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Abstract

~

Background: The SARS-CoV-2 spike protein, a key component in viral entry, has been implicated in modulating inflammatory
responses even in the absence of complete viral infection. Spike protein exposure can alter signaling pathways in colon
epithelial cells, leading to increased expression of proinflammatory cytokines and disruption of epithelial barrier integrity.

Objectives: This study evaluates the time-dependent effects of recombinant spike protein on proinflammatory gene
expression and cytokine release in lung (BEAS-2B) and colon (CRL-1831) epithelial cells.

Methods: BEAS-2B and CRL-1831 cells were treated with varying doses of spike protein, and samples were collected at 12, 24, 48,
and 72 hours. Cell viability was assessed via XTT assay. Quantitative PCR (qQPCR) was used to measure IFN-y, TNF-q, IL-6, and IL-1B
mRNA levels. Cytokine secretion was analyzed via ELISA.

Results: In BEAS-2B cells, spike protein induced a transient increase in IFN-y at early time points, followed by a reduction in
IFN-y and IL-6 at later times. Conversely, CRL-1831 cells demonstrated sustained or delayed increases in TNF-a and IFN-y
expression, with notable IL-6 fluctuation. ELISA data confirmed these trends in cytokine secretion profiles. No significant
cytotoxicity was observed across the tested conditions.

Conclusions: The spike protein elicits distinct temporal inflammatory responses in lung and colon epithelial cells,
underscoring tissue-specific susceptibility and regulatory mechanisms in SARS-CoV-2 pathogenesis. While some previous
studies have examined individual components of SARS-CoV-2, the present study's specific focus on the time-dependent,
differential effects of the spike protein on two distinct epithelial cell types (lung and colon) appears to be a unique contribution
to the field. These findings may contribute to understanding gastrointestinal and respiratory complications observed in COVID-
19 patients.
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1. Background

Viral components of SARS-CoV-2 exhibit diverse
functions in host-pathogen interactions and have been
the focus of extensive investigation since the onset of
the pandemic. These viral elements are generally
classified into structural, nonstructural, and accessory
proteins (1-3). Among them, the spike protein has been

shown to enhance the expression of its receptor,
angiotensin-converting enzyme 2 (ACE2), in bronchial
epithelial BEAS-2B cells, thereby facilitating viral entry
(4, 5). Single-cell RNA sequencing analyses have further
demonstrated ACE2 expression in lung type I
pneumocytes, ileal absorptive enterocytes, nasal goblet
secretory cells, and bronchial epithelial cells (6). Co-
expression of viral entry-related genes has been
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observed in respiratory, corneal, and intestinal epithelia,
underscoring their roles in transmission and tissue
tropism (7, 8). Overall, ACE2 abundance appears to be a
key determinant of infectivity, and its spike-induced
upregulation may further enhance viral invasion (9, 10).
Therefore, the functions of SARS-CoV-2 proteins during
infection warrant re-evaluation, particularly in the
context of in vivo models.

SARS-CoV-2 infection in the lungs can lead to acute
respiratory distress syndrome (ARDS) and elevate
inflammatory biomarkers. Beyond the respiratory
system, the virus also infects the gastrointestinal tract,
which may serve as an additional replication site with
important clinical implications (11). The gut-lung axis
has emerged as a potential contributor to COVID-19
pathogenesis. Structural and nonstructural viral
proteins play distinct roles in disease development,
while dysregulated immune responses (marked by
elevated IL-6, TNF-a, and IFN-y) are key drivers of
systemic inflammation and COVID-19 severity (12, 13).
Chronic inflammation drives tumor progression,
including in colorectal cancer, yet the impact of viral
components like the spike protein on healthy versus
cancerous epithelia is unclear. Clarifying these cytokine
responses may reveal mechanisms of tissue injury and
tumor microenvironment changes (14).

2. Objectives

This study therefore evaluates how the SARS-CoV-2
spike protein modulates key proinflammatory
cytokines in lung and colon epithelial cells.

