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Abstract

Background: Leishmaniasis, a neglected tropical disease, impacts millions, especially in resource-limited areas.

Objectives: This study examines the chemical composition and anti-leishmanial potential of Zataria multiflora and Thymus

vulgaris essential oils against Leishmania major, a key cause of cutaneous leishmaniasis (CL).

Methods: The chemical composition of Z. multiflora and T. vulgaris essential oils was analyzed by gas chromatography-mass

spectrometry (GC-MS). Their anti-leishmanial effects against L. major promastigotes (31.25 - 1000 µg/mL) were evaluated via flow

cytometry, while anti-amastigote activity was determined by counting infected macrophages using light microscopy.

Cytotoxicity against J774 cells was assessed with the MTT assay after 48 hours.

Results: The main compounds in T. vulgaris and Z. multiflora essential oils were thymol (49.83% and 46.46%, respectively), along

with γ-terpinene (14.93%) and cymene (10.99%) in the former, and carvacrol (32.47%) in the latter. Both oils showed activity

against L. major promastigotes (IC50 = 92.75 and 59.69 µg/mL, respectively) and amastigotes (48 hours) (IC50 = 100.68 and 87.28

µg/mL, respectively). Cytotoxicity on J774 cells (CC50 = 820.4 and 799.6 µg/mL) resulted in Selectivity Indices (SI) of 8.84

(promastigote) and 8.14 (amastigote) for T. vulgaris, and 13.39 (promastigote) and 9.16 (amastigote) for Z. multiflora. In the

promastigote assay, amphotericin B [20 µg/mL, positive control (PC)] caused 89.71% mortality, confirming assay validity.

Conclusions: This study demonstrates the anti-leishmanial potential of Z. multiflora and T. vulgaris essential oils against L.

major, but further in vivo validation is required.
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1. Introduction

Leishmaniasis, a neglected tropical disease,

represents a major global public health challenge

affecting nearly 100 countries worldwide, with an

estimated annual incidence of 700,000 to 1 million new

cases (1, 2). This vector-borne disease exhibits

disproportionate prevalence in resource-limited regions

with inadequate healthcare infrastructure, particularly

in parts of Asia, Africa, Latin America, and the Eastern

Mediterranean basin (3, 4). Leishmaniasis is caused by

protozoan parasites of the genus Leishmania, which are

transmitted to humans via the bites of infected female

phlebotomine sand flies (5). The disease manifests in

various clinical forms, including cutaneous

leishmaniasis (CL), visceral leishmaniasis, and

mucocutaneous leishmaniasis. Cutaneous

leishmaniasis represents the most prevalent clinical

form of the disease, characterized by debilitating and

disfiguring skin lesions (6).
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Conventional pharmacotherapeutic agents

employed for leishmaniasis management, including

antimonials, amphotericin B, miltefosine, and

paromomycin, have exhibited diverse efficacy profiles

(7). Nevertheless, concerns surrounding drug resistance,

extended treatment protocols, and adverse events have

undermined the clinical viability of these conventional

agents (8, 9). Furthermore, the elevated costs and

restricted accessibility of these drugs in endemic

regions have amplified the healthcare disparities.

Consequently, the suboptimal efficacy, high

expenditure, and toxicity associated with current

leishmaniasis pharmacotherapies have motivated the

exploration of alternative treatment modalities (10). In

recent years, there has been a surge of interest in the

utilization of natural products, particularly essential

oils derived from medicinal plants, as potential sources

of novel anti-leishmanial agents (11).

Zataria multiflora and Thymus vulgaris are two

aromatic plant species that have been extensively

recognized for their diverse medicinal attributes and

have been traditionally employed in folk medicine for

the treatment of various ailments (12-14). Zataria

multiflora and T. vulgaris have been widely used not only

in traditional medicine but also as culinary herbs,

underscoring their safety profile and low toxicity in

human consumption. This dietary use supports their

potential as biocompatible alternatives to synthetic

drugs, which often exhibit severe side effects (15).

