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Abstract

Background: Hepatitis B virus (HBV) infection remains a major global health challenge, implicated in approximately 80% of

hepatocellular carcinoma (HCC) cases. The hepatitis B virus X protein (HBx) plays a critical role in both viral replication and

oncogenesis. Novel therapeutic strategies are urgently needed to suppress HBV persistence and its oncogenic effects. RNA

interference (RNAi) — a natural gene-silencing mechanism mediated by double-stranded RNAs — holds significant therapeutic

potential.

Objectives: Therefore, this study aimed to design effective short hairpin RNA (shRNA) molecules targeting the hepatitis B virus

X (HBX) gene.

Methods: Complete HBV genome sequences representing all major genotypes were retrieved from the NCBI GenBank

database. Conserved regions of the HBX gene were identified via multiple sequence alignment using Clustal Omega. Candidate

shRNAs were designed using three computational tools: The WI short interfering RNA (siRNA) Selection Program, BLOCK-iT RNAi

Designer, and siRNA Wizard. These shRNAs were evaluated for GC content, thermodynamic stability, and secondary structure

using CLC Genomics Workbench. Specificity was confirmed through BLAST analysis against the human genome to exclude

potential off-target interactions.

Results: Sixteen candidate shRNAs were generated from the design platforms and screened for optimal structural and

functional characteristics. Three shRNAs demonstrated the most favorable properties, including optimal GC content, high

sequence conservation across HBV genotypes, strong target accessibility, and absence of significant off-target homology. These

candidates are predicted to efficiently silence HBX gene expression.

Conclusions: Computational design of shRNAs targeting conserved HBX sequences identified three high-scoring candidates

with potential therapeutic application. These molecules provide a basis for future experimental validation and may contribute

to the development of shRNA-based therapies for HBV infection and HBV-associated HCC.
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1. Background

Hepatitis B virus (HBV) infection is a serious global

health problem and a significant cause of morbidity and

mortality due to severe complications such as liver

decompensation, cirrhosis, and hepatocellular

carcinoma (HCC). Approximately one-third of all liver

cancer deaths worldwide are attributed to HBV

infection. Each year, about 820,000 people die from liver

cirrhosis and HCC as a consequence of over 1.5 million

new HBV infections annually (1, 2). The HBV establishes

covalently closed circular DNA (cccDNA) for long-term

persistence in hepatocytes (3). Chronic HBV infection

persistence in the liver is linked to oxidative DNA
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damage, genomic instability, immune-mediated necro-

inflammation, and cancer development (4).

The HBV virions contain small (~3.2 kb) relaxed

circular DNA (rcDNA), which converts to nuclear

cccDNA. This cccDNA persists in hepatocyte nuclei,

acting as a transcriptional mini-chromosome template

for viral protein expression and genome replication (5).

The genome consists of four overlapping open reading

frames (ORFs) encoding preS/S, preC/C, P, and X proteins

(6). The hepatitis B virus X protein (HBx) activates

various viral and cellular promoters and enhancers and

plays a central role in HBV-related hepatocarcinogenesis

(7). The HBx participates in viral replication and

promotes HCC via multiple mechanisms. It integrates

into the hepatocyte genome, induces oxidative stress,

activates oncogenic pathways, and drives epigenetic

alterations disabling tumor suppressors and genomic

stability. The HBx also enhances angiogenesis,

extracellular matrix degradation, and metastasis by

upregulating angiogenic factors, matrix

metalloproteinases, and dysregulating cancer-

associated microRNAs (miRNAs) and long non-coding

RNAs (lncRNAs), facilitating tumor progression (8).

RNA interference (RNAi) using short hairpin RNA

(shRNA) or short interfering RNA (siRNA) offers a

promising therapeutic approach for cancer (9). The

RNAi achieves sequence-specific post-transcriptional

gene silencing through double-stranded RNAs (10). It is

initiated by 20 - 25 base pairs siRNAs or miRNAs, leading

to efficient gene silencing. The siRNAs can also be

expressed as shRNA from plasmid DNA (pDNA) or viral

vectors under RNA polymerase III promoters (11). After

transcription, shRNA moves to the cytoplasm for

processing by Dicer into siRNA duplexes. Like synthetic

siRNA, this endogenous siRNA binds target messenger

RNA (mRNA) and loads into the RNA-induced silencing

complex (RISC), causing mRNA degradation. Studies

confirm RNAi’s therapeutic potential for diseases such

as viral hepatitis and cancers (12).

The shRNAs are often more efficient than siRNAs for

gene silencing due to continuous transcription within

host cells, ensuring sustained siRNA supply after Dicer

processing. Synthetic siRNAs, however, are transient and

are gradually degraded or diluted during cell division,

resulting in shorter silencing duration (13). A key shRNA

advantage over siRNAs is stable genomic integration via

viral vectors, providing durable knockdown (14). The

RNAi-based therapies targeting HBV offer viral gene

specificity and can inhibit HBV replication and

integrated viral DNA transcripts, potentially reducing

side effects versus conventional treatments.

