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Abstract

Background: Extensive evidence demonstrates that neuronal autophagic and cytoskeletal elements play critical roles in

neuroplasticity. Dysregulation of neuroplasticity has been implicated in the pathology of depression and post-traumatic stress

disorder (PTSD). Transcription factor EB (TFEB) and stathmin are key regulators of autophagy and microtubule formation,

respectively.

Objectives: The current study aimed to compare the levels of hippocampal TFEB and stathmin proteins in PTSD and depressed

animal models of rats.

Methods: Three groups of male rat pups (n = 8) were used. The first group, designated as the depressed group, was exposed to

maternal separation stress and related stressors. The second group, representing the PTSD model, was exposed to single-

prolonged stress. The third group served as the control. Anxiety-like and depressive-like behaviors were evaluated using the

elevated plus maze (EPM) and forced swimming test (FST). Hippocampal TFEB and stathmin protein levels were measured using

western blotting. Data were analyzed using Prism software. One-way ANOVA and post hoc Tukey tests were performed to

evaluate statistical differences between groups in behavioral tasks. Independent t-tests were used to assess differences in

protein levels between groups.

Results: The TFEB protein levels were increased in both PTSD and depressed rats, while stathmin levels were decreased. The

effect of depression on TFEB expression was significantly higher than in PTSD. Conversely, stathmin reduction was more

pronounced in PTSD compared to depressed rats.

Conclusions: These results suggest that changes in stathmin and TFEB protein levels may be associated with anxiety- and

depression-like behaviors.
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1. Background

Post-traumatic stress disorder (PTSD) and depression

are stress-induced mood disorders that frequently co-

occur (1-3). Various studies have demonstrated that

anxiety and depression disorders are associated with

abnormalities in the structure and function of

corticolimbic areas involved in the stress response,

including the hippocampus (4-11). The hippocampus,

due to its plastic and sensitive nature throughout life, is

particularly prone to alterations in response to different

stimuli (12). Magnetic resonance imaging brain

volumetry has shown reduced hippocampal volume in

patients with psychiatric disorders (4, 5, 9, 10). At the

synaptic level, studies have revealed that stress-induced

disorders alter hippocampal plasticity (8, 13).
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Furthermore, a growing body of evidence indicates that

stress-induced deficits in synaptic plasticity are linked

to alterations in autophagy and cytoskeletal elements

(14-21).

Autophagy is a lysosomal degradation pathway that

removes damaged cellular proteins and organelles (22).

Transcription factors play a significant role in regulating

the autophagic process (23). One of the key regulators of

gene expression in autophagy is transcription factor EB

(TFEB) (24). The TFEB is critically involved in the

biosynthesis and function of lysosomes and

mitochondria (25). Additionally, the formation of

autophagosomes, their fusion with lysosomes, and

cargo identification in the autophagy process are TFEB-

dependent (25, 26). Studies have shown that TFEB-

mediated autophagy contributes to synaptic plasticity

(27). It is notable that many neurodegenerative diseases

result from abnormal protein accumulation (28),

reflecting neuronal autophagy dysfunction. Changes in

TFEB activity or the expression of its target genes play a

crucial role in neuronal diseases (29).

Microtubules and their associated proteins play a

crucial role in the development and maintenance of

synapses (30, 31). Stathmin, a regulatory protein of

microtubule dynamics, is essential for neural dendritic

growth and synapse formation (32). Additionally,

stathmin regulates the synaptic localization of the

GluA2 subunit of AMPA receptors (33). The dependency

of hippocampal plasticity on stathmin-mediated

microtubule dynamics has also been demonstrated (33).

On the other hand, evidence indicates that stathmin

expression and activity are altered in mood disorders

(33-36).

There is a significant overlap between anxiety and

depression regarding their pathogenesis and

symptoms, suggesting that these conditions may share

common biological mechanisms. However, important

distinctions exist between the disorders. For instance,

large-scale neural circuit dysfunctions differ between

depression and anxiety (37, 38). Furthermore,

differences in theta oscillations (39) and emotional

states (40) have been identified in patients with

depression and anxiety.

Given the critical role of the hippocampus in the

pathogenesis of mental illnesses (41), identifying

disease-specific molecular changes in the hippocampus

and understanding the aspects of hippocampal

plasticity disrupted in anxiety or depression are

essential for developing effective treatments.

2. Objectives

In the present study, we aimed to compare the levels

of TFEB and stathmin proteins in animal models of PTSD

and depression.

Post-traumatic stress disorder is a psychological

disorder that occurs in some individuals after

experiencing or witnessing stressful events. The main

symptoms of PTSD include flashbacks, anxiety, negative

thoughts, and nightmares, which are associated with

various physiological effects (42, 43). The PTSD and

depression-like disorders were induced using well-

established and widely used rat models, including the

single-prolonged stress (SPS) model for PTSD and the

maternal separation (MS) model for depression (44-49).