Preliminary studies have provided evidence for the

anti-leishmanial potential of these plants. For instance,

a hydroalcoholic extract of T. vulgaris has been shown to

be significantly more effective than systemic

glucantime in reducing ulcer size in Leishmania major-

infected BALB/c mice (16). Furthermore, thymol and

carvacrol, the principal bioactive components of these

plants, have demonstrated direct activity against

Leishmania parasites, with synthesized derivatives

showing high potency and promising Selectivity Indices

(SIs) (17). More recently, green-synthesized silver

nanoparticles using T. vulgaris extract exhibited

significant anti-leishmanial activity against both

promastigote and amastigote forms of L. major (18).

Zataria multiflora, commonly referred to as Avishan-e-

Shirazi or Shirazi thyme, is indigenous to Iran and other

regions of the Middle East. This plant is known to be rich

in essential oils and has been extensively documented to

exhibit antimicrobial, antioxidant, and anti-

inflammatory properties (19, 20). Thymus vulgaris,

commonly referred to as common thyme, is widely

distributed throughout Europe and the Mediterranean

region, and has been utilized in traditional medicinal

practices for centuries (21).

The chemical composition of essential oils extracted

from Z. multiflora and T. vulgaris has been extensively

investigated, unveiling the presence of a diverse array of

bioactive compounds, including monoterpenes,

sesquiterpenes, and phenolic compounds (22, 23). These

compounds are renowned for their wide-ranging

biological activities, encompassing antimicrobial and

antiparasitic properties (24). While previous studies

have primarily focused on crude extracts of these plants

or their use in synthesizing nanoparticles, our study

targets their essential oils directly, which are more

concentrated in bioactive compounds due to their

hydrophobic nature and distillation-based extraction.

Essential oils typically exhibit higher potency against

pathogens compared to extracts, as they contain volatile

terpenoids and phenolics that directly interfere with

microbial membranes (25, 26).

2. Objectives

Given the limited and indirect data on the anti-

leishmanial activity of the essential oils themselves

(particularly from Z. multiflora and T. vulgaris) and their

advantage of being natural, low-toxicity agents, this

study aims to: Analyze the chemical composition of

their essential oils, evaluate their efficacy against L.

major, highlight their potential as safer therapeutic

candidates for CL, addressing the unmet need for non-

toxic treatments.

3. Methods

3.1. Plant Materials

The aerial parts of Z. multiflora and T. vulgaris were

collected in May 2023 from the mountainous regions

surrounding Darab city in Fars Province, Iran. Plant

identification was conducted by Dr. Moein, a specialist

in pharmacognosy at the Faculty of Pharmacy, Shiraz

University of Medical Sciences, Shiraz, Iran. Voucher

specimens of Z. multiflora (PM-1431) and T. vulgaris (PM-

1430) were deposited in the Herbarium of the

Department of Pharmacognosy, School of Pharmacy,

Shiraz University of Medical Sciences, Iran.

3.2. Preparation and Extraction of Essential Oils
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The essential oils of Z. multiflora and T. vulgaris were

extracted by hydrodistillation of the leaves using an all-

glass Clevenger-type apparatus for a duration of 4 hours

(27). The resulting essential oils were dehydrated using

sodium sulfate and stored in a dark environment at 4°C

until further analysis.

3.3. Gas Chromatography and Mass Spectrometry Analysis

Gas chromatography/mass spectrometry (GC/MS)

analysis was performed using a Hewlett-Packard

6890/5973 instrument operating at an ionization energy

of 70.1 eV. The system was equipped with an HP-5

capillary column (phenyl methyl siloxane, 25 m × 0.25

mm i.d.), and helium (He) was employed as the carrier

gas with a split ratio of 1:20. The oven temperature

program included a three-minute hold at 60 °C,

followed by a ramp to 260 °C for the detector. The carrier

gas flow rate was set to 0.9 mL/min. To calculate the

retention indices (RIs), the retention times of n-alkanes

injected under the same chromatographic conditions

were utilized. The identification of oil components was

achieved by comparing the mass spectra and RIs with

those reported in the literature, as well as by comparing

the mass spectra with the Wiley library or published

mass spectral data (28).

3.4. Identifying the Constituents of Essential Oils

The identification of the essential oil components

was accomplished by comparing their respective

retention times and mass spectra with those of known

standards, the data from the Wiley 2001 library of the

GC/MS system, as well as the information provided in

the literature (29).

3.5. The Dilutions Preparation

Various dilutions of the essential oils were prepared

following the methodology described by Saedi Dezaki et

al (12). Specifically, 2 µL of the essential oil was dissolved

in 988 µL of normal saline. To facilitate the dispersion of

the essential oil within the normal saline, an additional

10 µL of Tween 20 was added to the experimental tube.