Simultaneously targeting multiple viral regions may

enhance efficacy and lower risks of disease progression

and HCC development (15).

2. Objectives

The current research focused on the computational

design of potential shRNAs targeting the hepatitis B

virus X (HBX) gene of HBV to provide a foundation for

future therapeutic development.

3. Methods

3.1. Selection of Hepatitis B Virus X Gene Conserved Regions

Based on the genome sequence, HBV has been

classified into 10 well-known genotypes (A to J) (16). The

major classification of HBV genotypes by sequence

divergence has been further divided into subgenotypes

or serotypes. Based on serological reactivities of

hepatitis B surface antigen (HBsAg), HBV is classified

into four major subtypes: The adw, adr, ayw, and ayr (17).

Generally, adw subtypes occur in all genotypes except D

and E, while ayw subtypes dominate genotypes B and D.

Conversely, adr and ayr subtypes associate primarily

with genotype C (18, 19).

Complete HBV reference sequences were obtained

from the viral gene bank database within the National

Institutes of Health (NIH) genetic sequence database

(20). The Clustal Omega website — a multiple sequence

alignment tool — was used to align complete coding

sequences (CDS) and select conserved regions (21). For

shRNA design, the HBX region of HBV genotypes was

targeted. Note that mismatches between target mRNA

and shRNA significantly affect shRNA efficacy. This

approach ensures engineered shRNA molecules

correspond to conserved consensus sequences.

Consequently, subsequent analysis focused on regions

of high homology between target sites and mRNAs.

3.2. Development of Short Hairpin RNA Molecules Targeting
the Hepatitis B Virus X Gene

Three online tools were used to design shRNA: The WI

siRNA Selection Program, Invitrogen BLOCK-iT RNAi

Designer

https://brieflands.com/journals/jjm/articles/164355
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(https://rnaidesigner.lifetechnologies.com/rnaiexpress/),

and siRNA Wizard Software (InvivoGen) (22). Each tool

offers distinct advantages, with parameters and siRNA

activity features calculated based on application (in

vitro, in vivo) and targets (cellular, viral) (23).

For improved shRNA design, this study carefully

evaluated guide structure and sequence characteristics.

Sequence selection should avoid regions within 50 - 100

nucleotides of start/stop codons due to transcriptional

factor occupancy, while also excluding single nucleotide

polymorphism (SNP) sites and intronic SNPs. Target

sequence GC content must be 45 - 65% for shRNA

stability (24, 25). Structural rules address

thermodynamic and secondary structure features of the

target site, defining binding energy functionality and

optimal duplex energy differentials. The mRNAs lacking

rigid secondary structures exhibit stronger shRNA

binding than highly structured conformations. These

rules control shRNA target accessibility and

shRNA/target duplex thermodynamics (26).

CLC Genomics Workbench software predicted

secondary structures of the HBX gene and designed

shRNAs interactions (14). Constructed sequences

underwent manual analysis using algorithms by Ui-Tei

et al., Reynold et al., and Jagla et al. to optimize shRNA

efficiency (27-29).

3.3. Similarity Search

To evaluate the specificity of the designed shRNAs, a

Nucleotide BLAST search was performed using the

human genomic and transcript database to identify off-

target sequence similarities in non-targeted genomes

(22). Based on the results, shRNAs exhibiting 16 or more

consecutive nucleotides of homology to any other

mRNAs were excluded from the suggested list (24, 30).

3.4. Secondary Structure Prediction of Hepatitis B Virus X
Gene

The GC content of the predicted shRNAs was

calculated using the Oligo Analyzer Calculator (31). GC

content influences shRNA stability, functionality, and

target affinity. Higher GC content may slow duplex

unwinding, while lower GC percentage can compromise

target affinity efficiency. Secondary structures of HBX

were predicted using CLC Genomics Workbench

software. To verify shRNAs alignment with target gene

regions, a BLAST search was conducted using the

predicted mRNA secondary structure. The shRNAs

located in stem or congested areas were excluded from

analysis.

3.5. Choosing Short Hairpin RNAs with the Best Score

In this study, the sequence specificity, GC content,

and off-target potential of the predicted shRNAs were

reevaluated to verify their effectiveness. According to

the results, the three highest-scoring shRNAs were

ultimately chosen. The nucleotide sequence TCAAGAG

served as the loop sequence between the sense and

antisense strands (14).

4. Results

4.1. Sequence Alignment

The methodology of RNAi is applicable for targeting

viral genes with high degrees of sequence conservation.

