEB) and stathmin in post-traumatic stress disorder (PTSD) and depressed rats. B and C, bars represent fold differences
of mean normalized expression value + SEM. * P < 0.05 vs. control group, *** P < 0.001 compared with control group. ### P < 0.001 compared with PTSD group.

that TFEB expression correlates with autophagy
enhancement, we propose that the upregulation of
autophagy following TFEB expression in this study
contributed to the observed anxiety and depression

behaviors.

There is considerable evidence demonstrating that
alterations in synaptic plasticity mediated by the
cytoskeletal microtubular system play a crucial role in
the pathogenesis of PTSD and depression (35, 73, 74).
Stathmin, a negative regulator of microtubule stability,
is present in dendritic spines (75, 76) and modulates
synaptic plasticity by regulating the dendritic
localization of the GluA2 subunit of AMPA-type
glutamate receptors (AMPARs) (31). Moreover, mice
lacking stathmin display impaired long-term
potentiation (LTP) in their cortico-amygdala and
thalamo-amygdala pathways and exhibit deficits in
learned conditioning (76). Several studies support the
role of stathmin in anxiety, social behavior, depression,
and fear (34, 77,78).

In the present study, our data revealed a reduction in
hippocampal stathmin protein levels in both PTSD and
depressed rats compared to the control group. This
finding is consistent with the study by Han et al., which
showed that SPS or immobilization stress-induced a
reduction in stathmin expression in the hippocampal
area (79).

We also compared hippocampal TFEB and stathmin
protein expression levels between PTSD and depressed
rats. The results revealed differences in their expression
levels. The reduction of stathmin in the PTSD group was
greater than in the depressed animals, while the
enhancement of TFEB expression in depressed rats was
significantly higher than in PTSD rats.

5.1. Conclusions

In summary, the findings of this study suggest that
autophagy is wupregulated in both anxiety and
depression. However, based on the differing levels of
TFEB in PTSD and depressed rats, we conclude that
depression is more closely linked with autophagy
dysfunction. Conversely, considering the expression of
stathmin, anxiety appears to be more associated with
microtubule alterations. Despite the overlapping
features between anxiety and depression, these results
indicate that there are anxiety-specific and depression-
specific neuroplasticity changes that should be taken
into account for future treatment strategies.
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