

Crocin and Multiple Sclerosis: Exploring the Therapeutic Potential of Saffron's Bioactive Compound; A Literature Review

Rouholah Fatemi^{1,*}, Maryam Khombi Shooshtari², Atefeh Sadeghi³

¹Department of Sport Sciences, Dehdasht Branch, Islamic Azad University, Dehdasht, Iran

²Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran

³Department of Sport Physiology, Faculty of Physical Education & Sport Sciences, Allameh Tabatabaei University, Tehran, Iran

*Corresponding Author: Ph.D in Medical Physiology, Department of Sport Sciences, Dehdasht Branch, Islamic Azad University, Dehdasht, Iran. Email: ro.fatemi@iau.ac.ir

Received: 9 August, 2025; Revised: 23 September, 2025; Accepted: 12 October, 2025

Abstract

Context: Multiple sclerosis (MS) is a multifaceted neurological condition characterized by the demyelination and inflammation of the central nervous system (CNS), predominantly caused by autoimmune reactions targeting myelin antigens. The animal model known as experimental autoimmune encephalomyelitis (EAE) has played a crucial role in elucidating the fundamental mechanisms associated with MS.

Evidence Acquisition: Research using EAE has revealed that inflammatory processes, oxidative stress, axonal degeneration, apoptosis, and subsequent demyelination play significant roles in the disease's pathology. The management of MS symptoms involves a combination of pharmacological and non-pharmacological strategies. Among the various therapeutic agents being explored, crocin, a water-soluble carotenoid known for its pharmacological properties, has garnered considerable attention.

Results: Crocin has been extensively investigated for its anti-apoptotic, anti-inflammatory, and antioxidant effects, particularly in the context of neurodegenerative diseases. Recent studies have highlighted the potential therapeutic benefits of crocin for MS patients.

Conclusions: In this review, we summarize the positive effects of crocin on various deficits observed in MS and EAE, providing insights into its role as a promising adjunct therapy in the management of these neurological disorders.

Keywords: Crocin, Multiple Sclerosis, Demyelination, Inflammation

1. Context

Multiple sclerosis (MS), recognized as one of the most prevalent multifactorial disorders affecting the nervous system in young adults, is defined by its chronic inflammatory demyelinating characteristics that arise from a complex and largely unknown pathogenesis. The MS is a chronic autoimmune and inflammatory condition marked by the degeneration of myelin in the white matter of the brain, optic nerve, and spinal cord, which ultimately leads to nerve damage (1). The onset and progression of MS are shaped by various factors, including age, gender, physical activity, obesity, and dietary habits. While the exact cause of MS remains unclear, it appears to result from a complex interaction

of autoimmune mechanisms, genetic susceptibility, and environmental influences (2, 3).

Today, the primary focus of MS treatment strategies revolves around preventing inflammation in the central nervous system (CNS). Interferon beta (IFN-beta) was the first effective drug approved for MS treatment in 1993, followed by the introduction of other therapeutic agents such as glatiramer acetate, alemtuzumab, natalizumab, and fingolimod (2). While these therapies have shown some efficacy, long-term safety and effectiveness remain limited. Recently, herbal therapies have emerged as a promising approach for treating MS (2). Medicinal plants have demonstrated therapeutic potential in various disorders, including diabetes, cancer, and neurodegenerative diseases (4). Increasing

evidence suggests that certain herbal compounds can enhance myelin repair and suppress inflammation (5).

Natural compounds exhibit a variety of biological activities, such as antioxidant, anti-inflammatory, anti-apoptotic, and other advantageous properties, which render them a potentially safe and dependable choice for treating neurodegenerative diseases. One such example is saffron, derived from the flower *Crocus sativus* L., which has been traditionally used in medicine worldwide (6). Saffron is rich in secondary metabolites, including anthocyanins, flavonoids, terpenes, and carotenoids, with crocin and crocetin identified as the primary carotenoids (7). Pharmacological studies have confirmed various properties of crocin, including its antidepressant (8), anti-atherosclerotic (9), anti-platelet aggregation, renoprotective (10), anti-tumor (11), and antioxidant effects (12). Crocin has also demonstrated protective effects against neurodegenerative diseases such as Alzheimer's and Parkinson's (13). Additionally, crocin has been shown to suppress microglial activation and reduce inflammation-induced neurotoxicity in animal models (14).

In preclinical studies using the experimental autoimmune encephalomyelitis (EAE) model in mice, which mimics MS, crocin administration has been shown to significantly reduce clinical severity scores, mitigate neuroinflammation, and decrease demyelination in the CNS (2). This is achieved through mechanisms such as attenuating T-cell proliferation, shifting cytokine profiles toward anti-inflammatory states by suppressing pro-inflammatory cytokines like interleukin (IL)-17 and IFN- γ while promoting IL-10 and TGF- β , and enhancing regulatory T-cell (Treg) responses via modulation of transcription factors (15). Additionally, as part of the carotenoid family, crocin contributes to neuroprotection by deactivating reactive oxygen species (ROS), preserving mitochondrial integrity, preventing lipid peroxidation, suppressing nuclear factor-kappa B (NF- κ B) activation, and activating the Nrf2 pathway, which collectively help maintain blood-brain barrier (BBB) integrity and protect oligodendrocytes essential for remyelination in MS (16). These findings underscore crocin's potential to address the core pathophysiological features of MS, including oxidative stress and immune dysregulation.

Clinical trials further support crocin's therapeutic applications in MS management, particularly in alleviating inflammation and improving associated symptoms like cognitive impairment and mental health

issues. A randomized, double-blinded trial involving MS patients demonstrated that 30 mg/day of crocin supplementation over 8 weeks significantly reduced high-sensitivity C-reactive protein (hs-CRP) levels, indicating a reduction in systemic inflammation, and also decreased anxiety scores, suggesting benefits for psychiatric comorbidities common in MS (15, 17). Another study using crocin-selenium nanoparticles (Cor@SeNs, containing 5.74 mg crocin) for 12 weeks showed improvements in total antioxidant capacity and cognitive functions, including verbal learning, delayed recall, and information processing speed, highlighting its role in combating oxidative stress and neurodegeneration (16, 18). Reviews of antioxidant therapies, including crocin, emphasize its potential to mitigate cognitive decline by addressing oxidative stress, inflammation, and secondary symptoms like depression and fatigue, though results can vary and call for larger, longer-term studies to optimize dosing and confirm efficacy (19, 20). Overall, these recent investigations position crocin as a safe, natural adjunct therapy for MS, warranting further research to translate preclinical promise into clinical practice. Therefore, this review aims to evaluate the potential applications of crocin for the management of MS.

2. Multiple Sclerosis

The MS is a chronic inflammatory disease of the CNS and is more prevalent in women than in men (21, 22). The MS is caused by axonal degeneration, which results in the formation of demyelinating lesions in the white matter of both the brain and spinal cord. The etiology of these lesions is not fully understood, but studies have shown that an inflammatory infiltrate consisting of a small number of autoreactive T-cells and a large number of nonspecific pathogenic mononuclear cells occurs in areas of demyelination, axonal loss, and severe glial scarring (21, 23). Contributing to axonal pathology, in an autoimmune mechanism, T-lymphocytes specific for myelin antigens initiate an inflammatory attack causing degeneration of CNS axons, leading to disseminated demyelinating lesions accompanied by axonal degeneration (22).

Microglia are the resident immune cells found within the CNS. Under typical circumstances, these cells facilitate synaptogenesis by locally producing neurotrophic factors and regulating synaptic transmission and remodeling. When activated, microglial cells express and secrete inflammatory

cytokines, which subsequently result in the generation of nitric oxide (NO) and ROS (24). Microglia, along with macrophages, gather at the locations of active demyelination and neurodegeneration in the brains of individuals with MS, and they are believed to play a crucial role in the progression of the disease (25).

The MS causes various types of damage, such as cognitive impairment, which affects about half of the patients with this disorder (26). Studies have reported that learning, remembering short-term, and spatial memory are affected by demyelination (26-28). According to the findings, serum neurotrophic and neurodevelopment levels, which play a major role in cognitive function, are impaired in patients with MS (29). Neurotrophins play a significant role in promoting cell survival and proliferation within the nervous system, and they are also found in the peripheral blood mononuclear cells (PBMCs) of the immune system (30). Additionally, they enhance synaptic transmission and plasticity, which are essential for memory and regenerative processes. Furthermore, the levels of neurotrophins fluctuate in relation to axonal damage (22).

The MS causes other clinical presentations such as fatigue, weakness, ataxia, numbness, imbalance, pain, visual disturbances (double vision, blurred vision), spastic paralysis, tremor, bladder disorder, impotence, speech impairment, epilepsy, depression, memory loss, and ultimately loss of quality of life (31-33). Other symptoms of MS include inflammation of the nerves and secretion of cytokines and inflammatory and immune cells. Thus, local zones of myelin degradation in MS occur during the inflammatory process due to the penetration of T lymphocytes, hematogenous macrophages, local microglia activity, and the relatively lower presence of B or plasma lymphocytes. This inflammatory reaction is due to increased levels of cytokines in MS lesions (34).