3.Methods

3.1. Cell Lines and Culture Conditions

This study utilized two human epithelial cell lines:
BEAS-2B (human bronchial epithelial cells) and CRL-1831
(colon epithelial cells). BEAS-2B cells were cultured in
Dulbecco's Modified Eagle Medium (DMEM) according
to the supplier’s protocol. CRL-1831 cells were
maintained in ATCC-formulated RPMI-1640 Medium
supplemented with 10% fetal bovine serum (FBS) and 1%
penicillin-streptomycin. All cells were incubated at 37°C
in a humidified incubator with 5% CO, (15, 16).

3.2. Cell Viability Assay

To evaluate cell proliferation, the XTT assay based on
the sodium salt of benzene sulfonic acid hydrate was
employed. CRL-1831 cells and BEAS-2B epithelial cells

were seeded into 96-well plates at a density of 10* cells
per well and incubated for 24 hours to allow for cell
attachment and stabilization. Following incubation,
CRL-1831 cells and BEAS-2B epithelial cells were treated
with recombinant SARS-CoV-2 spike protein (Elabscience
Bionovation Inc) at the determined doses (0.01, 0.1, 1, 5,
10, 50, and 100ng/mL) for 12, 24, 48, and 72 hours.
Control groups received medium only. Experiments
were conducted in triplicate for each condition. After
each treatment period, 50 pL of XTT reagent (1 mg/mL)
was added to each well, and the cells were incubated for
an additional 4 hours. The resulting formazan product
was quantified by measuring absorbance at 450 nm
using an ELISA microplate reader (Synergy Hi, BioTek
Instruments, USA) (17).

3.3. RNA Isolation and Gene Expression Analysis

Total RNA was isolated from treated and control cells
using TRIzol reagent (ABP Biosciences, China) and RNA
integrity was verified by spectrophotometry (Biotek
Synergy HT). Reverse transcription was performed using
a high-capacity cDNA reverse transcription Kkit.
Quantitative PCR (qPCR) was carried out using SYBR
Green master mix on a real-time PCR system (Roche
Diagnostic ~ Systems, USA). Primers targeting
glyceraldehyde 3-phosphate dehydrogenase (GAPDH), IL-
1B, IL-6, TNF-a, and IFN-y were utilized. Gene expression
levels of IFN-y, TNF-a, IL-6, and IL-1p were analyzed. The
GAPDH was used as an internal control gene. Relative

gene expression was calculated using the 2"MC method
(18). Primer sequences are detailed in Table 1.

3.4. Protein Quantification

Culture supernatants collected at each time point
were analyzed for cytokine concentrations using ELISA
kits specific for IFN-y, TNF-a, and IL-6 (ELK
Biotechnology, USA). Absorbance was measured at
450nm using a microplate reader. Concentrations were
determined based on standard curves generated for
each cytokine (19).

3.5. Statistical Analysis

Statistical analyses were performed with great care
for each experiment, all of which were conducted at
least in triplicate. Data processing was carried out using
GraphPad Prism software (version 9.0.1, USA).
Comparisons between treated and untreated cell optical
density values were evaluated using two-tailed t-tests,
with statistical significance defined as P < 0.05. A P-value
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Table 1. RNA Primers Used in Gene Expression Analysis

Genes Forward Primers Reverse Primers

IL-6 5-CTCCACAAGCGCCTTCGGT-3" 5-GAATCTTCTCCTGGGGGTACTGG-3'
INF-a 5"-GCCCATGTTGTAGCAAACCCTC-3" 5-GGTTATCTCTCAGCTCCACGCC-3"
GAPDH 5-GTCTCCTCTGACTTCAACAGCG-3' 5"-ACCACCCTGTTGCTGTAGCCAA-3'
IL-1B 5"-CGAATCTCCGACCACCACTA-3' 5"-AGCCTCGTTATCCCATGTGT-3'
IFN-y 5"-GCTGTTACTGCCAGGACCC-3' 5-TTTTCTGTCACTCTCCTCTTTCC-3’
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Figure 1. Optical density changes at 12 h (A), 24 h (B), 48 h (C), and 72 h (D) following spike protein treatment in BEAS-2B lung epithelial cell lines

of < 0.05 was considered statistically significant.
Additional statistical significance levels are shown as
follows: *P < 0.05, **P < 0.01, **P < 0.001 and ***P <
0.0001.