The final solution was thoroughly mixed using a

magnetic stirrer. The essential oils underwent a series of

dilutions to achieve concentrations of 31.25, 62.5, 125,

250, 500 and 1000 µg/mL. The dilutions of the essential

oils were chosen based on preliminary tests, which also

confirmed that the combination of normal saline and

Tween 20 did not affect parasite growth (12).

3.6. Parasite Preparation and Cell Culture

The promastigote form of the L. major parasite from

the standard strain (MRHO/IR/75/ER) was utilized in this

study. The parasite strain was obtained from the

Department of Parasitology and Medical Mycology at

Shiraz University of Medical Sciences. For the cultivation

of parasite promastigotes, RPMI 1640 medium was

supplemented with 15% fetal calf serum (FCS), 100 IU/mL

of penicillin, and 100 μg/mL of streptomycin. The

incubation temperature was maintained at 25°C. Mouse

macrophage cells (J774) were obtained from the Central

Laboratory at Isfahan University of Medical Sciences,

Isfahan, Iran, and employed for cell culture. The cells

were cultured in RPMI 1640 medium supplemented

with 10% FCS, 100 IU/mL of penicillin, and 100 μg/mL of

streptomycin. The incubation conditions for the cell

culture were set at 37°C and 5% CO2.

3.7. Anti-leishmanial Effects Were Assessed Using Flow
Cytometry

To evaluate the effects of Z. multiflora and T. vulgaris

essential oils on L. major promastigotes, a flow

cytometry method was employed. Initially, 2 µL of the

essential oils under investigation were dissolved in 10 µL

of Tween 20 and subsequently diluted to a final volume

of 1 ml with normal saline to create a stock solution.

Serial dilutions were then prepared in normal saline to

achieve the final testing concentrations. Subsequently,

promastigotes in the logarithmic phase were assessed

for evaluation. Initially, 2 × 10⁵ promastigotes were

added to 12 Eppendorf tubes. Subsequently, six tubes

received concentrations of Z. multiflora essential oil

ranging from 31.25 to 1000 µg/mL, while the other six

tubes were supplemented with concentrations of T.

vulgaris essential oil in the same range.

The positive control (PC) tube contained 20 µg/mL of

amphotericin B, while the negative control (NC) tube

contained 1% Tween 20. After 2 hours of incubation at

25°C, all tubes were stained with 10 µL of propidium

iodide (PI) at a final concentration of 50 µg/mL for 5

minutes in the dark. Flow cytometry was then

performed using a BD Calibur flow cytometer. For each

sample, 10,000 to 30,000 events were acquired. Cell

populations were first gated based on forward and side

scatter characteristics to exclude debris. Viability was

assessed based on PI fluorescence intensity; the

population of PI-negative events (viable cells) was

quantified against PI-positive events (non-viable cells).
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The half-maximal inhibitory concentration (IC50) was

calculated using statistical analysis (12, 30).

3.8. Investigation of Anti-amastigote Effects

To measure the anti-amastigote effects of Z. multiflora

and T. vulgaris essential oils, experiments were

performed in triplicate. For each replicate, 1 cm² cover

slips were placed inside each of the wells of a 6-well

microplate. Mouse macrophage cells were then seeded

at a density of 3 × 10⁵ cells/ml and incubated at 37°C and

5% CO2 for 24 hours. Stationary phase promastigotes

were subsequently added to the wells at a parasite to

macrophage ratio of 6:1 (18 × 10⁵/ml) and incubated for

an additional 6 hours under the same conditions. Free

promastigotes were removed by washing with RPMI-

1640 medium, and the parasite-infected macrophages

were treated with different concentrations of Z.

multiflora and T. vulgaris essential oils (31.25 - 1000

μg/mL) for 24 and 48 hours at 37°C and 5% CO2.

Amphotericin B at a concentration of 20 μg/mL was used

as a PC. After the treatment, the slides were washed,

dried, fixed with methanol, and stained with Giemsa.

The stained slides were then examined under a light

microscope at 1000X magnification. For each

experimental condition, at least 100 macrophages were

randomly counted, and the percentage of infected

macrophages as well as the mean number of

amastigotes per macrophage were determined.