Cytokines serve as messengers between cells and are crucial in the immune system's reaction to trauma, inflammation, infection, and cell signaling. Among them are tumor necrosis factor alpha (TNF- α), interferons (IFNs) such as IFN- γ , and ILs such as IL-1, IL-2, IL-4, IL-6, IL-10, and IL-12 (35, 36). During lesions, levels of inflammatory factors increase significantly. In addition, T-cells are activated in MS and stimulate the secretion of cytokines such as TNF- α , IFN- γ , and ILs (37). T-cells and microglia are also stimulated during this process and are instrumental in the degradation of myelin nerves.

Microglia and macroglia are summoned during the demyelination process to help repair damaged myelin. This process of myelin restoration is very important in stopping inflammation and initiating the process of remyelination in the CNS, especially in the early stages of the disease (38).

3. Crocin

Saffron, derived from the stigmata of the saffron crocus (*C. sativus*) belonging to the Iridaceae family, is naturally distributed in Mediterranean regions, East Asia, and Iran. The most significant constituents of saffron include crocin, crocetin, safranal, and picrocrocin (39). Crocin and crocetin, as active components of saffron, have demonstrated various pharmacological effects, such as cardiovascular protection, inhibition of cancer cell proliferation, and preservation of gastrointestinal, neural, and liver cells. The antioxidant capacity of these compounds is attributed to their anti-inflammatory and analgesic actions (40).

Crocin, a carotenoid pigment found in saffron, exhibits neuroprotective, antidiabetic, antioxidant, and anti-nociceptive activities. Several studies have documented the anti-inflammatory properties of crocin in inflammatory diseases (41). Numerous investigations have highlighted the beneficial role of saffron compounds, particularly crocin, in the improvement of neurological disorders, including pain relief (42), antioxidant activity, anti-inflammation, spasticity reduction, restoration of ethanol-impaired memory, enhancement of memory function, and amelioration of symptoms in EAE by reducing oxidative stress and inhibiting leukocyte infiltration into the brain (43). The administered doses of crocin varied from 50 - 200 mg/kg in these studies (44).

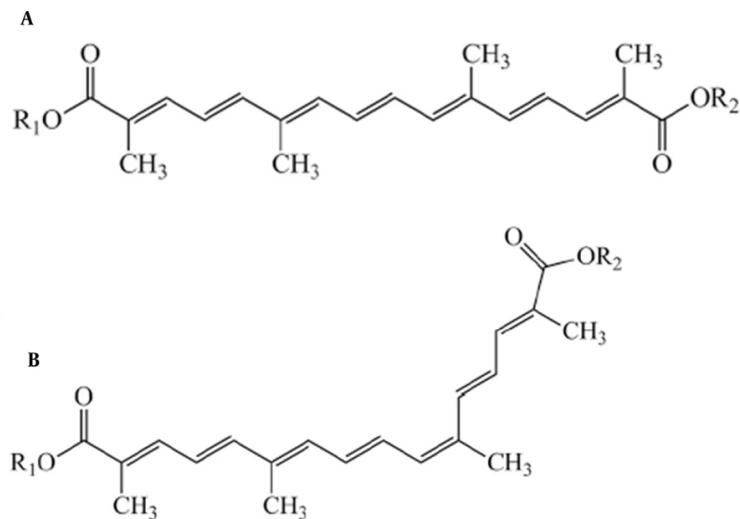
Saffron has also demonstrated lipid-lowering effects, anti-inflammatory properties, antioxidant activity, free radical scavenging abilities, and anti-cancer actions. Its aqueous extract, as well as crocin, have shown utility in preventing oxidative damage resulting from blood ischemia and reperfusion injury in rats (45). Goyal et al. demonstrated that saffron's crocin protects rat hearts against the toxic effects of isoproterenol by modulating oxidative stress (46). Moreover, saffron extract has been shown to protect primary hepatocytes from oxidative damage and mitigate the toxicity of aflatoxin B1, reducing liver lesions (47).

Crocin, a water-soluble carotenoid pigment, is a vibrant red compound found in the red stigmatic lobes of saffron crocus (*C. sativus* L.) flowers (39). Chemically, crocin is classified as a crocetin digentiobiose ester ($C_{20}H_{24}O_4$), forming crystals with a melting point of 186°C and undergoing hydrolysis in emulsion. Crocins encompass various structural analogues, including crocin-I, crocin-II, crocin-III, crocin-IV, and others. Among these compounds, crocin-I constitutes more than 70% of the total crocin content (48). Recent studies have examined the properties of 25 different crocins from Italy and Iran, revealing a variation in the total dry mass concentration of crocin, ranging from 302 to 548 mg/g, depending on the geographical origin (49). Due to the presence of carboxyl groups at both ends of its polyene chain, crocin can function as an anionic dye for biological staining (50). Figure 1 shows two structures of crocin.

The isolated constituents of saffron, including crocin, have garnered increasing interest for their potential impact on human health. This is attributed to their potent antioxidant capacity and robust anti-inflammatory effects, which involve the inhibition of diazinon (DZN), reduction of lipid peroxidation, suppression of inflammatory cytokines, and mitigation of neuronal damage markers. These activities are primarily attributed to the free radical scavenging properties of crocin.

4. Crocin in Neurodegenerative Diseases

Crocin has been found to possess numerous protective effects against neurodegenerative diseases, primarily due to its anti-apoptotic, anti-inflammatory, and antioxidant properties. Research has highlighted crocin's efficacy in addressing conditions such as cerebral ischemia, traumatic brain injury (TBI), spinal cord injury (SCI), and cognitive impairments associated with Alzheimer's disease (AD) and Parkinson's disease (PD).


In the context of cerebral ischemia and ischemic stroke, crocin has demonstrated significant neuroprotective effects. For instance, a study by Oruc et al. indicated that administering crocin at a dosage of 40 mg/kg/day for 10 days resulted in decreased oxidative stress markers, including total antioxidant status (TAS), total oxidant status (TOS), and Oxidative Stress Index (OSI) (51). Additionally, crocin treatment led to reduced levels of hypoxia-inducible factor-1 alpha (HIF-1 α),

TUNEL-positive cells, and caspase-3 activity in models of brain injury induced by four-vessel occlusion (52). Similarly, another study showed that crocin pretreatment (20 mg/kg) improved neurological outcomes following TBI by reducing brain edema, microglial activation, and the release of pro-inflammatory cytokines, as well as decreasing cell apoptosis. Furthermore, crocin has been shown to protect the BBB from damage in aged rats following cerebral ischemia, preserving BBB function and maintaining tight junction integrity (51).

Crocin's beneficial effects extend to spinal cord injuries, where it has been observed to alleviate chronic pain and enhance locomotor function. In one study by Karami et al., treatment with crocin (150 mg/kg) improved behavioral outcomes in rats with spinal cord damage, potentially linked to a decrease in calcitonin gene-related peptide (CGRP), a key mediator of pain and inflammation (53). Cognitive impairments, often associated with neurodegenerative diseases, have also been addressed through crocin administration. Research has indicated that crocin can ameliorate memory deficits induced by chronic cerebral hypoperfusion, as demonstrated by improved performance in behavioral tests (54). Additionally, crocin has shown promise in enhancing cognitive performance in diabetic rats, suggesting its role as an antioxidant and antidiabetic agent. In models of AD, crocin has been effective in protecting against cognitive decline, with studies showing that it can improve cognitive function and reduce oxidative stress markers in models induced by streptozotocin (55).

The neuroprotective effects of crocin in AD are particularly noteworthy. Studies have demonstrated that crocin can mitigate cognitive deficits induced by intracerebroventricular injection of streptozotocin, with treatment leading to improvements in cognitive performance and reductions in malondialdehyde (MDA) levels, alongside increased activity of antioxidant enzymes (56). Moreover, crocin has been shown to counteract acrolein toxicity, a by-product of lipid peroxidation implicated in neurodegenerative disorders, by modulating signaling pathways associated with neuroinflammation and oxidative stress (57).