In this study, approximately 100 gene sequences from

different HBV genotypes were obtained from the NCBI

GenBank database. The Clustal Omega sequence

alignment program identifies consensus regions

through multiple sequence alignment. The HBX

conserved regions were considered for shRNA selection

(Figure 1).

4.2. Short Hairpin RNA Design

The BLOCK-iT RNAi Designer, WI siRNA Selection

Program, and siRNA Wizard online tool were utilized to

provide functional shRNA designs. These resources were

carefully examined to design the most efficient

molecules. The WI siRNA Selection Program effectively

demonstrated the off-target effects associated with the

siRNA guide strand's seed region and complementary

sequences in target sites across various species. The

Whitehead server proposed sixteen shRNAs, BLOCK-iT

RNAi Designer proposed ten, and Invitrogen proposed

eight; these were manually reviewed for optimal design.

The numbers of shRNAs meeting the desired parameters

are listed in Table 1. Before final scoring, BLAST searches

were performed against expressed sequences to ensure

the shRNA constructs targeted only HBX.

4.3. Secondary Structure and Interactions

CLC Genomics Workbench was applied to predict the

RNA secondary structure and interactions between

https://brieflands.com/journals/jjm/articles/164355
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Figure 1. Multiple sequence alignment of hepatitis B virus X (HBX) gene in different hepatitis B virus (HBV) genotypes by using ClustalW software

shRNAs and mRNA, as shown in Figure 2. We determined

that HBX shRNAs 1, 2, and 3 were highly potent in

reducing viral mRNA and protein expression (Figure 3).

The shRNA design workflow is schematically

summarized in Figure 4.

5. Discussion

The application of shRNA technologies presents

several advantages, including the stable integration of

expression constructs into genomic DNA to support

prolonged expression. Furthermore, viral vectors can

infect typically hard-to-target cell lines and tissues,

while shRNA transcription can be temporally regulated

using inducible promoters (13). In HBV-infected patients,

HBx is frequently expressed in HCC tissue, where it

facilitates the activation of various viral and cellular

promoters and enhancers crucial for viral replication

and HCC development. The HBx coding region

integrates into specific sites within the host cell's

chromosomal DNA (32). Additionally, HBx expression

regulates numerous cellular signal transduction

pathways involved in cell migration and invasion (33).

Knockdown of the HBX gene by shRNAs disturbs these

critical functions.

Despite considerable progress in controlling and

preventing many viral diseases, the lack of effective

drugs against most viral infections remains a major

medical need. Therefore, the clinical application of RNAi

is important in gene therapy because it allows precise

targeting of viral genes. For example, Huang et al. used

https://brieflands.com/journals/jjm/articles/164355
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Table 1. Characteristics of Effective Short Hairpin RNA Molecules Targeting Hepatitis B Virus X Gene a

HBX
shRNA
ID

Location of
Target Within

mRNA b
Sequence Length

GC %
c

Conserved

Sequence d

Un-
conserved

Sequence e

U at
Position 10

(Sense) f

Proper Regions of
the RNA Secondary

Structure g

Crowded Regions
of the RNA
Secondary

Structure h

1 266 TGCCCAAGGTCTTACATAAGAGG 23 42 * - * - *

2 334 TTCAAAGACTGTGTGTTTAAAGA 23 32 * - * * -

3 422 GCACCATCATCATGCAACTTT 21 42.86 * - * * -

4 273 GGTCTTACATAAGAGGACTCTTGGA 25 44 - * * * -

5 284 AGAGGACTCTTGGACTCCCAGCAAT 25 52 * - * * -

6 404 AGGCATAAATTGGTCTGCGCACCAT 25 48 * - * * -

7 393 TAGGAGGCTGTAGGCATAAATTG 23 47 * - - * -

8 397 AGGCTGTAGGCATAAATTGGTCT 23 42 * - - * -

9 338 AAGACTGTGTGTTTAAAGACTGG 23 37 - * * - *

Abbreviations: HBX, hepatitis B virus X gene; shRNA, short hairpin RNA; mRNA, messenger RNA.

a In the table constructed based on the scoring system, each shRNA that met the specified criteria is marked with an asterisk (*), and ultimately, the sequences with the highest
overall scores are selected.

b Location of target within mRNA (locus on the HBX gene).

c GC content (should be in the range of 45 - 65%).

d Conserved sequence [conserved regions among the hepatitis B virus (HBV) genotypes].

e Un-conserved sequence (un-conserved regions among the all genotypes of HBV).

f U at position 10 (sense) potentially improving RISC cleavage.

g Proper regions of the RNA secondary structure (accessible and unstructured regions of the target mRNA that allow efficient binding of the shRNA).

h Crowded regions of the RNA secondary structure (these are highly structured or sterically hindered parts of the mRNA that are less suitable for shRNA binding).

