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Abstract

Background: Salmonella is one of the main foodborne bacterial pathogens, causing diseases and death. The study used reverse
transcription loop-mediated isothermal amplification (RT-LAMP) to detect Salmonella.
Objectives: To design six primers and detect Salmonella using RT-LAMP to facilitate the rapid detection of pathogenic bacteria in
food.
Methods: We designed six primers based on the gene coding sequences of inv A, specific to Salmonella. Each reaction solution con-
tained 6.0 mM MgSO4, 1 M betaine, 1.6 mM dNTPs, 160 U/mL Bst DNA polymerase, 0.2 µM of both external primers, 0.8 µM of both
internal primers, and 0.2 µM of both loop primers. The reaction temperature was 65°C.
Results: Our amplified products were separated by 2% agarose gel electrophoresis. The detection limit was 10 CFU per reaction.
Conclusions: RT-LAMP exhibited the same accuracy as the Chinese National Standard assay (GB 4789.30-2016) assay in detecting
Salmonella in foods. RT-LAMP was highly specific and sensitive; hence, it may serve as an effective tool in detecting Salmonella.
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1. Background

Salmonella is one of the main foodborne pathogens in
the Enterobacteriaceae family. Salmonella spp. cause di-
arrhea, vomiting, abdominal colic, pneumonia, and bac-
teremia (1). On the other hand, in the cutting-edge tech-
nology of bacterial therapy, scientists utilize bacteria such
as Salmonella typhimurium and Shigella flexneri as antipro-
liferative and potential chemotherapeutic agents to treat
gastrointestinal cancers (2, 3). Livestock and poultry prod-
ucts are susceptible to Salmonella contamination. Foods
leading to disease outbreaks are mainly eggs and poultry
meat; however, the predominant foodborne diseases are
enteritis and typhoid fever (4, 5). Due to its excellent sur-
vival characteristics, Salmonella is found in various fresh
vegetables and meat products. When adhered to the sur-
face of heat-treated foods, the bacteria rapidly are multi-
plies even at low temperatures (6). Accordingly, the detec-
tion of Salmonella is of utmost importance in the food in-
dustry (7).

Routine culture is the gold standard for detecting,
isolating, and identifying Salmonella spp. However, the
cultural process is time-consuming. Samples should be

placed in an enrichment solution for 18 - 24 h, transferred
to chromogenic plates for 18 - 24 h, and purified for 18 -
24 h. Following these steps, the pathogen can be prelimi-
narily and serologically identified before its identity is con-
firmed. In this regard, it takes 6 - 7 days to reach results, and
specialized laboratories are required (8). Compared with
routine culture, polymerase chain reaction (9), DNA mi-
croarrays (10), and antibody assays (11) are more appropri-
ate detection methods; however, they are time-consuming.
Accordingly, we need a more efficient and straightforward
protocol.

In 2000, loop-mediated isothermal amplification
(LAMP) was proposed as a novel approach to molecular
identification (12). LAMP is specific, sensitive, and cost-
effective. However, it fails to distinguish between live and
dead cells, and this method often obtains false-positive
results from food samples (13). Accordingly, a more accu-
rate method is required to detect and monitor pathogens.
Studies have reported that reverse transcription LAMP (RT-
LAMP) may overcome the LAMP limitations. RT-LAMP can
be used to detect viruses (14). In this study, we collected
samples from Hangzhou, Zhejiang Province, China, and
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used RT-LAMP to detect Salmonella to facilitate the rapid
detection of pathogenic bacteria in food.

2. Objectives

To design six primers and detect Salmonella using RT-
LAMP to facilitate the rapid detection of the pathogen in
food.

3. Methods

3.1. Strains and Culture

We collected 41 strains from different areas in
Hangzhou, China. Ten Salmonella spp. were used as
positive samples; other bacterial species were selected to
evaluate the specificity of RT-LAMP (Table 1). Salmonella
strains were stored in the LB broth/agar medium, and
additional species such as Listeria were stored in the BHI
broth/agar medium. The bacterial solutions were cultured
at 37°C and diluted. We measured bacterial concentra-
tions by ultraviolet spectrophotometry. All chemicals and
media were acquired from Sangon Co., Ltd. (Shanghai,
China).