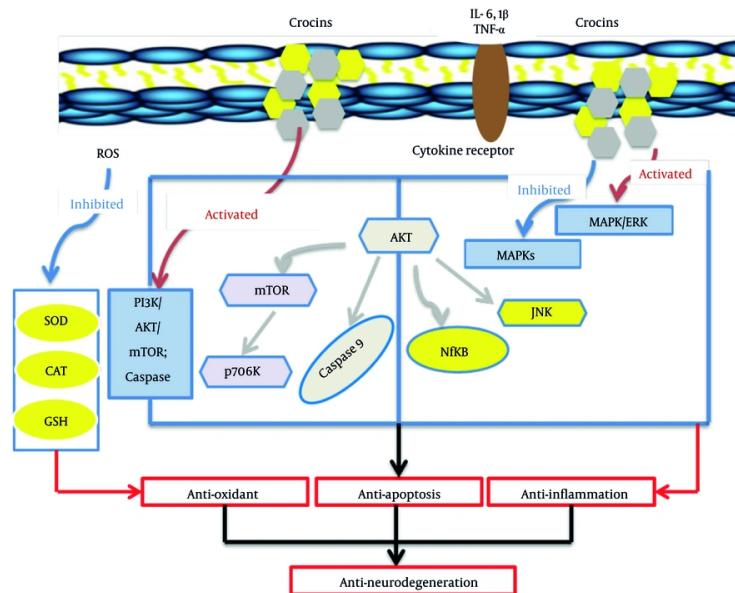
In the realm of PD, crocin has exhibited protective effects against dopaminergic neuron degeneration. Research indicates that crocin can ameliorate cell injury and apoptosis induced by neurotoxic agents, as well as improve locomotor function in *Drosophila* models of

Figure 1. Structures of crocins: A, trans-form of crocins; and B, cis-form of crocins

PD (57). Additionally, crocin has been shown to reduce oxidative stress levels and improve mitochondrial function in models of PD (58).

Overall, crocin's multifaceted neuroprotective effects make it a promising candidate for the treatment of various neurodegenerative diseases. Its ability to reduce oxidative stress, inflammation, and apoptosis, combined with its positive impact on cognitive function, highlights its potential as a therapeutic agent.

5. Crocin in Multiple Sclerosis


Among neurological disorders, MS is acknowledged as a chronic and debilitating condition affecting the CNS. It is characterized by autoimmune disturbances, inflammation, demyelination, axonal and neuronal damage, as well as the disruption of the BBB, which occurs during relapsing-remitting phases. Crocin has shown significant neuroprotective effects in MS through mechanisms that encompass antioxidant, anti-inflammatory, and anti-apoptotic properties. These effects are mediated by its interactions with various transcription factors, enzymes, inflammatory cytokines, proteins, growth factors, and receptors. The various mechanisms that contribute to the therapeutic benefits of crocin in MS are detailed in the subsequent sections.

5.1. Crocin in Oxidative Stress

Numerous studies have explored the antioxidant activity of crocin in combating oxidative stress. In both *in vivo* and *in vitro* investigations, crocin has been shown to exert its antioxidant effects through the modulation of various molecular mechanisms within cells. One prominent mechanism involves the alteration of gene expression levels associated with the redox system, such as GST, GPx, superoxide dismutase (SOD), and catalase (CAT). Additionally, crocin has demonstrated interactions with cellular enzymes, including SOD proteins and peroxidase, contributing to its antioxidant activity (9, 11).

Another mechanism underlying the antioxidant activity of crocin involves the modification of stress marker genes within the endoplasmic reticulum (ER) system. Crocin has been found to modulate the expression of genes such as XBP-1/s, BiP, PERK, and CHOP, which are relevant to ER oxidative stress markers (47). Furthermore, crocin has been implicated in epigenetic alterations and changes in telomerase activity, suggesting its ability to induce molecular-level modifications in cells and elicit antioxidant effects (4). The molecular mechanism of antioxidant and anti-inflammatory activity of crocin is shown in Figure 2.

In a study conducted by Ghaffari et al., saffron extract, containing crocin, was directly injected into the hippocampus of demyelinated rats. The results

Figure 2. Molecular mechanism of antioxidant and anti-inflammatory activity of crocin [activation of phosphoinositide 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) axis; inhibiting mitogen-activated protein kinases (MAPKs) signaling pathway; increasing PI3K/Akt and ERK/MAPK pathways activity; (abbreviations: ROS, reactive oxygen species; SOD, superoxide dismutase; CAT, catalase; GSH, glutathione; TNF, tumor necrosis factor; IL, interleukin; JNK, c-Jun N-terminal kinase; NF-κB, nuclear factor-κB)].

demonstrated that saffron extract, through its antioxidant properties, effectively neutralized ROS and eliminated free radicals. This led to a significant reduction in the activity of GPx and MDA enzymes, as well as an increase in CAT activity (59). Another study by Kamyar et al. revealed that the administration of saffron extract strengthened the antioxidant system of the liver in Wistar rats, preventing significant changes in antioxidant activity and MDA levels in liver tissues. The study also found that crocin, in particular, showed positive effects on Antioxidant Index levels, with the dose of 100 mg/kg displaying the most significant improvements (60, 61).

Moreover, Rezaeimanesh et al. in 2024, in a triple-blind randomized clinical trial, investigated the effects of Corcin on cognitive function and oxidative stress markers in 60 MS patients. Participants received capsules containing 5.74 mg crocin and 55 mcg selenium or placebo for 12 weeks. The results showed significant improvements in total antioxidant capacity and cognitive function, particularly in verbal learning and symbol digit modalities tests, in the Cor@SeNs group compared to the placebo group (18). Interestingly,

the antioxidant activity of crocin was found to be comparable to Tekfidera, a standard drug used in the treatment of MS, with an efficacy ranging from 35% to 45%.

Furthermore, the antioxidant properties of crocin have been reported in other neurodegenerative diseases. Vakili et al. demonstrated that saffron extract increased the concentration of GPx, SOD, and MDA enzymes in ischemic brain tissue (62). Sheng et al. observed the positive effects of crocin (100 mg/kg) in reducing lipid peroxidation in the brains of rats. However, a similar study using the intraventricular injection of picrocrocin did not yield the same effects (63).

Moreover, crocin has demonstrated a protective effect in EAE by down-regulating the expression of oxidative stress in the spinal cord. The EAE-induced upregulation of ER stress genes, including XBP-1/s, was found to be mitigated by crocin administration on day 7 post-EAE induction. This led to a reduction in ER stress and inflammatory gene expression in the spinal cord, as well as decreased expression of ER stress genes XBP-1/s.

Crocin was found to regulate the ER, thereby preventing neuronal demyelination (64).

Furthermore, Fathi-Moghadam et al. reported that administration of crocin (at a dosage of 100 mg/kg) for 21 days following ethidium bromide (EB)-induced demyelination led to a significant decrease in brain levels of GPx, MDA, and SOD in EAE rats (61). Based on the aforementioned findings, it can be concluded that crocin, as a potent antioxidant, holds promise for the management and treatment of patients with MS. It achieves this by reducing lipid peroxidation activity and enhancing the antioxidant activity of enzymes involved in oxidative mechanisms.

5.2. Crocin in Neuroinflammation

Although the exact mechanisms behind MS are still not fully understood, chronic inflammation and oxidative stress are key factors in its pathogenesis. The inflammatory response in MS is primarily driven by the activation of microglia/macrophages and T-cells, which contributes to demyelination and neurodegeneration (65). Furthermore, the inflammatory environment generates free radicals, which amplify the inflammatory reaction, thereby exacerbating disease progression (66).

Crocin possesses the capability to modulate the expression of genes that encode inflammatory cytokines (such as IL-1, IL-2, IL-6, and TNF- α) (64), adhesion molecules (including ICAM, VCAM, E-selectin), inducible enzymes (like COX-2 and iNOS) (2), chemokines, and acute phase proteins (67). These components are essential in the regulation of inflammatory processes within the immune system (Figure 2). Research has shown that crocin not only reduces the production of ROS and inhibits the release of pro-inflammatory cytokines but also alleviates inflammation in various organs, including the lung, heart, kidney, and brain. This is primarily achieved through the modulation of the NF- κ B pathway and the translocation of NF- κ Bp65 into the cell nucleus (68). In this regard, the regulation of the phosphoinositide 3-kinase (PI3K)/Akt pathway seems to be a significant target for crocin, aiding in the suppression of the NF- κ B pathway (69).

Although clinical data regarding the anti-inflammatory and anti-nociceptive effects of crocin in humans is limited to a single relevant study, the findings from preclinical studies are promising and warrant further investigation in clinical settings (48, 67).

In neurodegenerative diseases, including epilepsy and PD, crocin demonstrated its ability to reduce the expression of inflammatory cytokines such as IL-1 β , IL-18, NLRP1, and AIM2 (70, 71). These findings suggest that crocin's anti-inflammatory effects are mediated through the downregulation of pro-inflammatory factors and the inhibition of inflammasome activation, making it a promising therapeutic agent for managing inflammatory conditions associated with MS.

The effects of crocin on reducing inflammation and oxidative stress in patients with MS were evaluated in a double-blind, randomized placebo-controlled trial by Ghiasian et al. in 2019. Forty patients were assigned to receive either two crocin capsules (30 mg/day) or a placebo per day for 28 days. The results showed that crocin treatment significantly decreased levels of TNF- α and IL-17 in the serum compared to the placebo group (72).

A recent study by Kouchaki et al. in 2024 investigated the effects of crocin on MS patients, focusing on its anti-inflammatory, antioxidant, and mental health benefits. Patients with MS were randomized into two groups: One receiving 30 mg/day of crocin and the other a placebo for 8 weeks. Results showed that crocin significantly reduced hs-CRP levels and anxiety but did not affect MDA and NO levels. The findings suggest that crocin has potential in attenuating inflammation and improving mental health in MS patients, although longer treatment durations and larger sample sizes are needed to confirm its efficacy and safety (17).