3.9. Cytotoxic Effects on Cellular Viability

The effects of essential oils from Z. multiflora and T.

vulgaris on J774 macrophages were investigated

following exposure to various concentrations of the

essential oils (31.25 - 1000 µg/mL). These experiments

were conducted in triplicate. For each replicate, cell

culture plates were incubated at 37°C with 5% CO₂ for 48

hours. Subsequently, cell viability was assessed using the

MTT colorimetric assay, and the number of viable cells

treated with various concentrations of the essential oils

was compared to both the positive and NC groups.

3.10. Statistical Analysis

Data analysis was performed using IBM SPSS Statistics

(Version 27) and GraphPad Prism (Version 10). The half-

maximal IC50 values were determined by nonlinear

regression analysis of dose-response curves using

GraphPad Prism. For the comparison of multiple

groups, one-way ANOVA followed by Tukey's post-hoc

test was used. A P-value threshold of less than 0.05 was

established to indicate statistical significance.

4. Results

4.1. Gas Chromatography-Mass Spectrometry Analysis of the
Essential Oils from Thymus vulgaris and Zataria multiflora

The extraction yielded 33 grams of essential oil (1.22%)

from 2.7 kilograms of T. vulgaris and 43 grams of

essential oil (2.86%) from 1.5 kilograms of Z. multiflora.

The results of the gas chromatography-mass

spectrometry (GC-MS) analysis of the essential oils from

T. vulgaris and Z. multiflora are presented in Tables 1 and

2, respectively. A total of 16 compounds were identified

in T. vulgaris, constituting 99.98% of the essential oils,

while 14 compounds were identified in Z. multiflora,

accounting for 100% of the analyzed essential oils. The

main compounds identified in T. vulgaris included

thymol (49.83%), γ-terpinene (14.93%), and cymene

(10.99%), whereas the primary constituents of Z.

multiflora were thymol (46.46%) and carvacrol (32.47%).

4.2. The Effect of Zataria multiflora and Thymus vulgaris
Essential Oils on the Growth of Leishmania Major
Promastigotes

The flow cytometry analysis demonstrated

significant variations in the mortality rates of L. major

promastigotes when subjected to different

concentrations of essential oils derived from T. vulgaris

and Z. multiflora. The NC, consisting of Tween 20 and

normal saline, exhibited a mortality rate of 18.18%,

suggesting that promastigote mortality remained

relatively low when no leishmanicidal agents were

present. In contrast, the PC exhibited a significant

mortality rate of 89.71%, which confirms the efficacy and

sensitivity of L. major promastigotes to amphotericin B

(Figure 1). The IC50 values for T. vulgaris and Z. multiflora

were determined to be 92.75 µg/mL and 59.69 µg/mL,

respectively.

The lethality rates of L. major promastigotes exposed

to concentrations of Z. multiflora essential oil (31.25, 62.5,

125, 250, 500, and 1000 µg/mL) were found to be 26.72%,

52.3%, 57.66%, 62.44%, 67.38%, and 75.82%, respectively

(Figure 2). Additionally, the lethality rates

corresponding to the specified concentrations of T.

vulgaris were 24.23%, 41.97%, 56.07%, 58.18%, 62.98%, and

73.83%, respectively (Figure 3). Statistical analysis (one-

way ANOVA followed by Tukey’s post hoc test) confirmed

both essential oils significantly increased promastigote

https://brieflands.com/journals/jjm/articles/165926
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Table 1. The Compounds Isolated from Thymus vulgaris Essential Oil Were Analyzed Using Gas Chromatography-Mass Spectrometry

No. Type of Compound KI Percentage
1 α-thujene 928 0.90

2 α-pinene 936 1.02

3 Octen-3-ol 980 1.12

4 Myrcene 993 1.33

5 α-terpinene 1021 2.81

6 Cymene 1033 10.99

7 1,8-Cineole 1037 0.65

8 γ-terpinene 1069 14.93

9 Linalool 1103 2.98

10 Terpinene-4-ol 1181 2.87

11 Thymol methyl ether 1238 1.96

12 Carvacrol methyl ether 1247 1.12

13 Thymol 1292 49.83

14 Carvacrol 1304 2.42

15 Caryophyllene <(E-)> 1425 4.31

16 δ-cadinene 1530 0.74

17 Total 99.98

Abbreviation: KI, Kovats Index.

