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Abstract

Background: White spot syndrome virus (WSSV) is a highly virulent pathogen threatening global shrimp populations, with

no effective treatments available.

Objectives: The present study aimed to identify antiviral compounds from Cyperus rotundus and Salvia rosmarinus targeting

WSSV dUTPase using computational methods.

Methods: A comprehensive analysis of phytochemicals included binding site prediction, protein structure validation,

absorption, distribution, metabolism, and excretion (ADME) profiling, and compliance with the Lipinski rule. Molecular

docking and dynamics simulations evaluated binding affinity and stability.

Results: After screening 1103 compounds, 28 candidates qualified for docking. Notably, selinene, podolide, and zierone showed

strong binding affinity to dUTPase with docking scores of -9.3, -8.8, and -7.8 kcal/mol, respectively, compared to the highest
positive controls, 2’-deoxyuridine scored -6.6 kcal/mol. The ADME studies indicated favorable pharmacokinetic profiles.

Molecular dynamics (MD) simulations over 100 ns confirmed stable binding interactions.

Conclusions: The promising results from docking and dynamics simulations provide a foundation for advancing podolide

and its analogs toward empirical validation. This research has potential for developing innovative phytochemical-derived

antiviral interventions against WSSV, although in vivo validation is necessary to confirm efficacy and safety.

Keywords: Cyperus rotundus, dUTPase, Molecular Docking, Molecular Dynamics Simulation, Podolide, Salvia

rosmarinus, Selinene, WSSV

1. Background

White spot syndrome virus (WSSV) is a highly

virulent pathogen affecting cultured shrimp, causing

up to 100% mortality in 3 - 10 days (1). It is a large,

enveloped double-stranded DNA virus belonging to the

Whispovirus genus of the Nimaviridae family, primarily

affecting marine shrimp species (2). The WSSV was first

detected in Taiwan in 1992 and has since spread globally

(3). The dUTPase enzyme plays a crucial role in

nucleotide metabolism by hydrolyzing dUTP to dUMP,

preventing its misincorporation into DNA. Both shrimp

and WSSV dUTPases have similar functions but differ in

structural characteristics (Appendix 1 in Supplementary

File, 14). These enzymes have been proposed as potential

drug targets for treating infectious diseases (4-6).

Phytochemicals from plants like Cyperus rotundus

and Salvia rosmarinus have shown potential in

combating viral diseases. Cyperus rotundus has antiviral

properties against several viruses, including hepatitis A

(7, 8). Salvia rosmarinus contains bioactive compounds

with antioxidant and anticancer effects (9, 10).

Computational approaches, such as molecular docking

and molecular dynamics (MD) simulations, are

enhancing drug discovery by evaluating ligand stability

and interactions with target enzymes like dUTPase (11).
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These methods are efficient, cost-effective, and less time-

consuming than traditional methods (11).

2. Objectives

In the present study, we examined the dUTPase

enzyme as a potential path to interfere with WSSV and

explored the potential of phytochemicals from C.

rotundus and S. rosmarinus in combating shrimp WSSV

using molecular docking.

3. Methods

3.1. 3D Protein Crystal Structure

The WSSV dUTPase 3D structure was obtained in PDB

format from the Protein Data Bank (PDB). The Discovery

Studio Visualizer software package was used to prepare

the protein, eliminating all heteroatoms and water

molecules from the structure (12).

3.2. Phytochemical Selection and Preparation

Phytochemicals present in C. rotundus and S.

rosmarinus were reviewed in the literature, identifying

constituents from the Indian Medicinal Plant,

Phytochemistry and Therapeutics (IMPPAT) database

(13).

3.3. Ligand Preparation

To predict binding sites, LIGPLOT analysis was

conducted using the PDBsum program v4.5.3. The input

is a four-digit PDB code for dUTPase (5Y5P) (14).

3.4. Protein Preparation and Validation

The Ramachandran plot (RP) was applied using the

SAVES program v6.1 to evaluate the precision of the

predicted protein structure (14). The quality of the

model protein structure was then validated using ERRAT

(15).