4.Results

4.1. Cell Viability in BEAS-2B and CRL-1831Cells Treated with
Spike Protein

Cell viability analyses demonstrated that the control
group of BEAS-2B epithelial cells and CRL-1831 colon
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epithelial cells exhibited a natural decline over time,
particularly at 48 and 72 hours. In BEAS-2B cells, spike
protein treatment resulted in a modest increase in
viability at the 48-hour time point, although this effect
was not sustained at 72 hours. At the highest
concentration (100 ng/mL), an early increase at 24 hours
was followed by a decline at later time points (Figure 1).
However, none of these fluctuations reached statistical
significance at any dose or time point.

In CRL-1831 cells, spike protein exposure produced an
early elevation in cell viability at 12 hours, whereas a
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Figure 2. Optical density changes at 12 h (A), 24 h (B), 48 h (C), and 72 h (D) following spike protein treatment in CRL-1831 colon epithelial cell lines

reduction became evident at 48 hours (Figure 2). Across
all tested doses, no cytotoxicity was observed, indicating
that the spike protein did not adversely affect cell
survival under the experimental conditions.
Consistently, no statistically significant changes in
viability were detected at any concentration or
incubation period.

4.2. Time-Dependent Effects of SARS-CoV-2 Spike Protein on
Immune Gene Expression in BEAS-2B Cells

Spike protein treatment led to a transient increase in
IFN-y mRNA levels at 12 hours, followed by a significant
reduction at 48 (P < 0.05) and 72 hours (P < 0.01). INF-a
expression remained relatively unchanged throughout
the treatment period. IL-1B expression showed a
progressive decrease across all time points, aligning
with a time-dependent suppression pattern. Similarly,
IL-6 mRNA levels were consistently reduced at each
measured interval, suggesting an overall dampening of
inflammatory gene activation in BEAS-2B cells (12 h: P <

0.001, 24 h: P < 0.05, 48 h: P < 0.01, and 72 h: P < 0.01;
Figure 3).

4.3. Time-Dependent Effects of SARS-CoV-2 Spike Protein on
Immune Gene Expression in CRL-1831 Cells

CRL-1831  cells demonstrated a  different
transcriptional pattern in response to spike protein. IFN-
Y expression significantly increased at 48 and 72 hours,
while TNF-a levels were elevated at 12, 48, and 72 hours.
IL-1B expression was also upregulated at 24 and 48
hours. IL-6 expression exhibited a complex pattern,
showing reduced levels at 24 and 72 hours while
displaying a marked increase at 48 hours, which
indicates a fluctuating inflammatory response distinct
from that observed in lung epithelial cells (Figure 4).

4.4. Proinflammatory Cytokine Secretion in CRL-1831 Cells

In CRL-1831 cells, spike protein exposure produced a
reduction in TNF-a levels at 24 hours, followed by an
increase at 72 hours. IFN-y secretion showed an early rise
at12 hours but decreased substantially by 72 hours. IL-6
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Figure 3. Gene expression levels of IFN-y, TNF-q, IL-1B, and IL-6 in BEAS-2B lung epithelial cells following 12 h, 24 h, 48 h, and 72 h spike protein treatment (statistical significance
levels are shown as follows: *P < 0.05, **P < 0.01, *** P < 0.001; abbreviation: ns, not significant).

concentrations displayed an overall decreasing trend
across the evaluated time points (Figure 5). These
secretion profiles were consistent with the gene
expression  patterns, particularly the delayed
proinflammatory response.