Table 2. The Compounds Isolated from Zataria multiflora Essential Oil Were Analyzed Using Gas Chromatography-Mass Spectrometry

No. Type of Compound KI Percentage
1 α-pinene 937 1.77

2 Myrcene 993 0.85

3 α-terpinene 1020 1

4 o-cymene 1031 5.62

5 γ-terpinene 1064 3.58

6 Linalool oxide 1075 0.48

7 Terpinene-4-ol 1185 0.72

8 Carvacrol methyl ether 1249 1.51

9 Thymol 1289 46.46

10 Carvacrol 1295 32.47

11 Caryophyllene <-E> 1423 3.54

12 Aromadendrene 1447 0.51

13 Bicyclogermacrene 1505 0.85

14 Caryophyllene oxide 1588 0.64

15 Total 100

Abbreviation: KI, Kovats Index.

mortality compared to the NC (P < 0.05). The anti-

promastigote activity of Z. multiflora essential oil was

statistically superior to that of T. vulgaris. However, the

efficacy of both essential oils was significantly lower

than that of amphotericin B (PC) (P < 0.05).

4.3. The Cytotoxicity of Zataria multiflora and Thymus
vulgaris Essential Oils on J774 Macrophage Cells Was
Evaluated Using the MTT Assay

The cytotoxic effects of the essential oils of Z.

multiflora and T. vulgaris on J774 macrophages were

assessed after treatment with varying concentrations of

the essential oils (31.25 - 1000 µg/mL) in 96-well

microplates under conditions of 37°C, 5% CO₂, and 48

hours of incubation. Cell viability was evaluated using

the MTT assay, and the results were expressed as the

percentage of dead cells relative to those treated with

amphotericin B and untreated macrophages (Figure 4).

The CC50 values for T. vulgaris and Z. multiflora were

determined to be 820.4 µg/mL and 799.6 µg/mL,

respectively. Cell viability after exposure to

amphotericin B was found to be 47.30%.

4.4. The Effect of Zataria multiflora and Thymus vulgaris
Essential Oils on Leishmania major Amastigotes

Our findings indicate that the essential oils of Z.

multiflora and T. vulgaris exert a significant effect on

intracellular amastigotes. Statistical analysis (one-way

ANOVA followed by Tukey’s post-hoc test) confirmed

that the essential oils of Z. multiflora and T. vulgaris

exhibited a significant dose-dependent reduction in the

intracellular amastigote load compared to the NC (P <

0.05). As illustrated in Figures 5 and 6, the anti-

amastigote activity of Z. multiflora essential oil was

statistically superior to that of T. vulgaris. However, both

essential oils demonstrated significantly lower efficacy
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Figure 1. The mortality rate of Leishmania major promastigotes exposed to different concentrations of Thymus vulgaris and Zataria multiflora essential oils

Figure 2. Flow cytometry analysis of promastigotes treated with Zataria multiflora essential oil at indicated concentrations (A-F), negative control (G), and Amphotericin B (20
µg/mL) (H). Cell viability was assessed by propidium iodide (PI) staining; the M2 marker indicates non-viable cells.

in clearing the infection than the PC, amphotericin B.

The IC50 values for Z. multiflora and T. vulgaris were

determined to be 118.4 and 131.2 µg/mL after 24 hours,

and 87.28 and 100.68 µg/mL after 48 hours of exposure to

the parasite, respectively. The Selectivity Index (SI) for T.

vulgaris essential oil against promastigotes and

amastigotes (48 hours) was 8.84 and 8.14 µg/mL,

respectively. For Z. multiflora essential oil, the SI against

promastigotes and amastigotes (48 hours) was 13.39 and

9.16 µg/mL, respectively, indicating moderate selective

toxicity of both essential oils towards the parasite over

host cells (Table 3, Figures 5 and 6).
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Figure 3. Flow cytometry analysis of promastigotes treated with Thymus vulgaris essential oil at indicated concentrations (A-F), negative control (G), and Amphotericin B (20
µg/mL) (H). Cell viability was assessed by propidium iodide (PI) staining; the M2 marker indicates non-viable cells.