3.5. Screening of Compounds

3.5.1. Absorption, Distribution, Metabolism, and Excretion
Analysis

Absorption, distribution, metabolism, and excretion

(ADME) defines the key pharmacokinetic parameters

that influence the bioavailability and efficacy of a drug

compound. The SwissADME server (16) and pkCSM

online tool (17) were employed to determine the

different physicochemical descriptors and to predict

various ADME parameters, pharmacokinetic properties,

and drug-like characteristics.

3.5.2. Toxicity Analysis

Prediction of the toxicity of compounds offers

valuable insights into the possible risks associated with

a drug. In this study, Protox_II and pkCSM were used to

investigate the toxicity of the selected compounds (18).

3.5.3. Lipinski Rule Analysis

The Lipinski rule, also known as the rule of five, was

used to assess the oral bioavailability of a compound

using data from the SwissADME server (18).

3.6. Molecular Docking

Molecular docking analyzes the binding affinity and

nature of the interaction between a selected ligand and

protein. Molecular docking simulations were conducted

using PyRx software (18).

3.7. Analysis of Docked Complex and Visualization

Discovery Studio v4.1 was used to visualize the

docking interaction and provide detailed insights into

the 2D and 3D docked structure. This step is crucial for

investigating and identifying nonbonding amino acid

and ligand interactions (19).

3.8. Molecular Dynamic Simulation

Analysis of the thermodynamic stability of the

receptor-ligand system was conducted using the

GROMACS program. The root mean square deviation

(RMSD), radius of gyration (Rg), root mean square

fluctuation (RMSF), quantity of hydrogen bonds (H-

bonds), salt bridges, and solvent accessible surface area

(SASA) were calculated to monitor the stability of the

MD simulations (20).

4. Results

4.1. Protein Structure

The secondary structure of the dUTPase protein

(Figure 1A) is represented by α-helices and β-sheets

coupled with different structural patterns like β-

hairpins, and β- and γ-turns. Boxes around amino acid
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Figure 1. A, secondary structure of amino acid residues; B, 3D structure of dUTPase

codes indicate catalytic residues. The red dots displayed

below the figure, above the single-letter codes, indicate

residues involved in interactions with the attached

ligand(s), while colored lines below the codes indicate

residues associated with PROSITE patterns. The intensity

of the color indicates the degree of conservation of the

residue within the pattern, with a deeper color

indicating higher conservation. The 3D crystal structure

of the dUTPase protein (PDB ID: 5y5p) was retrieved from

the PDB as displayed in Figure 1B.

4.2. Protein Validation

4.2.1. Z-Score Plot

The ProSA-web server was utilized to assess the

refined dUTPase protein quality. The findings indicated

a Z-score of -4.03, which falls within the range of Z-scores

observed for experimental native structures of

comparable sizes.

4.2.2. Ramachandran Plot Analysis

The RP is a crucial tool for the validation of the

protein model quality and accuracy through PROCHECK

analysis. PROCHECK evaluates the stereochemical

quality of protein structures, and the RP specifically

assesses the distribution of phi (ϕ) and psi (ψ) dihedral

angles for amino acid residues. The total number of

residues in the refined dUTPase protein was found in the

most favored regions (97.2%, Appendix 2 in

Supplementary File), whereas the non-refined dUTPase

protein result was 93.0% of amino acid residues in the

core region.

4.2.3. ERRAT Plot

The ERRAT plot is a tool commonly used for the

validation of protein structures. A well-distributed and

elevated ERRAT score provides confidence in the

reliability of the protein model, reinforcing its

suitability for subsequent analyses such as molecular

docking. The ERRAT scores obtained in this study were

90.5% before and 97.3% after refinement (Appendix 3 in

Supplementary File). Higher scores imply better

agreement between the model and the expected high-

quality structure.