4.5. Proinflammatory Cytokine Secretion in BEAS-2B Cells

Jundishapur ] Microbiol. 2026;19(1): e167084

In BEAS2B cells, TNF-a secretion decreased
progressively in a time-dependent manner following
spike protein treatment. IFN-y levels were reduced at 12
hours but increased at later time points, suggesting
delayed compensatory activation. IL-6 secretion
increased during the early phases (12 and 24 hours),
then returned to baseline by 72 hours (Figure 6).
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Figure 4. Gene expression levels of IFN-y, TNF-q, IL-18, and IL-6 in CRL-1831 colon epithelial cells following 12 h, 24 h, 48 h, and 72 h spike protein treatment (statistical significance
levels are shown as follows: * P < 0.05, ** P < 0.01, *** P < 0.001, and **** P < 0.0001; abbreviation: ns, not significant).

5. Discussion

SARS-CoV-2 remains a major global concern due to its
ability to trigger strong inflammatory responses and
affect multiple organs beyond the respiratory tract,
including the gastrointestinal epithelium. In the lungs,
excessive cytokine release (cytokine storm) contributes
significantly to severe disease and mortality (20, 21).

Individuals with autoimmune disorders are also at
higher risk because of immunosuppressive treatments
(22,23). NF-kB is a central regulator of inflammation and
immune responses and is known to be persistently
activated in COVID-19 (24, 25). The spike protein can
activate TLR2-MyD88-NF-kB signaling and induce
cytokines such as IL-6, IL-1B, and TNF-a (26). Delayed
cytokine patterns may reflect feedback regulation
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Figure 5. Cytokine secretion levels in CRL-1831 colon epithelial cells following 12 h, 24 h, and 72 h exposure to SARS-CoV-2 spike protein (statistical significance levels are shown as

follows: * P < 0.05, abbreviation: ns, not significant).

within NF-kB and interferon pathways. The stronger and
more sustained inflammatory response observed in
colon cells may be due to tissue-specific receptor
expression or different signaling thresholds (27-29).

In this study, we demonstrated that SARS-CoV-2 spike
protein differentially modulates proinflammatory
genes and cytokine expression in human lung and colon
epithelial cells in a time-dependent manner. In BEAS-2B
cells, the early increase in IFN-y and IL-6 mRNA levels
followed by their subsequent downregulation at 48 and
72 hours aligns with prior findings indicating an initial
hyperinflammatory reaction that becomes suppressed

Jundishapur ] Microbiol. 2026;19(1): €167084

as the infection progresses or as regulatory mechanisms
activate.  Interestingly, IL- I was consistently
downregulated in BEAS-2B cells, potentially reflecting a
dampened inflammasome response in airway epithelial
cells (30). On the contrary, CRL-1831 colon epithelial cells
demonstrated more sustained and even delayed
elevations in IFN-y, TNF-a, and IL-1 mRNA, particularly
at 48 and 72 hours, suggesting a different regulatory
kinetics. This is congruent with clinical reports of
prolonged gastrointestinal inflammation in COVID-19
patients (31). The observed IL-6 fluctuations (initial
suppression followed by a spike) suggest a biphasic
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Figure 6. Cytokine secretion levels in BEAS-2B lung epithelial cells following 12 h, 24 h, and 72 h exposure to SARS-CoV-2 spike protein (statistical significance levels are shown as

follows: *P < 0.05, **P < 0.001, and ****P < 0.0001; abbreviation: ns, not significant).

response or the involvement of feedback mechanisms
distinct from those in the lung epithelium.