Table 3. Inhibitory Concentration and CC50 Values of Zataria multiflora and Thymus
vulgaris Essential Oils Against Leishmania major Promastigotes and Amastigotes, and
Their Corresponding Selectivity Indices

Characteristic Z. multiflora(µg.mL) T. vulgaris(µg.mL)

Promastigote IC50 59.69 92.75

Amastigote IC50 (48 hours) 87.28 100.68

Macrophage CC50 799.6 820.4

SI for promastigotes 13.39 8.84

SI for amastigotes (48 hours) 9.16 8.14

Abbreviations: IC50, Inhibitory Concentration; SI, Selectivity Index;

5. Discussion

5.1. Documented Bioactivities of Zataria multiflora and
Thymus vulgaris

Zataria multiflora, native to central and southern Iran,

has demonstrated antibacterial, antifungal, and

antiparasitic properties (14, 31). Similarly, T. vulgaris is

known for its antimicrobial activities (32). One study

demonstrated that treatment with Z. multiflora essential

oil at a concentration of 100 μg/mL exhibited

significantly higher toxicity against Leishmania tropica

parasites, reducing infectivity by more than 86% in

macrophages infected with Leishmania tropica

amastigotes compared to the untreated control group

(12). A key finding was that all tested concentrations of Z.

multiflora essential oil exhibited significant

antileishmanial activity against both extracellular

promastigotes and intracellular amastigotes of

Leishmania tropica in infected macrophages under in

vitro conditions. Notably, the essential oil demonstrated

particularly high antileishmanial efficacy against

amastigotes, with a half – maximal IC50 of 8.3 μg/mL.

Similarly, in a study by Zaki et al., the antileishmanial

effects of silver nanoparticles coated with T. vulgaris

extract were investigated. The obtained IC50 values were

4.7 μg/mL for L. major promastigotes and 3.02 μg/mL for

amastigotes, demonstrating potent activity against both

parasite stages (18). In a study conducted by Youssefi et

al. to investigate the effects of thymol and carvacrol on

Leishmania infantum, the IC50 values for promastigotes

https://brieflands.com/journals/jjm/articles/165926
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Figure 4. The viability rate of J774 cells after 48 hours of exposure to Thymus vulgaris and Zataria multiflora essential oils

were determined to be 7.2 and 9.8 µg/mL, respectively

(33). These studies demonstrated the efficacy and

therapeutic value of Z. multiflora and T. vulgaris extracts

and compounds against other Leishmania species.

5.2. Key Findings and Chemical Basis of the Present Study

However, despite these encouraging findings, a

comprehensive understanding of the direct

antileishmanial efficacy of the essential oils of Z.

multiflora and T. vulgaris specifically against L. major, a

highly relevant species in our region, remains to be fully

elucidated. In another study conducted by Barati et al.,

the antileishmanial effects of the hydroalcoholic extract

of Z. multiflora against L. major were investigated. Their

results demonstrated that the extract significantly

inhibited the growth of promastigotes, with a half–

maximal IC50 of 7.4 mg/mL (34).

Our study highlights the potential of essential oils

from Z. multiflora and T. vulgaris as promising anti-

leishmanial agents. Gas chromatography-mass

spectrometry analysis revealed that thymol and

carvacrol were the major bioactive compounds, known

for their antimicrobial and antiparasitic effects. In vitro

assays demonstrated significant dose-dependent

inhibition of L. major promastigotes, with IC50 values of

59.69 µg/mL for Z. multiflora and 92.75 µg/mL for T.

vulgaris. The cytotoxicity assessments on J774

macrophages further supported the safety profile of

these essential oils, with CC50 values of 799.6 µg/mL for

Z. multiflora and 820.4 µg/mL for T. vulgaris. The findings

of this study also revealed that the IC50 values for the

essential oils of Z. multiflora and T. vulgaris after 48 hours

of exposure to L. major amastigotes were 87.28 and

100.68 µg/mL, respectively.

In light of the aforementioned study, it can be

concluded that the antileishmanial effects of these

plants are likely due to the presence of these active

compounds. Additionally, their study demonstrated

that the tested compounds exhibited the highest

growth inhibition at higher concentrations. In our

study, the highest inhibition of parasite growth was

observed at higher concentrations, which may

corroborate previous findings reported in the literature.

https://brieflands.com/journals/jjm/articles/165926
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Figure 5. Mean number of Leishmania amastigotes after 24 hours of incubation following treatment with varying concentrations of Zataria multiflora and Thymus vulgaris
essential oils compared to negative and positive controls. The positive control utilized Amphotericin B at 20 µg/mL.