3. Methods

3.1. Animals

All experiments were conducted in accordance with

the Guide for the Care and Use of Laboratory Animals

(National Institutes of Health Publication No. 80–23,

revised 1996) and were approved by the Research

Committee of Tehran Medical Sciences, Islamic Azad

University. Adult male and female Wistar rats were

obtained from the Pasteur Institute, Tehran, Iran, and

mated in a controlled laboratory environment. The

room conditions included a 12-hour light/dark cycle, a

temperature of 22 ± 1°C, and free access to water and

food. All experiments were carried out between 10:00

a.m. and 2:00 p.m., and each experimental group

comprised 6 to 8 animals.

3.2. Experimental Design

The male rat pups were randomly assigned to one of

three experimental groups (n = 8). The first group was

the depressed group, exposed to maternal separation

stress and other related stresses to create a depressed

animal model. The second group was the PTSD group,

exposed to single-prolonged stress. The remaining

group served as the control group.

3.3. Depression Animal Model
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To induce depression, the maternal separation

procedure was performed on male rat pups. For this

purpose, on the 10th day after birth, male pups were

subjected to daily separations (30 or 60 minutes) from

their mother. The animals were also exposed to hitting,

shaking, tilting the cage, and placing them in a

moistened cage. This stress procedure was continued for

three weeks (50, 51).

3.4. Post-traumatic Stress Disorder Animal Model

The procedure for inducing PTSD was SPS. The

protocol involved multiple consecutive stressors,

including a 2-hour restraint stress followed immediately

by a 15-minute forced swim stress in an acrylic cylinder

(20 cm in diameter, filled two-thirds with water at a

temperature of 24°C). Afterward, the animals were

allowed to recuperate for 15 minutes before being

exposed to isoflurane inhalation until loss of

consciousness (52).

3.5. Behavioral Tests

Behavioral experiments included the elevated plus

maze (EPM) and forced swimming test (FST), conducted

with control, PTSD, or depressed rats as follows:

- Experiment 1 evaluated anxiety-like behaviors using

the EPM test in PTSD or depressed animals.

- Experiment 2 evaluated depressive-like behaviors

using the FST task in PTSD or depressed animals.

3.6. Elevated Plus Maze

The EPM test is a widely used method to measure

anxiety-related behavior. The EPM apparatus,

constructed from plexiglass, consists of two opposite

open arms and two opposite closed arms (50 × 10 cm)

arranged in a plus shape and elevated 50 cm above the

floor. The animal is placed in the center of the platform,

facing one of the open arms, and allowed to move freely

for a 5-minute period. Animal behavior is monitored

using EthoVision software (version 7.1). The percentage

of open arm entries [OAE, calculated as (entries into

open arms/total entries) × 100] and the percentage of

open arm time [OAT, calculated as (time spent in open

arms/total time spent in any arms) × 100] are used to

estimate anxiety-like behavior. Total arm entries are

recorded as an index of locomotor activity (53).

3.7. Forced Swimming Test

The FST was conducted following the method

previously described (54, 55). The test consists of two

sessions: A 15-minute pretest habituation forced swim

session followed by a 5-minute test session conducted

24 hours later. Each rat was individually placed in a

water-filled glass cylinder (height 45 cm, diameter 19

cm) containing 28 cm of water maintained at 23 - 24°C.

During the test session, the duration of immobility and

swimming time was recorded.

3.8. Brain Tissue Collection

At the end of the experimental sessions, the rats were

deeply anesthetized with a ketamine (120 mg/kg) and

xylazine (40 mg/kg) mixture. Subsequently, the animals

were euthanized using carbon dioxide. To evaluate TFEB

and stathmin protein expression, the hippocampi (n =

5) were dissected, immediately frozen in liquid

nitrogen, and then stored at -80°C.

3.9. Western Blotting

The extracted hippocampal tissues were

homogenized in a lysis buffer and then centrifuged.

Protein samples were separated by electrophoresis on a

12% SDS polyacrylamide gel and transferred onto a PVDF

membrane. The membranes were fixed and blocked

using TBST for 60 minutes at room temperature. They

were then incubated overnight at 4°C with primary

antibodies (Cell Signaling Co., USA). After three washes

with TBST, the membranes were incubated with

secondary antibodies (Cell Signaling Co., USA) for 60

minutes at room temperature. Following another three

washes with TBST, the membranes were treated with ECL

Plus reagent for 1 - 30 minutes. ß-actin was used as an

internal control for protein loading, ensuring that all

measurements were standardized against ß-actin

values.

3.10. Statistical Analysis

The results were analyzed using Prism software (v).