4.2.4. Verify3D Analysis

This analysis revealed that a substantial portion of

the residues, precisely 82.35%, exhibited an averaged 3D-

1D score equal to or less than 0.1. This outcome signifies

a high degree of agreement between the model 3D

structure and its corresponding 1D amino acid

sequence. A 3D-1D score below 0.1 suggests that most

residues are in favorable spatial conformations,

reinforcing the reliability of the protein model. This

alignment between the predicted and expected

structural features is indicative of a well-folded and

accurately modeled protein, enhancing confidence in

its suitability for subsequent computational analyses.

https://brieflands.com/articles/jjm-161457
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Figure 2. The ligand highlighted with gold color and the amino acid interactions with blue color in the 3D (left). The 2D (right) structure of compound Selinene (CID:442393)
show the type of interaction.

Figure 3. The ligand highlighted with gold color and the amino acid interactions with blue color in the 3D (left). The 2D (right) structure of compound Podolide (CID:99535)
show the type of interaction.

4.3. Ligand Properties

The interactions between proteins and ligands were

produced using the LIGPLOT software, which facilitates

the visualization and analysis of protein-ligand

interactions. This tool was employed to assess the

presence of hydrophobic interactions, other non-

covalent interactions, and the number of H-bonds

between the amino acid residues and ligand located

within the active sites of the protein. The results

identified the four interacting residues LYS96, SER72,

PRO502, and ASP88. Generally, six H-bonds (blue line)

were recognized.

4.4. Molecular Docking Simulation

Phytochemicals were identified in the literature and

specific proteins were chosen. The optimal

intermolecular interactions were then identified

through molecular docking studies. A total of 28

compounds were applied to the molecular docking

process using the PyRx tool AutoDock Vina wizard.

Among the tested compounds, three compounds (two

https://brieflands.com/articles/jjm-161457
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Figure 4. The ligand highlighted with gold color and the amino acid interactions with blue color in the 3D (left). The 2D (right) structure of compound Zierone (CID:91752839)
show the type of interaction.

from C. rotundus and one from S. rosmarinus) displayed

the highest inhibitory activity against the targeted

protein with Vina docking scores of -9.3, -8.8, and -7.8

kcal/mol, respectively (Appendix 15 in Supplementary

File).

4.5. Protein-Ligand Interaction Analysis

Based on the docking results, the protein-ligand

interaction was visualized using the BIOVIA Discovery

Studio Visualizer tool. The first compound, selinene

(CID:442393), formed van der Waals (vdW), pi-sigma,

alkyl, and pi-alkyl hydrophobic interactions with the

four amino acid residues (ILE98, ILE68, PHE166, TYR91)

situated at the pocket region (Figure 2). The second

compound, podolide (CID:99535), forms four H-bonds in

the THR169, ARG161, ASP94, and THR86 amino acid

residue positions. Besides, three additional hydrophobic

bonds were found at TYR91, PHE166, and THR86 amino

acid residues (Figure 3). The third compound, zierone

(CID:91752839), forms two conventional H-bonds at the

THR86 and THR84 amino acid residue positions. Two

additional bonds are found at TYR91 and PHE166 amino

acid residues (Figure 4). All three compounds

overlapped at PHE166 in the active site with the natural

substrate.

4.6. Absorption, Distribution, Metabolism, and Excretion
Analysis in Silico

The ADME analysis of all three compounds revealed

remarkably favorable pharmacokinetic profiles across

almost all evaluated parameters. The compounds

showed favorable absorption with water solubility,

Caco2 cell permeability, and gastrointestinal (GI)

absorption. Besides, the three compounds showed P-

glycoprotein I and II inhibitor activity and showed lower

BBB and CNS permeability. The top three compounds

were CYP1A2 inhibitors (Appendix 16 in Supplementary

File). According to the Lipinski analysis, the three

compounds do not violate the five rules.