In EAE models, crocin has shown a protective role by decreasing the expression of inflammatory genes within the spinal cord. It also inhibits T-cell infiltration and macrophage activation. Furthermore, treatment with crocin has been associated with lower levels of TNF- α in the spinal cord, highlighting its potential protective effects against SCI (64).

Furthermore, Banaeeeyeh et al. in 2024 evaluated the protective effects of trans sodium crocetinate (TSC), a synthetic carotenoid, against EAE in mice (73). The results showed that TSC treatment (50 and 100 mg/kg) reduced oxidative stress markers, microgliosis, demyelination, and inflammatory factors (IL-1 β and TNF- α) in spinal cord tissues. Additionally, TSC modulated the mitophagy pathway by decreasing PINK1 and Parkin protein levels. These results indicate that TSC protects against EAE-induced MS through its anti-inflammatory, antioxidant, and anti-mitophagy effects.

Crocin, a bioactive carotenoid derived from saffron, exerts its therapeutic effects on MS primarily through immunomodulatory, anti-inflammatory, and antioxidant mechanisms. In EAE models mimicking MS, crocin reduces clinical severity by attenuating T-cell proliferation and shifting cytokine profiles toward anti-inflammatory states, suppressing pro-inflammatory cytokines such as IL-17 and IFN- γ while enhancing IL-10 and TGF- β production. It also modulates transcription factors to favor Treg differentiation, thereby mitigating neuroinflammation and demyelination in the CNS.

As part of the broader carotenoid family, crocin deactivates ROS, preserves mitochondrial function, prevents lipid peroxidation, suppresses NF- κ B activation, and activates the Nrf2 pathway to combat oxidative stress, which is a key driver of MS pathology. These actions collectively help maintain BBB integrity and protect oligodendrocytes, promoting remyelination and reducing neurodegeneration (15, 16).

The utility of crocin in MS management stems from its ability to address the multifaceted pathophysiology of the disease, including immune dysregulation, chronic inflammation, and oxidative damage, offering a safer, natural alternative or adjunct to conventional therapies. By promoting immune balance — shifting from pro-inflammatory Th1/Th17 responses to Treg dominance — crocin can potentially halt disease progression and alleviate symptoms like neurological dysfunction and cognitive impairment (18, 74). Its antioxidant properties further enhance neuroprotective effects, reducing CNS damage and improving overall quality of life for MS patients, as evidenced in preclinical models where it significantly lowered inflammation and demyelination scores (19).

With a favorable safety profile and potential for oral supplementation, crocin holds promise for clinical translation, though further human trials are needed to optimize dosing and confirm long-term efficacy in managing MS relapses and progression.

5.3. Crocin in Autoimmunity

The well-established anti-inflammatory properties of crocin have been demonstrated to have therapeutic effects in various health disorders, including autoimmune diseases (4), COVID-19 (75), osteoarthritis (76), bone and cartilage diseases (77), atherosclerosis (78), rheumatoid arthritis (79), and MS (72). Crocin is known for its ability to reduce inflammation and oxidative stress, acting as an antioxidant with potential

neuroprotective effects, particularly in MS (4). It regulates the pathogenic stress of the ER, protects oligodendrocytes, and consequently reduces inflammatory demyelination.

Further investigation into the ER response to MS reveals that the unfolded protein response (UPR) occurs when the ER is under stress from unfolded or misfolded proteins, resulting in the upregulation of several response components in various cell types, including oligodendrocytes, T-cells, microglia/macrophages, and astrocytes. Crocin modulates the reactivity of BV2 microglia by promoting filopodia formation, enhancing microglial phagocytosis, and inhibiting NO production (80). This effect on microglial homeostasis is likely attributed to the antioxidant properties of crocin, as supported by research on crocin and its derivative crocetin in mesenchymal stem cells (81).

Here is the revised text with grammatical corrections:

Moreover, in a double-blind trial, crocin has been shown to reduce DNA damage, inflammation, and oxidative stress in MS patients. Recent experiments on demyelinated Wistar rats indicate that crocin attenuates pro-inflammatory cytokines and lipid peroxidation in brain tissue (60). The modulation of beta-adrenergic receptors' activity is another potential mechanism associated with crocin-mediated changes in inflammatory mediator levels. Crocin may decrease the number of beta-adrenergic receptors through negative self-regulation, thereby reducing the secretion of inflammatory cytokines by adipocytes (82).

Collectively, these findings highlight the significant anti-inflammatory properties of crocin and its potential as a beneficial therapeutic compound for MS. Studies have also reported a positive effect of crocin on cellular and humoral immune responses, including increased neutrophil cementation, stimulation of neutropenic severity, and reduced demyelination in rats.

In a study by Mohajeri and Doustar, crocin was shown to significantly decrease total bilirubin levels and increase total serum albumin and protein levels in rats receiving cisplatin. Additionally, saffron extract and silymarin decreased lipid peroxidation and increased antioxidant levels in a dose-dependent manner (83).

5.4. Crocin in Neurotrophic Factors

The MS is associated with various forms of damage, including cognitive impairment that affects

approximately half of all patients. Demyelination in MS has been shown to impact learning, short-term memory, and spatial memory (27). Neurotrophins, such as brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF), are polypeptides belonging to the neurotrophic factor family and play a protective role towards specific neuronal populations in the adult CNS (21). Studies have indicated that serum levels of neurotrophic factors, which play a crucial role in cognitive function, are impaired in individuals with MS (29).

In a recent study by Fatemi et al. in 2024, researchers investigated the effects of crocin on brain neurotrophins, cognition, and sensory and motor dysfunction in female Wistar rats with toxic-induced demyelination using EB. The results showed that crocin improved cognitive variables, sensory and motor nerve conduction velocity, tail flick latency, and clinical scores. Moreover, crocin administration led to greater improvements in BDNF and NGF1 (84).

The effects of crocin on brain neurotrophins have been proven by the same researchers in another study of the EAE rat model (85). In this study, crocin and fingolimod were administered for 21 days, and the results indicated that sensory and motor nerve conduction velocity and the expression of neurotrophic factors were increased following co-administration of crocin with fingolimod.

Chronic administration of crocin at doses of 25 and 50 mg/kg has been reported to increase the expression of BDNF, VGF, CREB, and p-CREB in the rat hippocampus, similar to serotonergic agents (86). The regulation of synaptic plasticity in the hippocampus is associated with the VGF neuropeptide, and its mechanism closely resembles that of BDNF through a tyrosine receptor kinase B (TrkB)-dependent pathway. The expression of these proteins in the rat hippocampus has been identified as an antidepressant mediator, suggesting that crocin has an antidepressant-like action by increasing these neurotrophins.

In addition, the protein levels of BDNF, CREB, and p-CREB in the rat hippocampus were investigated in another study to evaluate the molecular mechanism of the aqueous extract of saffron as an antidepressant factor. The results showed that the application of the aqueous extract of saffron increased the protein levels of BDNF, CREB, and p-CREB, while the expression of the protein level VGF was also increased, but not significantly (87).

Existing studies reporting the positive effects of crocin in neurodegenerative diseases further support our results. Farkhondeh et al. demonstrated that crocin enhances BDNF secretion in the hippocampus by influencing the electrical ignition of epilepsy (13). However, Razavi et al. in 2017 reported no significant changes in BDNF, VGF, and CREB levels following long-term administration of crocin in the rat cerebellum. They concluded that the antidepressant activity of crocin might be partially associated with CREB, rather than BDNF (88). The function of crocin on molecular factors in EAE and MS models is summarized in Table 1.

6. Conclusions

Crocin has demonstrated numerous beneficial effects on autoimmune diseases. Its primary positive effect on MS and EAE outcomes is attributed to its anti-inflammatory, antioxidant, and anti-apoptotic properties as a natural-based agent. The results of this comprehensive review indicate that crocin leads to significant improvements in the immune system, oxidative stress levels, and neurotrophin expression in individuals with MS or EAE. These improvements have the potential to positively impact cognition, behavior, and ultimately enhance the overall mood and quality of life in this population. However, further studies are necessary to elucidate the precise and detailed mechanisms through which crocin alleviates the impairments associated with MS.

The results and data from studies on crocin's therapeutic potential in MS provide valuable insights for medical applications by demonstrating its ability to modulate key pathological processes, offering a foundation for developing safer, natural interventions. For instance, preclinical data from EAE models show that crocin reduces neuroinflammation and immune dysregulation, which could translate to clinical benefits in slowing MS progression and preserving neurological function.