3.2. RNA Extraction and cDNA Synthesis

We extracted total RNA from all 41 bacterial strains us-
ing an RNA Rapid Extraction Kit (Sangon Co., Ltd. Shang-
hai, China) and measured yield using a NanoDrop spec-
trophotometer (Eppendorf, Germany). To minimize the
RNA degradation, total RNA was converted into cDNA us-
ing a PrimeScript II First Strand cDNA Synthesis Kit (TaKaRa,
China) (15). The reaction volume (20 µL) consisted of 6 µL
of RNA, 4µL of 5×RT buffer, 2µL of dNTPs (10 mM each), 50
pmol of random hexamers, 10 U of AMV reverse transcrip-
tase XL (TaKaRa), and 10 U of RNase inhibitor (TaKaRa). The
reaction solution was maintained for 60 min at 42°C and
15 min at 70°C.

3.3. Primer Design

We designed primers based on an internally tran-
scribed spacer sequence (GenBank Accession No. NC_-
987035) using Primer Explorer V5 (Eiken Chemical Co. Ltd.,
Tokyo, Japan). Six pairs of primers were created, which
targeted distinct regions of the LAMP sequence and corre-
sponded to two outlying primers (F3 and B3), two internal
primers (FIP and BIP), and two loop primers. Table 2 and
Figure 1 show the primer sequences and locations, respec-
tively.

Table 1. Bacterial Strains Used in this Study

Types and Species Strains

Target- Salmonella spp.

Salmonella enterica ZFM New1

S. enterica CGMCC 1.1552

S. enterica CGMCC 1.10603

S. typhimurium CGMCC 1.1174

S. typhimurium CGMCC 1.1190

S. pullorum ZFM 124694

S. anatum ZFM New2

Non- Salmonella spp.

Micrococcus luteus CGMCC 1.193

Staphylococcus aureus ATCC 6538P

S. aureus CGMCC 1.2386

S. aureus CGMCC 1.879

S. aureus CGMCC 1.128

Lactobacillus plantarum CGMCC 1.11

L. plantarum CGMCC 1.124

L. plantarum CGMCC 1.551

L. plantarum CGMCC 1.556

L. plantarum CGMCC 1.511

L. lactis ATCC 15577

Bacillus subtilis CGMCC 1.1627

Enterococcus faecalis ZFM BM13

E. faecalis CGMCC 1.125

Shigella flexneri CGMCC 1.1868

Pseudomonas aeruginosa CGMCC 1.647

S. dysenteriae ATCC 9753

Escherichia coli CGMCC 1.1580

E. coli O104

E. coli JM109

Listeria seeligeri ZFM 51335

L. monocytogenes ATCC 7648

P. putida CGMCC 1.645

Rhodotorula Rubra CGMCC 2.1034

Saccharomyces cerevisiae CGMCC 2.1643

Abbreviations: ATCC, American Type Culture Collection; CGMCC, China General
Microbiological Culture Collection Center; ZFM, Key Laboratory of Food Micro-
biology Research, Zhejiang Province of China.

3.4. LAMP Assay

The following six primer pairs were added to a 25-µL
tube: 1.6 mM dNTPs, 0.8 M betaine (Sigma-Aldrich, USA), 20
mM Tris-HCl (pH 8.8), 10 mM KCl, 10 mM (NH4)2SO4, 4 mM
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Figure 1. Sequence of inv A gene for detecting Salmonella and primer locations. The sequences of each primer-binding site are provided under the line.

Table 2. Primers Positions of inv A Gene Coding Sequences of Salmonella

Primer Name Type Sequences (5’ - 3’) Length (bp)

F3 Forward outer GCGAAGCGTACTGGAAAGG 19

B3 Reverse outer TCAACAATGCGGGGATCTG 19

FIP Composed of F1c and F2 ATGATGCCGGCAATAGCGTCACAAAGCCAGCTTTACGGTTCC 40

BIP Composed of B1c and B2 GTGGGATGACYCGCCATGGACCATCACCAATGGTCAGC 38

LF AAACTTCATCGCACCGTCAAA 21

LB CCGCYCTGTCTACTTATACCA 21

MgSO4, 0.1% Triton X-100, 80 U Bst DNA polymerase (New
England Biolabs, USA), and 2 µL of target cDNA. Different
assay conditions, including different temperatures (59 to
65°C) and concentrations of MgSO4 (2 to 8 mM), dNTPs (0.8
to 2.0 mM), and Bst DNA polymerase (40 to 320 U), were
evaluated. The reaction solution was incubated for 1 h and
5 min at 80°C (16, 17). All experiments were performed in
triplicate.

3.5. Detection of RT-LAMP Products

The amplified products were separated using 2%
agarose gel electrophoresis and analyzed under ultravi-
olet light after 40 min. A white precipitate (magnesium
pyrophosphate) was produced during the reaction, which
was visible with the naked eye.

3.6. Specificity of RT-LAMP

We used the RNA templates of the 41 strains to perform
RT-LAMP. A total of 25 non-Salmonella strains were tested to
assess potential cross-reactions (Table 1). The other strains
were used for determining the specificity of the assay.