One-way ANOVA and post hoc Tukey tests were

conducted to evaluate statistical differences between

groups in behavioral tasks. Additionally, statistical

differences between groups in protein levels were
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Figure 1. Anxiety-like behaviours in the post-traumatic stress disorder (PTSD) or depressed animals using elevated plus maze (EPM) test. A, percentage of time spent in open
arms (%OAT); B, percentage of entries into the open arms (%OAE); and C, locomotor activity were measured during 5 min. Data are expressed as the means ± SEM. * P < 0.05, ** P <
0.01, *** P < 0.001 vs. control group; ## P < 0.001 and # P < 0.05 vs. PTSD group.

assessed using an independent t-test. Results are

expressed as mean ± standard error of the mean (SEM.).

4. Results

4.1. Post-traumatic Stress Disorder Rats Displayed
Significantly Higher Anxiety Parameters in Elevated Plus
Maze Compared to the Depressed Group Rats

Figure 1 illustrates anxiety-like behaviors in PTSD or

depressed animals using the EPM test. Our results

revealed that PTSD rats exhibited anxiety-like behaviors

in the EPM test compared to control animals.

Specifically, the %OAT and %OAE (P < 0.001) decreased in

PTSD rats, indicating a PTSD-induced anxiogenic effect

(Figure 1A and B). In the depression paradigm, there was

a decrease in the percentage of time spent in the open

arms (%OAT) (P < 0.05), while the %OAE was not

significantly affected compared to the control group (P

> 0.05). It is important to note that PTSD or depression-

induced behavioral changes occurred without any

alterations in locomotor activity (Figure 1C).

4.2. Exposure to the Forced Swimming Test Resulted an
Increase in Depressive Behaviours in Post-traumatic Stress
Disorder and Depressed Rats

The FST findings demonstrated that in PTSD rats,

swimming time was significantly reduced (Figure 2A P <

0.001, effect size: 41.67%), while immobility time was

significantly increased (Figure 2B P < 0.001, effect size: 3)

compared to the control group. Depression induced a

similar effect on immobility time (Figure 2A P < 0.001,

effect size: 4.4) and swimming time (Figure 2B P < 0.001,

effect size: 68.75%) in the FST compared to the control

group (Figure 2). Furthermore, there were significant

differences between the PTSD and depressed rats in the

FST paradigm (P < 0.001).

4.3. The Level of Transcription Factor EB and Stathmin
Proteins Was Changed in the Hippocampus of Post-
traumatic Stress Disorder and Depressed Rats

Figure 3A shows that the hippocampal level of TFEB

was significantly increased in PTSD (P < 0.001, effect size:

1.87) and depression models in rats (P < 0.001, effect size:

2.5) compared to the control group (Figure 3B).

Additionally, the level of stathmin protein was

significantly decreased in PTSD (P < 0.001, effect size:

20%) and depression models in rats (P < 0.001, effect

size: 60%) compared to the control group (Figure 3C). A

comparison of stathmin protein levels between PTSD

and depressed rats also revealed a statistically

significant reduction in stathmin levels in the PTSD

group relative to the depressed group (P < 0.001). These

results indicate that PTSD and depressive disorders are

associated with increased TFEB levels and decreased

stathmin protein levels in the hippocampus.

5. Discussion

To date, various animal models have been developed

to understand the molecular mechanisms involved in

the pathogenesis of depression and PTSD (27, 48). Daily

repeated MS is one of the most commonly used

experimental procedures in depression studies (45, 47).

Both human and animal studies have shown that MS

increases the tendency toward depression- and anxiety-

like behaviors in adulthood (7, 56-60). Consistent with

these findings, our study demonstrated that postnatal

maternal separation induced anxiety- and depressive-

https://brieflands.com/articles/jjcmb-155637
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Figure 2. Depressive –like behavior of post-traumatic stress disorder (PTSD) or depressed animals using forced swimming test (FST) test. A, immobility time; and B, swimming
time were measured during 5 min. Data are expressed as the means ± SEM. *** P < 0.001 compared with control group. ### P < 0.001 vs. PTSD group.

like behaviors in adult animals. Specifically, we found

that rats subjected to maternal separation stress spent

less time in the open arms of the EPM task compared to

the control group, without any changes in locomotor

activity, reflecting anxiety-like behavior. Additionally, in

the FST, maternal separation increased immobility time

while reducing swimming time compared to the

control group, correlating with depressive-like

behaviors.

In PTSD animals, we observed elevated levels of

anxiety and depression in both EPM and FST tasks

compared to the control group, aligning with previous

studies (44, 46, 48, 49). The behavioral results from our

study support the co-occurrence of anxiety and

depression under stress conditions (61). Notably, PTSD

rats exhibited greater anxiety behavior on the EPM

compared to the depressed group, while both groups

displayed similar behaviors in the FST.