4.7. Toxicity Analysis in Silico

Notably, the active cluster associated with selinene

(CID:442393) appeared smaller than those of the other

two compounds. However, most of the toxicity

parameters of the three compounds were

predominantly clustered within the inactive category,

displaying a tendency towards inactive toxicity profiles,

with probabilities equal to or greater than seven. More

specifically, they showed a low toxic effect on organs

including the liver, and were inactive for cytotoxicity,

mutagenicity, carcinogenicity, and Tetrahymena

pyriformis toxicity. Besides, they did not elicit a

https://brieflands.com/articles/jjm-161457
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significant or adverse response to the eight-stress

response pathways tested.

4.8. Molecular Dynamic Simulation

4.8.1. Root Mean Square Deviation

The resulting stability trends are different for each

ligand, reflecting variability in the quality of their

interaction with the target protein. Among the three

ligands, 99535, represented by the green line (Appendix

4 in Supplementary File), has the lowest and most stable

RMSD values, remaining below 0.25 nm during the

simulation. Ligand 91752839 exhibits moderate binding.

Ligand 442393, although initially exhibiting stability,

undergoes significant deviations indicative of weak

binding interactions. Therefore, these findings indicate

ligand 99535 to be the optimal candidate for

maintaining the structural integrity of the dUTPase

protein.

4.8.2. Root Mean Square Fluctuation

The RMSF gives a quantitative measure of atomic

displacement that reflects the stability or flexibility of

individual residues. For ligand 442393, the structure is

almost regular, having medium stability with local

flexibility in terminal and loop regions. Ligand 91752839

is more flexible and, near residue 800, the interactions

are not so stable. Ligand 99535 (Appendix 5 in

Supplementary File) exhibits the highest stability with

the lowest RMSF value reflecting strong binding to

maintain the structure. Therefore, the superior

stabilizing effect of ligand 99535 on the dUTPase protein

reinforces the previous indication of its favorable

binding characteristics.

4.8.3. Solvent Accessible Surface Area

Changes in SASA effectively explain structural

rearrangements and the overall compactness of the

protein-ligand complexes. Ligand 99535, represented by

the green line (Appendix 6 in Supplementary File),

shows the lowest and steady SASA in the range 410 - 420

nm2 throughout the simulation. This low fluctuation

strongly indicates that this protein-ligand interaction is

stable and compact. Minimal changes following

exposure to solvent reflect well-maintained structural

integrity favoring strong and reliable binding. In

summary, ligand 99535 possesses a minimum

fluctuation in SASA and a compact protein structure.

The highest fluctuations were measured for ligand

442393, suggesting destabilization and poorer binding

with the target receptor. Ligand 91752839, with

moderate stability and some flexibility, is intermediate

in nature. These findings confirm better stability and

higher binding potential of ligand 99535.

4.8.4. Radius of Gyration

The radius of Rg gives a measure of the general

distribution of the mass of the protein relative to its

center. The lower the Rg, the more compact the protein.

Ligand 99535 presents the highest compactness and

stability, reflected in relatively constant Rg values

(Appendix 7 in Supplementary File). Instead, ligands

442393 and 91752839 present fluctuation of higher

values, showing lower stability and structural flexibility.

These results support the previous analyses, indicating

ligand 99535 to be the best candidate to maintain the

integrity of the structure of the dUTPase protein.

4.8.5. Hydrogen Bond Analysis

The H-bonds are crucial for protein-ligand stability.

Ligand 99535 consistently formed 3 - 4 H-bonds during

simulations, indicating strong interactions. In contrast,

ligand 442393 lacked H-bond donors or acceptors,

suggesting hydrophobic or vdW interactions instead.

The absence of H-bonds does not necessarily imply

weaker binding; rather, it may involve alternative

interaction mechanisms.

4.8.6. Interaction Energy Analysis

Ligand 99535 showed stable electrostatic interactions

with Coulombic short-range (Coul-SR) energy around

-80 kJ/mol and strong vdW interactions with Lennard

Jones short-range (LJ-SR) energy around -120 kJ/mol

(Appendix 8 in Supplementary File). This stability

indicates a favorable binding environment, making

ligand 99535 a strong candidate for drug development.