5.3. Comparison with Existing Literature and Potential
Mechanisms

This indicates a therapeutic window that could be

beneficial for further development in clinical settings,

aligning with the growing interest in natural products

as alternatives to synthetic pharmaceuticals. The

observed cytotoxicity levels suggest that while these

essential oils exert significant anti-parasitic effects, they

also retain the potential for safety in therapeutic

applications. The antileishmanial effects of these

essential oils may be attributed to their complex

chemical compositions, which likely act synergistically

(35, 36). This synergy is not limited to the dominant

phenols; other major components such as γ-terpinene

and p-cymene are known to exert membrane-

perturbing and pro-oxidant effects, while terpinene-4-ol

can disrupt mitochondrial function. The presence of (E)-

caryophyllene may also contribute to a potential

immunomodulatory response (37, 38). Previous studies

have shown that the combination of multiple bioactive

compounds can lead to improved therapeutic

outcomes. Thymol and carvacrol, in particular, are

known to disrupt cell membrane integrity and induce

oxidative stress in parasites (39-41).

The proposed mechanism involves the interaction of

these phenolic compounds with the phospholipid

bilayers of the parasite's cell membrane, increasing its

permeability and leading to the leakage of vital

intracellular components such as potassium ions,

proteins, and nucleotides, ultimately causing cell lysis

(42, 43). Furthermore, these compounds can disrupt

mitochondrial function by collapsing the

mitochondrial membrane potential, a critical step for

ATP production, thereby depriving the parasite of

energy (33). These compounds may also act by

inhibiting key enzymes in protozoal metabolism,

including dihydrofolate reductase (DHFR).

The inhibition of DHFR leads to the depletion of

cellular folate reserves, as this enzyme plays a vital role

in producing tetrahydrofolate, a precursor for cofactors

essential in the synthesis of purines, dTTP, and amino

acids. Ultimately, this process results in the cessation of

cell proliferation and cell death (44, 45). Another key

mechanism is the induction of an apoptotic-like death

pathway in Leishmania parasites, characterized by

https://brieflands.com/journals/jjm/articles/165926
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Figure 6. Mean number of Leishmania amastigotes after 48 hours of incubation following treatment with varying concentrations of Zataria multiflora and Thymus vulgaris
essential oils compared to negative and positive controls. The positive control utilized Amphotericin B at 20 µg/mL.

phosphatidylserine externalization, DNA

fragmentation, and activation of caspase-like proteases

(46, 47). The lipophilic nature of thymol and carvacrol

facilitates their penetration into the parasite, enabling

these multi-faceted attacks. This multi-target

mechanism is advantageous as it reduces the likelihood

of the development of parasite resistance, a significant

limitation of current single-target drugs (48).

5.4. Conclusions

This study demonstrates the anti-leishmanial

potential of essential oils from Z. multiflora and T.

vulgaris against L. major. In vitro tests demonstrated

effective dose-dependent inhibition of L. major

promastigotes and amastigotes, with low toxicity

observed in J774 macrophages, indicating a favorable

safety profile. These findings suggest that these essential

oils could be promising natural alternatives for

leishmaniasis treatment, especially given the challenges

of drug resistance and side effects with current

therapies. Further in vivo studies are needed to validate

their therapeutic potential.

5.5. Limitations and Future Research Directions

Given the ongoing challenges associated with

conventional leishmaniasis therapies, including drug

resistance and adverse effects, the exploration of these

natural alternatives is timely and necessary. However,

this study was limited to in vitro experiments, and

further in vivo studies are needed to validate these

findings. Future research should also explore the

formulation of these essential oils for topical or

systemic use in clinical settings.

In conclusion, our findings underscore the potential

of Z. multiflora and T. vulgaris essential oils as effective

and safe alternatives for leishmaniasis treatment.

Continued research into their mechanisms of action

and therapeutic applications is essential to address the

global burden of this neglected tropical disease. The

identification of their bioactive compounds and the

elucidation of their mechanisms of action remain

critical areas for future exploration, with the ultimate

goal of improving health outcomes for affected

populations.
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