BEAS-2B cells exhibited an early IFN-y response
followed by progressive suppression, aligning with
previous findings suggesting immune exhaustion or
feedback inhibition in lung epithelial cells during
prolonged  viral  exposure. @ The  consistent
downregulation of IL-6 and IL-1f further supports an
overall immunosuppressive effect of prolonged spike
protein exposure in lung tissue, which may impair
effective antiviral responses and contribute to disease

progression. Moreover, the inflammatory effects of
spike treatment occurred without indications of cell
damage at the tested concentrations. Due to the diverse
organ tropisms observed in SARS-CoV-2 infections
involving various organs, the virus utilizes multiple
receptors and co-receptors. Host entry factors such as
ACE2, TMPRSS2, Furin, heparan sulfate, and CD147 are
known to shape SARS-CoV-2 infectivity and determine
epithelial susceptibility. Differences in the expression of
these molecules across tissues may therefore help
explain the distinct inflammatory patterns observed in
lung and colon cells in our study. Moreover,
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demographic factors including age, sex, and smoking
status have been reported to influence ACE2, TMPRSS2,
and CTSL expression levels, further contributing to
variability in viral tropism and disease severity.

Recent studies indicate that spike protein can
modulate epithelial inflammatory pathways through
ACE2 dependent entry, host-factor-mediated cell
tropism, and TLR-mediated immune activation (32, 33).
Additionally, both viral and synthetic spike proteins
have been implicated in endothelial dysfunction, which
is a key driver of vascular complications in COVID-19.
Spike protein can directly bind to ACE2 on endothelial
cells, leading to increased vascular permeability,
inflammation, and thrombosis. Such endothelial
damage has also been associated with atypical
lymphoid proliferation in various tissues, contributing
to persistent immune dysregulation in long COVID and
other post-infectious syndromes (34).

Recent studies show that the spike protein can
activate endothelial and thrombo-inflammatory
pathways, particularly through the C3a/C3aR axis,
suggesting C3aR as a potential therapeutic target (35).
Other reports indicate that spike protein promotes
inflammation and EMT in lung epithelial cells and
fibroblasts by upregulating GADD45A, highlighting
additional pathways relevant to spike-induced injury
(28). Although endothelial mechanisms were not
assessed here, the delayed and sustained cytokine
responses observed in colon cells may have downstream
epithelial-vascular implications.

In this context, our findings indicate that the spike
protein alone acts as an immunomodulatory stimulus
capable of inducing prolonged epithelial stress
responses, which may contribute to secondary
endothelial and lymphoid alterations.

Alimitation of this study is that all experiments were
performed using immortalized epithelial cell lines
(BEAS-2B and CRL-1831), which lack the complexity of in
vivo tissue architecture and immune-epithelial
interactions. Therefore, the results should be
interpreted as cell-line specific responses rather than
fully representative of human tissues. Validation using
primary epithelial cells, co-culture or organoid models,
and clinical samples will be essential to confirm the
translational relevance of these findings. Second, the
study focused solely on cytokine expression and did not
evaluate upstream signaling pathways that may
mediate these responses. Mechanistically relevant
pathways including NF-xB, TLRrelated signaling,
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GADD45A associated EMT induction, and complement-
driven endothelial activation were not examined.
Addressing these pathways in future studies, together
with  models incorporating epithelial-immune
interactions, will help clarify the molecular basis of
spike protein-induced inflammatory responses.
Protein-level cytokine measurements via ELISA
confirmed these expression trends. The spike protein
triggered a general suppression of proinflammatory
cytokines in BEAS-2B cells over time, while CRL-1831 cells
showed a delayed but marked increase in TNF-a and IFN-
y secretion. These findings underscore the ability of the
spike protein to independently modulate local
inflammatory responses in non-immune cells.

5.1. Conclusions

This study shows that the SARS-CoV-2 spike protein
alone can differentially modulate inflammatory
responses in lung and colon epithelial cell lines in a
time-dependent manner. These findings underscore the
tissue-specific immunomodulatory effects of the spike
protein and may help explain organ-level differences in
COVID-19 pathology. Further studies are needed to
clarify the underlying signaling mechanisms and the
consequences of prolonged spike exposure.
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