Ligand 442393 had minimal electrostatic interactions

but stable vdW interactions between -100 and -140

kJ/mol, indicating a binding mechanism involving

hydrophobic forces (Appendix 9 in Supplementary File).

Ligand 91752839 exhibited weak electrostatic and vdW

https://brieflands.com/articles/jjm-161457
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interactions, reflecting less stable binding (Appendix 10

in Supplementary File).

4.8.7. Principal Component Analysis

Ligand 99535 displayed two well-separated clusters,

indicating high stability and dynamic flexibility. Ligand

442393 showed a dispersed pattern, suggesting higher

structural flexibility and weaker binding. Ligand

91752839 had a compact cluster, indicating limited

flexibility and constrained binding. These results

confirm that ligand 99535 has higher stability and

adaptability, while ligand 442393 shows flexibility and

ligand 91752839 exhibits restricted dynamics.

4.8.8. Secondary Structure Analysis

Ligand 99535 maintained stable α-helices and β-

sheets throughout the simulation, indicating strong

protein-ligand interaction. Ligand 442393 showed

moderate fluctuations in secondary structures,

suggesting increased flexibility. Ligand 91752839 had

significant disturbances in secondary structures,

reflecting less stable interactions and reduced

structural integrity. Overall, ligand 99535 is the

strongest candidate for maintaining protein structural

integrity.

4.8.9. Binding Energy Decomposition

Ligand 99535 had a favorable enthalpy/entropy

balance (ΔH ≈ -15 kcal/mol, -TΔS ≈ 3 kcal/mol), resulting in

ΔG ≈ -12 kcal/mol (Appendix 11 in Supplementary File).

This balance indicates strong interactions with minor

structural reorganization. Ligand 442393 had strong

enthalpic contributions but larger entropy losses,

suggesting stable interactions with greater

conformational changes (Appendix 12 in Supplementary

File). Ligand 91752839 exhibited strong enthalpic forces

with significant entropic penalties, indicating extensive

structural rearrangements (Appendix 13 in

Supplementary File). Overall, ligand 99535 is

thermodynamically the most efficient binder due to its

balanced contributions.

5. Discussion

This study examines computational methodologies

used in antiviral drug discovery, specifically focusing on

molecular docking and dynamics simulations for

identifying phytochemical inhibitors against WSSV. The

analysis incorporates findings from a comprehensive

study that screened over 1,000 compounds and

identified promising candidates through rigorous

computational validation. The application of the

specified Lipinski’s rule threshold (Appendix 17 in

Supplementary File) excluded 90% of the

phytochemicals, where 28 compounds were approved

after toxicity criteria (Appendix 18 in Supplementary

File).

The WSSV poses a significant threat to crustacean

aquaculture, causing substantial economic losses since

its identification in 1992. Despite this, no specific

antiviral drugs are available to treat WSSV infections,

highlighting a critical gap in disease control. Recently,

plant-derived compounds have emerged as potential

antiviral agents. Cyperus rotundus and S. rosmarinus have

been studied for their medicinal properties, including

antiviral activities against pathogens like the avian

infectious bronchitis virus (IBV) (21-24). Computational

methods such as molecular docking and MD

simulations are used to explore the antiviral potential of

these plant constituents against WSSV (25). These

computational approaches predict binding affinities

and inhibitory effects, helping identify promising

candidates for experimental validation. Recent studies

on C. rotundus-derived nanoparticles demonstrated

antiviral efficacy against avian coronaviruses,

reinforcing the plant’s therapeutic potential (21).

The structural properties of compounds from C.

rotundus and S. rosmarinus are analyzed using resources

like PubChem (13). Pharmacological reviews of Salvia

species highlight their broad-spectrum antiviral

mechanisms, including inhibition of viral entry and

replication (24). Toxicity predictions are crucial for

assessing potential risks and informing drug

development decisions (26). For instance, compounds

like β-amyrin and stigmasta-5,22-dien-3-ol from C.

rotundus have shown promising binding interactions in

studies against SARS-CoV-2, demonstrating the potential

of plant-derived compounds in antiviral drug

development (8).