3.7. Sensitivity of RT-LAMP

We determined the detection limit of RT-LAMP by
preparing a 10-fold dilution series (106 CFU/µL to 100

CFU/µL) of Salmonella (ZFM New1) in sterile phosphate-
buffered saline. The strain was measured by plating it onto
LB agar directly (Huankai, Guangzhou, China) followed by
incubation at 37°C for 24 h. The RNA templates were ob-
tained from 100 µL of each dilution, and 2 µL fractions
were amplified using RT-LAMP. Each sensitivity test was
performed four times.

3.8. Salmonella Detection in Ready-to-Eat Meats

We used the RT-LAMP assay to detect Salmonella spp.
in ready-to-eat (RTE) meats and other foods and compared
the results with those obtained from the Chinese National
Standard assay (GB 4789.30-2016). The RTE meats were ob-
tained from a local market in China. We divided each sam-
ple into 25-g portions, and each portion was isolated for
the RNA extraction to act as a template for RT-LAMP. The GB
assay was performed by incubating 25 g of each sample at
30°C for 24 h in 225 mL of Listeria enrichment broth I (LB1).
In the next phase, we incubated 100 µL of the samples in
10-mL of Listeria enrichment broth II (LB2) at 30°C for 24
h. Positive LB2 cultures aliquots (50 µL) were inoculated
on PALCAM agar (Huankai) and Listeria chromogenic agar
(Huankai) and incubated at 37°C for 48 h. To confirm the
presence of Salmonella spp., we used characteristic colony
morphologies, Gram staining, and additional tests, includ-
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ing sugar and motility tests. The strains were finally iden-
tified using API Listeria (bioMérieux, France).

3.9. Statistical Analysis

SPSS and Origin were used to analyze the experimental
data and process the figures.

4. Results

4.1. Optimization of RT-LAMP Reaction Conditions

We optimized the RT-LAMP conditions by evaluating
different reaction conditions. The optimal Mg and dNTP
concentrations were 6.0 mM MgSO4 (Figure 2A) and 1.6 mM
dNTPs (Figure 2C), respectively. Figure 2B shows a minor
difference in temperature (63 and 65°C). No positive prod-
uct was amplified at 40 U/mL Bst DNA polymerase, while
the optimal results were obtained at 160 U/mL Bst DNA
polymerase (Figure 2D). Accordingly, optimum conditions
were 6.0 mM MgSO4, 1.6 mM dNTPs, and 160 U/mL Bst DNA
polymerase at 65°C.

4.2. Detection of RT-LAMP Products

Our amplified products were separated by 2% agarose
gel electrophoresis (Figure 3A), and the strains were ob-
served with the naked eye (Figure 3B). We noted turbidity
changes under normal lighting conditions. Positive cDNA
samples were successfully amplified. The results revealed
that Salmonella could be rapidly and easily detected using
RT-LAMP.

4.3. Specificity of RT-LAMP Assay

Primer specificity (Figure 1) was investigated by extract-
ing cDNA from eight strains of Salmonella and incorporat-
ing 33 strains of other species as templates (Table 1). Each
of the eight Salmonella strains (Figure 4) was successfully
amplified, whereas none of the other species were am-
plified. Accordingly, our primers were highly specific to
Salmonella.

4.4. Sensitivity of RT-LAMP Assay

We performed sensitivity analysis by incorporating 10-
fold serial dilutions of Salmonella, corresponding to 500
ng, 50 ng, 5 ng, 0.5 ng, 50 pg, 5 pg, 0.5 pg, and 50 fg (equiv-
alent to 1 × 106 CFU/µL to 1 × 100 CFU/µL) of RNA. The RT-
LAMP assay resulted in the DNA bands at all dilutions. How-
ever, the bands became weaker with decreasing RNA con-
centration. The sensitivity limit was 50 fg (Figure 5), equiv-
alent to 1 CFU/µL.

4.5. Detection of viable Salmonella in RTE Food Samples

We assessed the capability of the RT-LAMP assay in de-
tecting pathogenic microorganisms in the RTE foods, in-
cluding a variety of vegetables, fruits, and meats (Table
3). The RT-LAMP and GB assays detected two Salmonella-
positive chicken samples. Similar results were obtained for
the other three types of food, indicating that the RT-LAMP
and GB assays had similar detection capabilities.