Clinical trials further reveal that crocin supplementation lowers inflammatory biomarkers like hs-CRP and improves mental health outcomes, such as reduced anxiety, in MS patients, suggesting its utility in managing systemic inflammation and psychiatric comorbidities that exacerbate the disease. As part of carotenoid-based therapies, these findings highlight crocin's antioxidant mechanisms, including the deactivation of ROS and suppression of NF-κB pathways, which protect against oxidative stress-induced

Table 1. The Function of Crocin on Molecular Factors in Experimental Autoimmune Encephalomyelitis and Multiple Sclerosis Models

Models	Administration Routes	Markers	Results	Ref.
EAE	30 mg/kg	MDA, GPx, SOD, and TAC	Crocin reduced MDA level and elevated the levels of GPx, GR, SOD, and TAC.	(89)
	10 ng/mL	NSC differentiation	Crocin enhanced NSC differentiation into oligodendrocytes.	(90)
	5, 10, and 20 mg/kg; 21 d	MDA, GPx, and SOD	Crocin significantly decreased MDA levels, and increased GPx and SOD levels.	(61)
	5, 10, and 20 mg/kg; 21 d	BDNF, IL-10, and learning and memory	Crocin improved the level of brain neurotrophins, exploratory behavior.	(85)
	5, 10, and 20 mg/kg; 21 d	TNF- α , IL-1, and IL-6	Crocin reduced the level of brain TNF- α , IL-1, and IL-6.	(60)
	10 μ g/mL	ER stress and inflammatory gene expression	Crocin protected oligodendrocytes exposed to cytotoxins. Crocin also suppressed ER stress and inflammatory gene expression in spinal cords.	(74)
MS	30 mg/d; 4 wk	Inflammation, oxidative damage, and DNA damage	Crocin significantly decreased lipid peroxidation, DNA damage, TNF- α , and interleukin 17.	(72)
	100 mg/kg; 5 wk	MDA, GPx, SOD, and TAS	Crocin significantly decreased MDA levels, and increased GPx, SOD, and TAC levels.	(91)
	100 mg/kg; 21 d	MDA, GPx, and SOD	Crocin decreased the levels of GPx and SOD significantly as well as MDA level.	(92)

Abbreviations: EAE, experimental autoimmune encephalomyelitis; MDA, malondialdehyde; SOD, superoxide dismutase; BDNF, brain-derived neurotrophic factor; IL, interleukin; TNF- α , tumor necrosis factor alpha; ER, endoplasmic reticulum; MS, multiple sclerosis; TAS, total antioxidant status.

neurodegeneration, potentially aiding in the preservation of cognitive functions and overall quality of life.

In terms of treatment strategies, the data support crocin's integration as an adjunct therapy in MS management, enhancing conventional treatments by addressing unmet needs like cognitive impairment and chronic inflammation with minimal side effects. Reviews of antioxidant supplementation, including crocin, indicate improvements in cognitive domains such as verbal learning and information processing speed, positioning it as a promising option for mitigating MS-related cognitive decline.

Saffron-derived compounds like crocin also exhibit anti-apoptotic and anti-inflammatory effects in neurodegenerative contexts, which could inform personalized medicine approaches for MS subtypes, potentially reducing relapse rates and supporting remyelination efforts. Overall, these evidence-based results advocate for larger clinical trials to optimize dosing and combinations, ultimately advancing MS treatment paradigms toward more holistic, evidence-driven therapies.

Footnotes

Authors' Contribution: All authors contributed equally to this article.

Conflict of Interests Statement: The authors declare no conflict of interest.

Data Availability: The author confirms that the data supporting the findings of this study are available within the article.

Funding/Support: This research received no funding/support.

References

1. Mey GM, Mahajan KR, DeSilva TM. Neurodegeneration in multiple sclerosis. *WIREs Mech Dis.* 2023;15(1). e1583. [PubMed ID: 35948371]. [PubMed Central ID: PMC9839517]. <https://doi.org/10.1002/wsbm.1583>.
2. Mojaverrostami S, Bojnordi MN, Ghasemi-Kasman M, Ebrahimzadeh MA, Hamidabadi HG. A Review of Herbal Therapy in Multiple Sclerosis. *Adv Pharm Bull.* 2018;8(4):575-90. [PubMed ID: 30607330]. [PubMed Central ID: PMC6311642]. <https://doi.org/10.1517/apb.2018.066>.
3. Ami Ahmadi S, Kazemi A, Sabahi M, Razipour S, Salehipour A, Ghiasian M, et al. Probable antioxidant therapy of Saffron Crocin in patients with multiple sclerosis: A randomized controlled trial. *Biomedicine.* 2021;40(4):516-21. <https://doi.org/10.51248/v40i4.332>.
4. Korani S, Korani M, Sathyapalan T, Sahebkar A. Therapeutic effects of Crocin in autoimmune diseases: A review. *Biofactors.* 2019;45(6):835-43. [PubMed ID: 31430413]. <https://doi.org/10.1002/biof.1557>.
5. Costantini E, Masciarelli E, Casorri I, Di Luigi M, Reale M. Medicinal herbs and multiple sclerosis: Overview on the hard balance between new therapeutic strategy and occupational health risk. *Front Cell Neurosci.* 2022;16:985943. [PubMed ID: 36439198]. [PubMed Central ID: PMC9688751]. <https://doi.org/10.3389/fncel.2022.985943>.
6. Hosseinzadeh H, Nassiri-Asl M. Avicenna's (Ibn Sina) the Canon of Medicine and saffron (*Crocus sativus*): a review. *Phytother Res.* 2013;27(4):475-83. [PubMed ID: 22815242]. <https://doi.org/10.1002/ptr.4784>.
7. Rahaman A, Kumari A, Farooq MA, Zeng X, Hassan S, Khalifa I, et al. Novel Extraction Techniques: An Effective Way to Retrieve the Bioactive Compounds from Saffron (*Crocus Sativus*). *Food Reviews*

International. 2021;39(5):2655-83. <https://doi.org/10.1080/87559129.2021.1967377>.