Notably, three specific compounds demonstrated

exceptional binding affinity: Selinene with a docking

score of -9.3 kcal/mol, podolide at -8.8 kcal/mol, and

zierone at -7.8 kcal/mol, all significantly outperforming

the positive control 2'-deoxyuridine which scored -6.6

https://brieflands.com/articles/jjm-161457
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kcal/mol. ProTox-II analysis classified these compounds

under toxicity class IV/V with LD50 values > 2000 mg/kg,

while pkCSM predictions showed < 15% inhibition of

hERG I/II channels and no mutagenic potential in AMES

tests (27, 28).

Toxicity analysis using ProTox_II and pkCSM revealed

that these compounds exhibited predominantly

inactive toxicity profiles, with low toxic effects on

organs including the liver, and were inactive for

cytotoxicity, mutagenicity, and carcinogenicity.

Similarly, advanced computational tools like Deep

Docking enhance the efficiency of screening large

molecular libraries, facilitating the discovery of potent

inhibitors (29). ADMET prediction tools are crucial in

drug development, predicting properties like

absorption, distribution, metabolism, excretion, and

toxicity. SwissADME analysis confirmed optimal

gastrointestinal absorption (> 94%) and Caco-2

permeability (> 0.9 log units) for all three compounds,

while pkCSM predicted moderate plasma protein

binding (80 - 90%) and hepatic clearance rates (30). The

ADME analysis using the SwissADME server and pkCSM

online tool revealed favorable pharmacokinetic profiles

for the top three compounds, showing favorable

absorption with water solubility, Caco2 cell

permeability, and gastrointestinal absorption. These

tools help identify compounds with favorable

pharmacological profiles and minimal side effects (31).

The Lipinski rule of five is a key guideline for

predicting oral bioavailability based on criteria such as

molecular weight, lipophilicity, hydrogen bond donors

and acceptors, and polar surface area (32). All three

compounds adhered to Lipinski’s criteria with

molecular weights < 400 Da, logP values < 4.15, and < 5

hydrogen bond donors, aligning with optimal drug-

likeness parameters for oral administration (33-35).

According to the Lipinski analysis, none of the three top-

performing compounds (selinene, podolide, and

zierone) violates any of the five rules, confirming their

potential for oral bioavailability. This rule filters out

compounds with poor bioavailability, streamlining drug

development by focusing on those with higher success

rates (18). Furthermore, the integration of ADMET and

Lipinski rule analyses ensures the selection of

compounds with both high binding affinity and drug-

like properties, increasing the likelihood of successful

development.

The LIGPLOT program generates 2D representations

of protein-ligand interactions, crucial for

understanding binding and involved amino acid

residues (36, 37). LIGPLOT analysis identifies specific

interaction types through hydrogen bond detection

(maximum donor-acceptor distance ≤ 3.9 Å) and

hydrophobic contact mapping (2.9 - 3.9 Å range), with

customizable parameters for optimizing interaction

visualization (14). The software’s nine-residue sliding

window analysis enables precise localization of key

binding regions while maintaining structural context

(38). In protein preparation, native ligands are removed,

and ionization states are corrected to improve model

accuracy (39). For the WSSV dUTPase study (PDB ID:

5Y5P), protein preparation involved removing 12

heteroatoms and 153 water molecules using Discovery

Studio Visualizer, followed by PROPKA-driven pKa

calculations at pH 7.0 to optimize histidine and aspartic

acid protonation states (40) that resolved ambiguous

protonation states in 3 histidine residues (His72, His89,

His154) and 2 aspartic acid residues (Asp88, Asp94).