5. Discussion

Microbial contaminants have long been a health con-
cern. Food poisoning has been studied for a long time,
and plants are fully used as drugs in traditional treat-
ment methods (18). In recent years, the abuse of antibi-
otics has led to the rapid spread of antibiotic resistance in
pathogens (19) as such, it is necessary to change the tra-
ditional treatment strategy. Experts have conducted in-
depth studies on the pathogenicity and defense mecha-
nisms. Hassan Mahmoudi found out that the pathogenic-
ity of Escherichia coli with iuc A and iut A genes may be asso-
ciated to this issue (20). Propolis and garlic water extract
can play a role in preventing pathogenic bacteria (21, 22). In
the present study, a rapid detection method was designed
for pathogenic bacteria in food to expand food safety meth-
ods further.

Developing detection methods for Salmonella, one of
the most common contaminants in fruits and meats, is
vital to minimize outbreaks (23). From a food safety and
human health perspective, detecting foodborne bacterial
pathogens requires immediate attention. This study pro-
posed the use of RT-LAMP for detecting Salmonella in foods.
The assay had high specificity and sensitivity in detect-
ing Salmonella. Moreover, RT-LAMP was accurate and fast
enough to be used in routine inspections and quarantine
situations. Accordingly, it may serve as a potential diagnos-
tic tool in the food industry to detect Salmonella in food
products rapidly.

The proposed detection method of Salmonella uses inv
A as the target gene, specific to Salmonella. Previous stud-
ies on inv A-based molecular detection assays have demon-
strated their high specificity and sensitivity (24). When
bacteria die, RNA cleaves quickly. Accordingly, the RT-LAMP
assay for detecting Salmonella has lower false-positive re-
sults. Mg2+ concentration has the largest impact on primer
annealing and DNA polymerase activity. A preliminary
study revealed no target amplification at high Mg2+ con-
centrations since Mg2+ is bound to chelating agents such
as ethylenediaminetetraacetic acid and anionic groups.
Hence, the DNA polymerase activity and amplification re-
sults were affected. After evaluating a range of concentra-
tions (2 - 8 mM), we found that 6 mM MgSO4 was optimal,
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Figure 2. RT-LAMP system optimization diagram. A, optimization of Mg2+ concentrations (lane M, 2,000-bp ladder marker; lanes 1 - 4, the results of RT-LAMP with Mg2+

concentrations of 2.0 mmol/L, 4.0 mmol/L, 6.0 mmol/L, and 8.0 mmol/L; lane 5, negative control); B, optimization of annealing temperatures (lane M, 2000-bp ladder marker;
lanes 1 - 4, the results of RT-LAMP at 59, 61, 63, and 65°C; lane 5, negative control); C, optimization of dNTP concentrations (lane M, 2000-bp ladder marker; lanes 1 - 4, the results
of RT-LAMP with dNTP concentrations of 0.8 mmol/L, 1.2 mmol/L, 1.6 mmol/L, and 2.0 mmol/L; lane 5, negative control); D, optimization of Bst enzyme concentrations (lane M,
2,000-bp ladder marker; lanes 1-4, the results of RT-LAMP with Bst enzyme concentrations of 40, 80, 160, and 320 U/mL; lane 5, negative control).

Table 3. Detection of Salmonella in RTE Foods Using RT-LAMP and GB 4789.4-2016 Assay

Sample (Tested Number)
No. of Samples Tested Positive for Salmonella

RT-LAMP GB 4789.4-2016

Beef (25) 0 0

Pork (25) 1 1

Egg (25) 2 2

Fish (25) 0 0

Total (100) 3 3

indicating that the Bst DNA polymerase was effective at 61
- 65°C. We selected 65°C as the optimal temperature based
on the AT and GC contents of the primers. The number of
inv A mRNA copies was significantly higher than the num-
ber of inv A genes in the cell. Copy number is the major de-
terminant of sensitivity.

5.1. Conclusions

The findings revealed that the detection limit for
Salmonella in RT-LAMP was 1 CFU per reaction in pure cul-

tures, which was 10-fold lower than that in PMA-LAMP (25).
As an alternative to PCR, RT-LAMP is more sensitive, may be
superior to PMA-LAMP in detecting Salmonella, and is fur-
ther used to detect microorganisms in the RTE meats. Com-
pared to GB 4789.4-2016, it was accurate; however, it took
considerably less time.
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Figure 3. Detection of RT-LAMP products. A, lane M, 2000-bp ladder marker; lane 1,
negative control; lane 2, the results of LAMP optimization reaction; B, physical map
of corresponding lanes.

Figure 4. Specificity test of RT-LAMP assay (lane M, 2,000-bp ladder marker; lane 1,
WS1; lane 2, F2365; lane 3, F8027; lane 4, J1723; lane 5, HF550; lane 6, J4045; lane 7,
clip11262; lane 8, J0161; and lane 9, negative control).
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