8. Jam IN, Sahebkar AH, Eslami S, Mokhber N, Nosrati M, Khademi M, et al. The effects of crocin on the symptoms of depression in subjects with metabolic syndrome. *Adv Clin Exp Med.* 2017;26(6):925-30. [PubMed ID: 29068592]. <https://doi.org/10.17219/acem/62891>.
9. Nam KN, Park YM, Jung HJ, Lee JY, Min BD, Park SU, et al. Anti-inflammatory effects of crocin and crocetin in rat brain microglial cells. *Eur J Pharmacol.* 2010;648(1-3):110-6. [PubMed ID: 20854811]. <https://doi.org/10.1016/j.ejphar.2010.09.003>.
10. Yaribegi H, Mohammadi MT, Rezaee R, Sahebkar A. Crocin improves renal function by declining Nox-4, IL-18, and p53 expression levels in an experimental model of diabetic nephropathy. *J Cell Biochem.* 2018;119(7):6080-93. [PubMed ID: 29575259]. <https://doi.org/10.1002/jcb.26806>.
11. Hoshyar R, Mollaei H. A comprehensive review on anticancer mechanisms of the main carotenoid of saffron, crocin. *J Pharm Pharmacol.* 2017;69(11):1419-27. [PubMed ID: 28675431]. <https://doi.org/10.1111/jphp.12776>.
12. Nikbakht-Jam I, Khademi M, Nosrati M, Eslami S, Foroutan-Tanha M, Sahebkar A, et al. Effect of crocin extracted from saffron on pro-oxidant-anti-oxidant balance in subjects with metabolic syndrome: A randomized, placebo-controlled clinical trial. *European Journal of Integrative Medicine.* 2016;8(3):307-12. <https://doi.org/10.1016/j.eujim.2015.12.008>.
13. Farkhondeh T, Samarghandian S, Yazdi HS, Samini F. The protective effects of crocin in the management of neurodegenerative diseases: a review. *American journal of neurodegenerative disease.* 2018;7(1):1.
14. Azmand MJ, Rajaei Z. Effects of crocin on spatial or aversive learning and memory impairments induced by lipopolysaccharide in rats. *Avicenna Journal of Phytomedicine.* 2021;11(1):79.
15. Pazoki A, Askaripour M, Zargarani S, Yazdanpanah E, Haghmorad D. Crocin as a potential therapeutic agent for multiple sclerosis: insights from experimental autoimmune encephalomyelitis model in mice. *Immunopharmacol Immunotoxicol.* 2025;47(1):131-9. [PubMed ID: 39726165]. <https://doi.org/10.1080/08923973.2024.2445747>.
16. Nadimi E, Jamal Omidi S, Ghasemi M, Hashempur MH, Iraji A. Carotenoids as neuroprotective agents in multiple sclerosis: Pathways, mechanisms, and clinical prospects. *Biomed Pharmacother.* 2025;191:18496. [PubMed ID: 40896958]. <https://doi.org/10.1016/j.bioph.2025.118496>.
17. Kouchaki E, Rafie H, Ghaderi A, Azadchehr MJ, Safa F, Omidian K, et al. Effects of crocin on inflammatory biomarkers and mental health status in patients with multiple sclerosis: A randomized, double-blinded clinical trial. *Mult Scler Relat Disord.* 2024;83:105454. [PubMed ID: 38306888]. <https://doi.org/10.1016/j.msard.2024.105454>.
18. Rezaeimash N, Rafiee P, Saeedi R, Khosravian P, Sahraian MA, Eskandarieh S, et al. The effect of crocin-selenium nanoparticles on the cognition and oxidative stress markers of multiple sclerosis patients: a randomized triple-blinded placebo-controlled clinical trial. *Biometals.* 2024;37(2):305-19. [PubMed ID: 37917350]. <https://doi.org/10.1007/s10534-023-00548-z>.
19. Rezaei A, Hamidi M, Seyedmirzaei H, Moghadasi AN. Can supplementation with antioxidants improve cognitive functions in patients with multiple sclerosis? A literature review. *Ann Med Surg (Lond).* 2025;87(5):2736-48. [PubMed ID: 40337414]. [PubMed Central ID: PMC12055145]. <https://doi.org/10.1097/MS9.0000000000003124>.
20. Yang W, Qiu X, Wu Q, Chang F, Zhou T, Zhou M, et al. Active constituents of saffron (*Crocus sativus* L.) and their prospects in treating neurodegenerative diseases (Review). *Exp Ther Med.* 2023;25(5):235. [PubMed ID: 37114174]. [PubMed Central ID: PMC10127217]. <https://doi.org/10.3892/etm.2023.11934>.
21. Kalinowska-Lyszczarz A, Losy J. The role of neurotrophins in multiple sclerosis-pathological and clinical implications. *Int J Mol Sci.* 2012;13(10):13713-25. [PubMed ID: 23202976]. [PubMed Central ID: PMC3497350]. <https://doi.org/10.3390/ijms131013713>.
22. Giess R, Maurer M, Linker R, Gold R, Warmuth-Metz M, Toyka KV, et al. Association of a null mutation in the CNTF gene with early onset of multiple sclerosis. *Arch Neurol.* 2002;59(3):407-9. [PubMed ID: 11890844]. <https://doi.org/10.1001/archneur.59.3.407>.
23. Caggiula M, Batocchi AP, Frisullo G, Angelucci F, Patanella AK, Sancricca C, et al. Neurotrophic factors and clinical recovery in relapsing-remitting multiple sclerosis. *Scand J Immunol.* 2005;62(2):176-82. [PubMed ID: 16101825]. <https://doi.org/10.1111/j.1365-3083.2005.01649.x>.
24. Lv B, Huo F, Zhu Z, Xu Z, Dang X, Chen T, et al. Crocin Upregulates CX3CR1 Expression by Suppressing NF-κB/YY1 Signaling and Inhibiting Lipopolysaccharide-Induced Microglial Activation. *Neurochem Res.* 2016;41(8):1949-57. [PubMed ID: 27084772]. <https://doi.org/10.1007/s11064-016-1905-1>.
25. Zrzavy T, Hametner S, Wimmer I, Butovsky O, Weiner HL, Lassmann H. Loss of 'homeostatic' microglia and patterns of their activation in active multiple sclerosis. *Brain.* 2017;140(7):1900-13. [PubMed ID: 28541408]. [PubMed Central ID: PMC6057548]. <https://doi.org/10.1093/brain/awx113>.
26. Mazzanti CM, Spanevello RM, Obregon A, Pereira LB, Streher CA, Ahmed M, et al. Ethidium bromide inhibits rat brain acetylcholinesterase activity in vitro. *Chem Biol Interact.* 2006;162(2):121-7. [PubMed ID: 16839531]. <https://doi.org/10.1016/j.cbi.2006.05.013>.
27. Radakovic M, Borozan S, Djelic N, Ivanovic S, Miladinovic DC, Ristanic M, et al. Nitroso-Oxidative Stress, Acute Phase Response, and Cytogenetic Damage in Wistar Rats Treated with Adrenaline. *Oxid Med Cell Longev.* 2018;2018:1805354. [PubMed ID: 30584458]. [PubMed Central ID: PMC6280229]. <https://doi.org/10.1155/2018/1805354>.
28. Mazzanti CM, Spanevello RM, Morsch A, Zanin R, Battisti V, Ahmed M, et al. Previous treatment with ebselen and vitamin E alters adenine nucleotide hydrolysis in platelets from adult rats experimentally demyelinated with ethidium bromide. *Life Sci.* 2007;81(3):241-8. [PubMed ID: 17574629]. <https://doi.org/10.1016/j.lfs.2007.05.008>.
29. Ajami A, Hosseini SH, Taghipour M, Khalilian A. Changes in serum levels of brain derived neurotrophic factor and nerve growth factor-beta in schizophrenic patients before and after treatment. *Scand J Immunol.* 2014;80(1):36-42. [PubMed ID: 24498860]. <https://doi.org/10.1111/sji.12158>.
30. Askari A, Rashid Lamir A, Bijeh N, Momeni Moghadam M. Effect of 8-Week Aquatic Training and Resistance Training on Plasma NT-4 Levels and NT-4 Expression in Peripheral Blood Mononuclear Cells in Women with Multiple Sclerosis. *Medical Laboratory Journal.* 2017;11(6):1-6. <https://doi.org/10.29252/mlj.11.6.1>.
31. Dehghani A. A comparative study of the effect of peer-led and lecture-based education on health literacy in patients with multiple sclerosis. *International Journal of Community Based Nursing and Midwifery.* 2021;9(1):76.
32. Constantinescu CS, Farooqi N, O'Brien K, Gran B. Experimental autoimmune encephalomyelitis (EAE) as a model for multiple sclerosis (MS). *Br J Pharmacol.* 2011;164(4):1079-106. [PubMed ID: 21371012]. [PubMed Central ID: PMC3229753]. <https://doi.org/10.1111/j.1476-5381.2011.01302.x>.

33. Tarakci E, Yeldan I, Huseyinsinoglu BE, Zenginler Y, Erksoy M. Group exercise training for balance, functional status, spasticity, fatigue and quality of life in multiple sclerosis: a randomized controlled trial. *Clin Rehabil.* 2013;27(9):813-22. [PubMed ID: 23543341]. <https://doi.org/10.1177/0269215513481047>.

34. Kallaur AP, Oliveira SR, Colado Simao AN, Delicato de Almeida ER, Kaminami Morimoto H, Lopes J, et al. Cytokine profile in relapsing-remitting multiple sclerosis patients and the association between progression and activity of the disease. *Mol Med Rep.* 2013;7(3):1010-20. [PubMed ID: 23292766]. <https://doi.org/10.3892/mmr.2013.1256>.

35. Govindarajan V, de Rivero Vaccari JP, Keane RW. Role of inflammasomes in multiple sclerosis and their potential as therapeutic targets. *J Neuroinflammation.* 2020;17(1):260. [PubMed ID: 32878648]. [PubMed Central ID: PMC7469327]. <https://doi.org/10.1186/s12974-020-01944-9>.

36. Amedei A, Prisco D, D'Elios MM. Multiple sclerosis: the role of cytokines in pathogenesis and in therapies. *Int J Mol Sci.* 2012;13(10):13438-60. [PubMed ID: 23202961]. [PubMed Central ID: PMC3497335]. <https://doi.org/10.3390/ijms131013438>.

37. Das I, Das S, Saha T. Saffron suppresses oxidative stress in DMBA-induced skin carcinoma: A histopathological study. *Acta Histochem.* 2010;112(4):317-27. [PubMed ID: 19328523]. <https://doi.org/10.1016/j.acthis.2009.02.003>.

38. Horstmann L, Schmid H, Heinen AP, Kurschus FC, Dick HB, Joachim SC. Inflammatory demyelination induces glia alterations and ganglion cell loss in the retina of an experimental autoimmune encephalomyelitis model. *J Neuroinflammation.* 2013;10:120. [PubMed ID: 24090415]. [PubMed Central ID: PMC3851328]. <https://doi.org/10.1186/1742-2094-10-120>.

39. Ahmed S, Hasan MM, Heydari M, Rauf A, Bawazeer S, Abu-Izneid T, et al. Therapeutic potentials of crocin in medication of neurological disorders. *Food Chem Toxicol.* 2020;145:111739. [PubMed ID: 32916219]. <https://doi.org/10.1016/j.fct.2020.111739>.

40. Ghaffari S, Roshanravan N. Saffron; An updated review on biological properties with special focus on cardiovascular effects. *Biomed Pharmacother.* 2019;109:21-7. [PubMed ID: 30391705]. <https://doi.org/10.1016/j.biopha.2018.10.031>.

41. Boskabady MH, Byrami G, Feizpour A. The effect of safranal, a constituent of *Crocus sativus* (saffron), on tracheal responsiveness, serum levels of cytokines, total NO and nitrite in sensitized guinea pigs. *Pharmacol Rep.* 2014;66(1):56-61. [PubMed ID: 24905307]. <https://doi.org/10.1016/j.pharep.2013.08.004>.

42. Hosseinzadeh H, Shariaty VM. Anti-nociceptive effect of safranal, a constituent of *Crocus sativus* (saffron), in mice. *Pharmacologyonline.* 2007;2:498-503.