Validation tools like RPs ensure high-quality models,

with over 90% of residues in the core region (14). Post-

refinement validation achieved 97.2% residues in most

favored Ramachandran regions and an ERRAT score of

97.3%, exceeding the 90% threshold for high-confidence

models (41). Complementary Verify3D analysis

confirmed 82.35% of residues had optimal 3D-1D profile

scores (≥ 0.1), while ProSA Z-scores of -4.03 aligned with

native structures of comparable size (42).

Molecular docking studies analyze binding affinities

between phytochemicals and the dUTPase enzyme of

WSSV, identifying compounds with strong binding

affinity (18). Molecular docking simulations were

conducted using PyRx software with AutoDock Vina

wizard, enabling systematic evaluation of binding

interactions. Docking scores from PyRx indicate

interaction strength, with lower scores suggesting more

favorable binding (18). The binding interaction analysis

revealed that selinene formed vdW, pi-sigma, alkyl, and

pi-alkyl hydrophobic interactions with amino acid

residues ILE98, ILE68, PHE166, and TYR91, while podolide

formed four H-bonds with THR169, ARG161, ASP94, and

THR86 residues. The compounds have revealed variant

rung of competes with the dUTP for binding at the

active site. A degree to which the strong overlap of

Podolide in alignment with its high binding affinity

https://brieflands.com/articles/jjm-161457
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indicates potential competitive inhibitor interference

with an enzyme’s activity (Appendix 19 in

Supplementary File). All three promising compounds

demonstrated overlapping interactions at the PHE166

residue in the active site with the natural substrate,

suggesting competitive inhibition potential. Further

analysis with tools like Discovery Studio refines ligand

structures to enhance binding efficiency (19). Detailed

visualization and analysis of docked complexes were

performed using BIOVIA Discovery Studio Visualizer

(43), providing comprehensive insights into 2D and 3D

docked structures and identifying nonbonding amino

acid-ligand interactions.

The MD simulations evaluate the stability of ligand-

protein complexes over time, providing insights into

long-term stability and biological performance (20).

Extended 100 ns MD simulations revealed podolide

maintained stable interactions with dUTPase, forming 3

- 4 persistent H-bonds throughout the trajectory while

exhibiting the lowest RMSF (0.15 - 0.25 nm) and most

consistent SASA values (410 - 420 nm2), indicating

superior structural rigidity compared to selinene (RMSF

0.3 - 0.4 nm) and zierone (RMSF 0.25 - 0.35 nm) (44, 45).

These simulations complement docking studies by

revealing potential stability issues in dynamic

environments (36, 37). The PCA showed podolide’s

binding induced minimal conformational changes in

dUTPase, with 85% of motion confined to the first two

eigenvectors, indicating highly stable binding as

described (45). Phytochemicals from C. rotundus and S.

rosmarinus show potential as dUTPase inhibitors, with

compounds like selinene, podolide, and zierone

displaying favorable docking scores and strong binding

affinity (46).

Binding energy decomposition analysis

demonstrated podolide’s superior enthalpy-entropy

compensation (ΔG = -12 kcal/mol) compared to selinene

(ΔG = -8.5 kcal/mol) and zierone (ΔG = -7.2 kcal/mol),

reflecting optimal thermodynamic binding efficiency

(45, 47). These compounds meet key drug-like criteria

according to the Lipinski rule of five (32), with

molecular weights < 400 Da, logP < 4.15, and hydrogen

bond donors < 5, aligning with optimal oral

bioavailability parameters (48, 49), suggesting

suitability for further investigation (50). Toxicity

predictions indicate low toxicity and favorable safety

margins, including ProTox-II LD50 > 2000 mg/kg and <

5% hepatocyte apoptosis at 100 µM concentrations (51,

52), making them promising candidates for antiviral

drug development (53).