Figure 2. Short hairpin RNA (shRNA) target sites (blue) on the hepatitis B virus X (HBX) gene messenger RNA (mRNA) secondary structure predicted using CLC Genomics
Workbench software

DNA vector-based shRNAs to prevent influenza virus

infection in vitro by targeting the PB2 gene (34). Cheng

et al. conducted a study to inhibit HBsAg expression in

HBV models using a shRNA expression system (35). Ter

Brake’s team tested a strategy employing multiple

shRNAs against the human immunodeficiency virus

type 1 (HIV-1) Pol and Gag genes to avoid viral escape (36).

However, shRNA molecules offer advantages over siRNA,

including compatibility with viral vectors; therefore, we

applied shRNA molecules to prevent HBV replication by

repressing the HBX gene.

We designed these molecules using three online

tools: BLOCK-iT RNAi Designer, WI siRNA Selection

Program, and siRNA Wizard. We predicted the secondary

structures and target accessibility of the shRNA

molecules using CLC Genomics Workbench software. To

predict effective molecules, we diligently assessed

scoring criteria such as GC content, an uracil (U) residue

at position 10, DNA sequence conservation, BLASTN

https://brieflands.com/journals/jjm/articles/164355
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Figure 3. Characteristics of the short hairpin RNAs (shRNAs) with the highest score

Figure 4. Flowchart of steps and methodology for short hairpin RNA (shRNA) design

specificity analysis, and uncrowded regions in RNA

secondary structures. Finally, we selected three

molecules with the highest score. We plan to apply a

lentivirus-mediated shRNA expression vector to prevent

HBX gene expression in HCC cell line models.

https://brieflands.com/journals/jjm/articles/164355
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An in-silico prediction and experimental validation of

siRNAs targeting hepatitis B/C viruses has been

performed previously (37, 38). He et al. indicated that

cells with HBx knockdown showed increased sensitivity

to 5-fluorouracil and cisplatin treatment (39). Moreover,

combining HBx-targeted RNAi with chemotherapy

significantly enhanced apoptosis and inhibited

proliferation in HCC cells. The findings demonstrate

that designed shRNA constructs effectively suppress HBx

expression and consequently inhibit HBV replication in

HCC cell lines, providing strong evidence for RNAi as a

promising therapeutic strategy against HBV persistence

and its oncogenic pathways.

Importantly, the present study offers a distinct

advancement over previous HBV shRNA designs by

applying a pan-genotypic sequence conservation

analysis across HBV genotypes A - J to identify highly

conserved domains within the HBX gene. This ensures

broader antiviral coverage and significantly reduces the

potential for viral escape mutations. Additionally,

thermodynamic models and siRNA efficacy scoring

algorithms were integrated to optimize shRNA stem-

loop structures for enhanced potency and minimal off-

target effects; host transcriptome screening further

improved specificity and safety.

The designed shRNA constructs will be

experimentally validated in HCC cell lines, such as

HepG2, Hep3B, and Huh7, to assess their ability to

suppress HBX gene expression and inhibit viral

replication. The efficiency of these constructs in

downregulating viral transcripts and proteins will be

evaluated using quantitative reverse transcription

polymerase chain reaction (RT-PCR) and Western blot

analyses. Functional assays will measure their effects on

cell viability, proliferation, and apoptosis. If successful,

these findings could lead to the use of shRNA-mediated

HBX silencing as a therapeutic strategy to suppress HBV

infection and prevent HBx-associated

hepatocarcinogenesis. This approach could contribute

to developing novel RNAi-based gene therapies for

chronic HBV infection and HBV-induced liver cancer.

5.1. Conclusions

In conclusion, a critical gap remains in the

availability of effective antiviral agents for treating HBV

infection. The shRNA therapeutics represent a

promising strategy due to their capacity for sustained

gene silencing and prolonged expression. By specifically

targeting and inhibiting pathogenic viral genes, shRNA-

based interventions could significantly reduce disease

progression. This sustained antiviral effect may

substantially decrease the burden of HBV infection,

offering new hope for patients and healthcare providers

in managing this widespread disease. In this study, we

designed and computationally evaluated a series of

shRNAs targeting the HBX gene as a potential RNAi-

based therapeutic strategy. Structural and functional

predictions suggest these shRNAs effectively bind and

silence HBX transcripts, potentially reducing HBx

protein levels and inhibiting viral replication and

associated oncogenic pathways. Given HBx's central role

in HBV persistence, oxidative stress induction, and HCC

progression, silencing this gene may provide dual

benefits by suppressing viral replication and limiting

HBV-induced tumorigenesis. Future validation in HCC

cell lines will determine their functional efficacy and

therapeutic applicability.
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