43. Ghazavi A, Mosayebi G, Salehi H, Abtahi H. Effect of ethanol extract of saffron (*Crocus sativus* L.) on the inhibition of experimental autoimmune encephalomyelitis in C57bl/6 mice. *Pak J Biol Sci.* 2009;12(9):690-5. [PubMed ID: 19634472]. <https://doi.org/10.3923/pjbs.2009.690.695>.

44. Hosseinzadeh H, Noraei NB. Anxiolytic and hypnotic effect of *Crocus sativus* aqueous extract and its constituents, crocin and safranal, in mice. *Phytother Res.* 2009;23(6):768-74. [PubMed ID: 19142981]. <https://doi.org/10.1002/ptr.2597>.

45. Abdullaev FI, Espinosa-Aguirre JJ. Biomedical properties of saffron and its potential use in cancer therapy and chemoprevention trials. *Cancer Detect Prev.* 2004;28(6):426-32. [PubMed ID: 15582266]. <https://doi.org/10.1016/j.cdp.2004.09.002>.

46. Goyal SN, Arora S, Sharma AK, Joshi S, Ray R, Bhatia J, et al. Preventive effect of crocin of *Crocus sativus* on hemodynamic, biochemical, histopathological and ultrastructural alterations in isoproterenol-induced cardiotoxicity in rats. *Phytomedicine.* 2010;17(3-4):227-32. [PubMed ID: 19747807]. <https://doi.org/10.1016/j.phymed.2009.08.009>.

47. Moallem SA, Hariri AT, Mahmoudi M, Hosseinzadeh H. Effect of aqueous extract of *Crocus sativus* L. (saffron) stigma against subacute effect of diazinon on specific biomarkers in rats. *Toxicol Ind Health.* 2014;30(2):141-6. [PubMed ID: 22782707]. <https://doi.org/10.1177/0748233712452609>.

48. Song YN, Wang Y, Zheng YH, Liu TL, Zhang C. Crocins: A comprehensive review of structural characteristics, pharmacokinetics and therapeutic effects. *Fitoterapia.* 2021;153:104969. [PubMed ID: 34147548]. <https://doi.org/10.1016/j.fitote.2021.104969>.

49. Christodoulou E, Kadoglou NP, Kostomitsopoulos N, Valsami G. Saffron: a natural product with potential pharmaceutical applications. *J Pharm Pharmacol.* 2015;67(12):1634-49. [PubMed ID: 26272123]. <https://doi.org/10.1111/jphp.12456>.

50. Khazdair MR, Boskabady MH, Hosseini M, Rezaee R, Tsatsakis AM. The effects of *Crocus sativus* (saffron) and its constituents on nervous system: A review. *Avicenna journal of phytomedicine.* 2015;5(5):376.

51. Oruc S, Gonul Y, Tunay K, Oruc OA, Bozkurt MF, Karavelioglu E, et al. The antioxidant and antiapoptotic effects of crocin pretreatment on global cerebral ischemia reperfusion injury induced by four vessels occlusion in rats. *Life Sci.* 2016;154:79-86. [PubMed ID: 27117584]. <https://doi.org/10.1016/j.lfs.2016.04.028>.

52. Boskabady MH, Karimi GR, Samarghandian S, Farkhondeh T. Tracheal responsiveness to methacholine and ovalbumin; and lung inflammation in guinea pigs exposed to inhaled lead after sensitization. *Ecotoxicol Environ Saf.* 2012;86:233-8. [PubMed ID: 23088908]. <https://doi.org/10.1016/j.ecoenv.2012.09.025>.

53. Karami M, Bathae SZ, Tiraihi T, Habibi-Rezaei M, Arabkheradmand J, Faghizadeh S. Crocin improved locomotor function and mechanical behavior in the rat model of contused spinal cord injury through decreasing calcitonin gene related peptide (CGRP). *Phytomedicine.* 2013;21(1):62-7. [PubMed ID: 24051216]. <https://doi.org/10.1016/j.phymed.2013.07.013>.

54. Samarghandian S, Shoshtari ME, Sargolzaei J, Hossinimoghadam H, Farahzad JA. Anti-tumor activity of safranal against neuroblastoma cells. *Pharmacogn Mag.* 2014;10(Suppl 2):S419-24. [PubMed ID: 24991121]. [PubMed Central ID: PMC4078354]. <https://doi.org/10.4103/0973-1296.132396>.

55. Ahmadi M, Rajaei Z, Hadjzadeh MA, Nemati H, Hosseini M. Crocin improves spatial learning and memory deficits in the Morris water maze via attenuating cortical oxidative damage in diabetic rats. *Neurosci Lett.* 2017;642:1-6. [PubMed ID: 28137647]. <https://doi.org/10.1016/j.neulet.2017.01.049>.

56. Naghizadeh B, Mansouri MT, Ghorbanzadeh B, Farbood Y, Sarkaki A. Protective effects of oral crocin against intracerebroventricular streptozotocin-induced spatial memory deficit and oxidative stress in rats. *Phytomedicine.* 2013;20(6):537-42. [PubMed ID: 23351962]. <https://doi.org/10.1016/j.phymed.2012.12.019>.

57. Rashedinia M, Lari P, Abnous K, Hosseinzadeh H. Protective effect of crocin on acrolein-induced tau phosphorylation in the rat brain. *Acta Neurobiol Exp (Wars).* 2015;75(2):208-19. [PubMed ID: 26232997]. <https://doi.org/10.55782/ane-2015-2029>.

58. Rajaei Z, Hosseini M, Alaei H. Effects of crocin on brain oxidative damage and aversive memory in a 6-OHDA model of Parkinson's

disease. *Arq Neuropsiquiatr.* 2016;74(9):723-9. [PubMed ID: 27706421]. <https://doi.org/10.1590/0004-282X20160131>.

59. Ghaffari S, Hatami H, Dehghan G. Saffron ethanolic extract attenuates oxidative stress, spatial learning, and memory impairments induced by local injection of ethidium bromide. *Research in pharmaceutical sciences.* 2015;10(3):222-32.

60. Kamyar M, Razavi BM, Hasani FV, Mehri S, Foroutanfar A, Hosseinzadeh H. Crocin prevents haloperidol-induced orofacial dyskinesia: possible an antioxidant mechanism. *Iranian J Basic Med Sci.* 2016;19(10):1070. <https://doi.org/10.21203/rs.3.rs-1936829/v1>.

61. Fathi-Moghadam H, Farbod Y, Ghadiri AA, Fatemi R. [Effects of Crocin on Oxidative Stress Indices in Rat Brain Demyelinated with Ethidium Bromide]. *J Mazandaran Univ Med Sci.* 2019;29(172):121-6. FA.

62. Vakili A, Einali MR, Bandegi AR. Protective effect of crocin against cerebral ischemia in a dose-dependent manner in a rat model of ischemic stroke. *J Stroke Cerebrovasc Dis.* 2014;23(1):106-13. [PubMed ID: 23182363]. <https://doi.org/10.1016/j.jstrokecerebrovasdis.2012.10.008>.

63. Sheng Y, Gong X, Zhao J, Liu Y, Yuan Y. Effects of Crocin on CCL2/CCR2 Inflammatory Pathway in Monocrotaline-Induced Pulmonary Arterial Hypertension Rats. *Am J Chin Med.* 2022;50(1):241-59. [PubMed ID: 34931588]. <https://doi.org/10.1142/S0192415X22500082>.

64. Terraf P, Kouhsari SM, Ai J, Babaloo H. Tissue-Engineered Regeneration of Hemisected Spinal Cord Using Human Endometrial Stem Cells, Poly epsilon-Caprolactone Scaffolds, and Crocin as a Neuroprotective Agent. *Mol Neurobiol.* 2017;54(7):5657-67. [PubMed ID: 27624387]. <https://doi.org/10.1007/s12035-016-0089-7>.

65. Lassmann H, van Horssen J. The molecular basis of neurodegeneration in multiple sclerosis. *FEBS Lett.* 2011;585(23):3715-23. [PubMed ID: 21854776]. <https://doi.org/10.1016/j.febslet.2011.08.004>.

66. Tahmasebi S, Qasim MT, Krivenkova MV, Zekiy AO, Thangavelu L, Aravindhan S, et al. The effects of oxygen-ozone therapy on regulatory T-cell responses in multiple sclerosis patients. *Cell Biol Int.* 2021;45(7):1498-509. [PubMed ID: 33724614]. <https://doi.org/10.1002/cbin.11589>.

67. Hashemzaei M, Mamoulakis C, Tsarouhas K, Georgiadis G, Lazopoulos G, Tsatsakis A, et al. Crocin: A fighter against inflammation and pain. *Food Chem Toxicol.* 2020;143:111521. [PubMed ID: 32640351]. <https://doi.org/10.1016/j.fct.2020.111521>.

68. Gao J, Zhao F, Yi S, Li S, Zhu A, Tang Y, et al. Protective role of crocin against sepsis-induced injury in the liver, kidney and lungs via inhibition of p38 MAPK/NF-kappaB and Bax/Bcl-2 signalling pathways. *Pharm Biol.* 2022;60(1):543-52. [PubMed ID: 35225146]. [PubMed Central ID: PMC8890572]. <https://doi.org/10.1080/13880209.2022.2042328>.