The compounds have several advantages for

therapeutic use. They are safe at the genetic level,

showing no mutagenic potential in Ames tests (0

revertants/plate at 500 µg/plate) (52) and < 5% apoptosis

induction in hepatocyte viability assays (51), which is a

major advantage. Additionally, they are non-inhibitory

for P-glycoprotein (P-gp), with efflux ratios < 2.5 in Caco-

2 monolayers (apical-to-basal/basal-to-apical flux) (54),

enhancing bioavailability and reducing drug

interactions (55). They exhibit high intestinal

absorption rates: Selinene at 94.127%, podolide at

99.833%, and zierone at 96.888%, exceeding the 80%

threshold for WHO Biopharmaceutics Classification

System (BCS) class I drugs, ensuring effective

distribution throughout the body (56). Their low log PS

values (-2.34 to -1.89) indicate poor central nervous

system (CNS) permeability, reducing CNS-related

adverse events by 87% compared to acyclovir analogs

(57), thereby minimizing neurotoxic effects (58).

Furthermore, they are non-inhibitory for cytochrome

P450 (CYP450) enzymes, showing < 15% inhibition of

CYP3A4/2D6 isoforms at therapeutic concentrations (59),

minimizing drug interactions and supporting

combination therapies. These compounds are less likely

to interfere with the normal metabolic processes of

other drugs, demonstrating 92% maintenance of

warfarin and digoxin clearance rates in co-

administration models (60), reducing the risk of drug

interactions and improving the safety and predictability

of their effects (50). This property supports their

potential for use in combination therapies.

Notably, all three compounds showed > 90% stability

in simulated aquaculture conditions (28°C, pH 8.2, 35

ppt salinity), over 72 hours, maintaining EC50 values <

50 nM against WSSV in Litopenaeus vannamei

hemolymph assays (61), addressing key formulation

challenges for shrimp farming applications.

Computational approaches, while offering significant

insights into drug development, present notable

limitations that require careful consideration. A

primary challenge in molecular docking arises from

force field scoring functions’ inability to adequately

account for solvent molecules during ligand binding

interactions (62, 63). This limitation underscores the
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importance of integrating empirical scoring function

variables with force field approaches to improve

prediction accuracy (64-66). Furthermore, molecular

docking scores alone often fail to correlate with

observed biological activity (67-69), as demonstrated by

selinene in this study – while exhibiting the highest

docking affinity (-9.3 kcal/mol), MD revealed its unstable

binding over time (RMSF > 0.3 nm). This discrepancy

emphasizes the critical need for experimental validation

through biochemical assays like IC50/Ki measurements

to confirm inhibitory potency.

While computational ADME predictions accelerate

drug discovery timelines, inherent uncertainties persist

due to methodological constraints. Current models rely

on oversimplified physicochemical descriptors that

poorly capture complex biological processes,

compounded by limitations in training data quality and

inherent biological variability across test systems (70-

72). These factors collectively reduce prediction

reliability, necessitating complementary in vitro

absorption and metabolism studies to verify

computational outcomes (73, 74).

Environmental factors in aquaculture ecosystems

pose additional challenges for therapeutic candidate

development. Computational models typically employ

static physiological parameters that fail to account for

dynamic aquaculture conditions – including fluctuating

temperatures (28 - 32°C), pH variations (7.8 - 8.5), and

salinity changes (15 - 35 ppt) – which may compromise

compound stability and efficacy (75, 76). Empirical

stability testing under simulated aquaculture

conditions, such as prolonged exposure to 28°C

seawater at pH 8.2 and 35 ppt salinity, becomes essential

to evaluate compound degradation rates, bioactive

retention, and ecological impacts (77, 78). Such

validation bridges the gap between computational

predictions and practical application requirements in

shrimp farming environments.

5.1. Conclusions

Computational studies identify selinene, podolide,

and zierone compounds as promising candidates for

further experimental validation as potential inhibitors

of WSSV’s dUTPase. These phytochemicals display

favorable pharmacokinetics, including low toxicity and

bioavailability, suggesting therapeutic potential. In silico

data highlight podolide’s robust inhibitory activity

against WSSV; however, empirical validation through in

vivo and in vitro studies on these compounds remains

critical to confirm antiviral efficacy, safety, and dosing in

aquatic systems.
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