It is well-established that under anxious or

depressive conditions, autophagic mechanisms are

impaired in the hippocampus (8, 62, 63). This

impairment may stem from the parallel roles of the

hippocampus and autophagy in the stress response.

Autophagy serves as a major stress response in the

central nervous system (64), and the hippocampus is

central to processing stress responses (as reviewed in

the introduction). Interestingly, pharmacotherapies

that reduce depression-like symptoms often affect the

autophagy-lysosomal pathway (65).

TFEB is a transcriptional regulator of autophagy, and

upon activation, it enhances autophagosome formation,

lysosome function, and autophagic flux (66). Recently,

TFEB overexpression has been proposed as a therapeutic

intervention for neurodegenerative diseases (15, 67, 68).

Our previous study revealed that TFEB signaling in the

amygdala and medial prefrontal cortex (PFC) plays a

pivotal role in processing anxiety and depression (69).

However, to our knowledge, changes in hippocampal

TFEB protein levels in PTSD or depression have not been

studied.

Our results showed that PTSD or depressed rats

exhibited an increase in the hippocampal level of TFEB.

These findings align with the study by Wan et al., which

reported an increase in hippocampal autophagosomes

in SPS-exposed rats (70). However, they contrast with our

previous study that observed decreased TFEB mRNA

levels in the amygdala or PFC regions (69). Previous

studies have also demonstrated a decrease in

hippocampal mammalian target of rapamycin (mTOR),

an inhibitor of TFEB, in maternally separated mice and

in major depressive disorder (71). When mTOR is

inhibited, TFEB is activated and translocates to the

nucleus, triggering the expression of its target genes

(68). Interestingly, TFEB can increase its own expression

by binding to its promoter (26).

In contrast, Zhang et al. reported an increase in

mTOR levels in the hippocampus of stressed mice in the

chronic restraint stress model of depression (72).

Furthermore, Liu et al. showed region-dependent

changes in autophagic marker expression in MS-treated

animals (7). These findings suggest that the TFEB

response during anxiety or depression is complex. Given
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A, hippocampal level of transcription factor EB (TFEB) and stathmin in post-traumatic
stress disorder (PTSD) and depressed rats. B and C, bars represent fold differences of
mean normalized expression value ± SEM. * P < 0.05 vs. control group, *** P < 0.001

compared with control group. ### P < 0.001 compared with PTSD group.

Figure 3. A, hippocampal level of transcription factor EB (TFEB) and stathmin in post-traumatic stress disorder (PTSD) and depressed rats. B and C, bars represent fold differences
of mean normalized expression value ± SEM. * P < 0.05 vs. control group, *** P < 0.001 compared with control group. ### P < 0.001 compared with PTSD group.

that TFEB expression correlates with autophagy

enhancement, we propose that the upregulation of

autophagy following TFEB expression in this study

contributed to the observed anxiety and depression

behaviors.

There is considerable evidence demonstrating that

alterations in synaptic plasticity mediated by the

cytoskeletal microtubular system play a crucial role in

the pathogenesis of PTSD and depression (35, 73, 74).

Stathmin, a negative regulator of microtubule stability,

is present in dendritic spines (75, 76) and modulates

synaptic plasticity by regulating the dendritic

localization of the GluA2 subunit of AMPA-type

glutamate receptors (AMPARs) (31). Moreover, mice

lacking stathmin display impaired long-term

potentiation (LTP) in their cortico-amygdala and

thalamo-amygdala pathways and exhibit deficits in

learned conditioning (76). Several studies support the

role of stathmin in anxiety, social behavior, depression,

and fear (34, 77, 78).

In the present study, our data revealed a reduction in

hippocampal stathmin protein levels in both PTSD and

depressed rats compared to the control group. This

finding is consistent with the study by Han et al., which

showed that SPS or immobilization stress-induced a

reduction in stathmin expression in the hippocampal

area (79).

We also compared hippocampal TFEB and stathmin

protein expression levels between PTSD and depressed

rats. The results revealed differences in their expression

levels. The reduction of stathmin in the PTSD group was

greater than in the depressed animals, while the

enhancement of TFEB expression in depressed rats was

significantly higher than in PTSD rats.

5.1. Conclusions

In summary, the findings of this study suggest that

autophagy is upregulated in both anxiety and

depression. However, based on the differing levels of

TFEB in PTSD and depressed rats, we conclude that

depression is more closely linked with autophagy

dysfunction. Conversely, considering the expression of

stathmin, anxiety appears to be more associated with

microtubule alterations. Despite the overlapping

features between anxiety and depression, these results

indicate that there are anxiety-specific and depression-

specific neuroplasticity changes that should be taken

into account for future treatment strategies.
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