69. Yang X, Huo F, Liu B, Liu J, Chen T, Li J, et al. Crocin Inhibits Oxidative Stress and Pro-inflammatory Response of Microglial Cells Associated with Diabetic Retinopathy Through the Activation of PI3K/Akt Signaling Pathway. *J Mol Neurosci.* 2017;61(4):581-9. [PubMed ID: 28238066]. <https://doi.org/10.1007/s12031-017-0899-8>.

70. Kakebaraee S, Gholami M, Nasta TZ, Arkan E, Bahrehmand F, Fakhri S, et al. Oral administration of crocin-loaded solid lipid nanoparticles inhibits neuroinflammation in a rat model of epileptic seizures by activating SIRT1 expression. *Res Pharm Sci.* 2024;19(4):397-414. [PubMed ID: 39399725]. [PubMed Central ID: PMC1468164]. https://doi.org/10.4103/RPS.RPS_68_24.

71. Alizadehmoghaddam S, Pourabdolhossein F, Najafzadehvarzi H, Sarbishegi M, Saleki K, Nouri HR. Crocin attenuates the lipopolysaccharide-induced neuroinflammation via expression of AIM2 and NLRP1 inflammasome in an experimental model of Parkinson's disease. *Helyon.* 2024;10(3): e25523. [PubMed ID: 38356604]. [PubMed Central ID: PMC10864986]. <https://doi.org/10.1016/j.heliyon.2024.e25523>.

72. Ghiasian M, Khamisabadi F, Kheiripour N, Karami M, Haddadi R, Ghaleh A, et al. Effects of crocin in reducing DNA damage, inflammation, and oxidative stress in multiple sclerosis patients: A double-blind, randomized, and placebo-controlled trial. *J Biochem Mol Toxicol.* 2019;33(12): e22410. [PubMed ID: 31617649]. <https://doi.org/10.1002/jbt.22410>.

73. Banaeeyleh S, Afkhami-Goli A, Moosavi Z, Razavi BM, Hosseinzadeh H. Anti-inflammatory, antioxidant and anti-mitophagy effects of trans sodium crocetinate on experimental autoimmune encephalomyelitis in BALB/C57 mice. *Metab Brain Dis.* 2024;39(5):783-801. [PubMed ID: 38739183]. <https://doi.org/10.1007/s11011-024-01349-0>.

74. Deslauriers AM, Afkhami-Goli A, Paul AM, Bhat RK, Acharjee S, Ellestad KK, et al. Neuroinflammation and endoplasmic reticulum stress are coregulated by crocin to prevent demyelination and neurodegeneration. *J Immunol.* 2011;187(9):4788-99. [PubMed ID: 21964030]. <https://doi.org/10.4049/jimmunol.1004111>.

75. Ghasemnejad-Berenji M. Immunomodulatory and anti-inflammatory potential of crocin in COVID-19 treatment. *Journal of Food Biochemistry.* 2021;45(5). <https://doi.org/10.1111/jfbc.13718>.

76. Mohebbi M, Atabaki M, Tavakkol-Afshari J, Shariati-Sarabi Z, Poursamimi J, Mohajeri SA, et al. Significant Effect of Crocin on the Gene Expression of MicroRNA-21 and MicroRNA-155 in Patients with Osteoarthritis. *Iran J Allergy Asthma Immunol.* 2022;21(3):322-31. [PubMed ID: 35822682]. <https://doi.org/10.18502/ijaaei.v2i13.9805>.

77. Vafaei S, Wu X, Tu J, Nematollahi-Mahani SN. The Effects of Crocin on Bone and Cartilage Diseases. *Front Pharmacol.* 2021;12:83031. [PubMed ID: 35126154]. [PubMed Central ID: PMC8807478]. <https://doi.org/10.3389/fphar.2021.83031>.

78. Li J, Lei HT, Cao L, Mi YN, Li S, Cao YX. Crocin alleviates coronary atherosclerosis via inhibiting lipid synthesis and inducing M2 macrophage polarization. *Int Immunopharmacol.* 2018;55:120-7. [PubMed ID: 29248792]. <https://doi.org/10.1016/j.intimp.2017.11.037>.

79. Li X, Jiang C, Zhu W. Crocin reduces the inflammation response in rheumatoid arthritis. *Biosci Biotechnol Biochem.* 2017;81(5):891-8. [PubMed ID: 28388359]. <https://doi.org/10.1080/09168451.2016.1263145>.

80. Stone S, Lin W. The unfolded protein response in multiple sclerosis. *Frontiers in Neuroscience.* 2015;9. <https://doi.org/10.3389/fnins.2015.00264>.

81. Yousefi F, Arab FL, Rastin M, Tabasi NS, Nikkhah K, Mahmoudi M. Comparative assessment of immunomodulatory, proliferative, and antioxidant activities of crocin and crocetin on mesenchymal stem cells. *J Cell Biochem.* 2021;122(1):29-42. [PubMed ID: 32951264]. <https://doi.org/10.1002/jcb.29826>.

82. Fletcher JM, Lalor SJ, Sweeney CM, Tubridy N, Mills KH. T cells in multiple sclerosis and experimental autoimmune encephalomyelitis. *Clin Exp Immunol.* 2010;162(1):1-11. [PubMed ID: 20682002]. [PubMed Central ID: PMC2990924]. <https://doi.org/10.1111/j.1365-2249.2010.04143.x>.

83. Mohajeri D, Doustar Y. [Protective effect of ethanolic extract of Crocus sativus L.(Saffron) stigma against cisplatin induced hepatotoxicity in rats]. *Islamic Azad University, Tehran Med Unit.* 2011. FA.

84. Fatemi R, Moghaddam HF, Farbod Y, Bigtashkhani R. Effects of Crocin on Brain Neurotrophins, Cognition, Balance and Pain in Toxic-Induced Demyelination Model. *Acta Neurologica Taiwanica.* 2024;33(2):47-54. https://doi.org/10.4103/ant.33-2_111_0093.

85. Fatemi R, Fathimoghadam H, Ghadiri A, Farbod Y. Effects of Crocin on Brain Neurotrophins, Cognition, Sensory and Motor Dysfunction in Rats Demyelination with Ethidium Bromide. *Neurosci Neurol*. 2022;Preprints. <https://doi.org/10.20944/preprints202208.0161.v1>.

86. Vahdati Hassani F, Naseri V, Razavi BM, Mehri S, Abnous K, Hosseinzadeh H. Antidepressant effects of crocin and its effects on transcript and protein levels of CREB, BDNF, and VGF in rat hippocampus. *Daru*. 2014;22(1):16. [PubMed ID: 24401376]. [PubMed Central ID: PMC3927874]. <https://doi.org/10.1186/2008-2231-22-16>.

87. Ghasemi T, Abnous K, Vahdati F, Mehri S, Razavi BM, Hosseinzadeh H. Antidepressant Effect of *Crocus sativus* Aqueous Extract and its Effect on CREB, BDNF, and VGF Transcript and Protein Levels in Rat Hippocampus. *Drug Res (Stuttg)*. 2015;65(7):337-43. [PubMed ID: 24696423]. <https://doi.org/10.1055/s-0034-1371876>.

88. Razavi BM, Sadeghi M, Abnous K, Hasani FV, Hosseinzadeh H. Study of the role of CREB, BDNF, and VGF neuropeptide in long term antidepressant activity of crocin in the rat cerebellum. *Iranian journal of pharmaceutical research: IJPR*. 2017;16(4):1452.

89. Bandegi AR, Rashidy-Pour A, Vafaei AA, Ghadrdoost B. Protective effects of *Crocus sativus* L. extract and crocin against chronic-stress induced oxidative damage of brain, liver and kidneys in rats. *Advanced pharmaceutical bulletin*. 2014;4(Suppl 2):493.

90. Azari H, Ebrahimi S, Saeb S, Ghanbari A, Peyravian F, Mokarram P. The Effect of Saffron Aquatic Extract and Crocin on the Differentiation of Neural Stem Cells Into Oligodendrocyte Precursor Cells. *Shiraz E-Medical Journal*. 2018;In Press(In Press). <https://doi.org/10.5812/semj.60190>.

91. Tashakori A, Hassanpour S, Vazir B. Protective effect of crocin on cuprizone-induced model of multiple sclerosis in mice. *Naunyn Schmiedebergs Arch Pharmacol*. 2023;396(8):1713-25. [PubMed ID: 36805765]. <https://doi.org/10.1007/s00210-023-02424-6>.

92. Fathimoghadam H, Farbod Y, Ghadiri A, Fatemi R. Moderating effects of crocin on some stress oxidative markers in rat brain following demyelination with ethidium bromide. *Helijon*. 2019;5(2). e01213. [PubMed ID: 30815598]. [PubMed Central ID: PMC6378371]. <https://doi.org/10.1016/j.heliyon.2019.e01213>.