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Abstract

Background: Shikonin, a compound extracted from Lithospermum erythrorhizon, has demonstrated therapeutic effects on cancer; however, its effects on oral

cancer remain unclear.

Objectives: This study aimed to explore the therapeutic value of shikonin for the treatment of oral cancer.

Methods: MTT, colony formation, and Transwell assays were employed to evaluate the inhibitory effects of shikonin on the proliferation and migration

abilities of human oral cancer cell lines (SCC-4 and SAS). Apoptosis and cell viability were assessed using the TdT-mediated deoxyuridine triphosphate-biotin

nick end-labeling (TUNEL) assay. To investigate the potential anticancer mechanisms of shikonin, RNA sequencing, quantitative PCR, and western blotting were

performed to analyze changes in the expression levels of oral cancer cell-related genes and proteins (matrix metalloproteinases-2 (MMP-2), matrix

metalloproteinases-9 (MMP-9), VEGF-A, VEGF-C, Beclin-1, autophagy-related genes (ATG5), and light chain-3 (LC-3)). Additionally, animal xenograft experiments

were conducted to examine the in vivo antitumor effects of shikonin.

Results: The findings revealed that the external application of shikonin specifically targeted oral cancer cells without affecting normal cells and led to a dose-

dependent inhibition of their growth. Even at non-lethal doses, shikonin effectively suppressed the production of metalloproteinases, thereby inhibiting cancer

cell migration and wound healing. Furthermore, shikonin treatment reduced levels of tumor progression factors, such as vascular endothelial growth factor

(VEGF)-A and VEGF-C, which are released during the early stages of cancer cell angiogenesis and lymphangiogenesis. Meanwhile, higher doses of shikonin

induced cell autophagy and activated proteins such as ATG-5, LC-3B, and Beclin-1. At lethal doses, shikonin further decreased mitochondrial membrane potential,

released calcium ions, and triggered apoptotic pathways. However, the administration of a calcium ion chelator (BAPTA-AM) inhibited shikonin-induced

apoptosis.

Conclusions: These results demonstrate that shikonin induces autophagy and activates apoptotic pathways in oral cancer cells. Shikonin treatment

significantly inhibited oral cancer growth and induced apoptosis in a rat model. In conclusion, shikonin effectively inhibited oral cancer cell growth, metastasis,

and the expression of tumor progression-related proteins. Given the ease of drug delivery to the affected area in oral cancer, shikonin holds substantial

potential for future applications that may improve patient recovery and enhance cure rates.
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1. Background

Oral cancer is a growing public health concern

worldwide. According to the latest global cancer
statistics, oral cancer ranks as the 16th most common

cancer globally (1). In Taiwan, the incidence and
mortality rates of oral cancer are particularly high, with

2021 data indicating that it is the fourth leading cause of

death among men (2). Although surgery remains the

primary treatment modality, inadequate adjuvant
therapy often results in poor prognosis and high

recurrence rates (3). Therefore, the development of new
and effective therapeutic strategies is essential for

improving the survival rate and quality of life of

patients with oral cancer.

Recently, natural compounds have garnered

significant attention for cancer treatment. Shikonin, a

natural naphthoquinone derivative extracted from

https://doi.org/10.5812/jjnpp-151564
https://doi.org/10.5812/jjnpp-151564
https://doi.org/10.5812/jjnpp-151564
https://crossmark.crossref.org/dialog/?doi=10.5812/jjnpp-151564&domain=pdf
https://crossmark.crossref.org/dialog/?doi=10.5812/jjnpp-151564&domain=pdf
https://orcid.org/0000-0002-9747-3861
https://orcid.org/0000-0002-9747-3861
mailto:9502060@gmail.com


Wu MH et al. Brieflands

2 Jundishapur J Nat Pharm Prod. 2024; 19(4): e151564

Lithospermum erythrorhizon, exhibits remarkable

antitumor activity against various cancer types (4, 5).

Studies have demonstrated that shikonin modulates the
cell cycle, induces apoptosis and necrosis, and possesses

antiangiogenic properties (6, 7).

Cancer progression involves several key processes,

including angiogenesis, tumor metastasis, autophagy,

and apoptosis (8). Angiogenesis provides tumors with

the essential nutrients and oxygen needed to support

their growth and metastasis (9). Cancer metastasis, a

primary cause of patient mortality, involves complex

cellular signaling pathways and the activation of matrix

metalloproteinases (10). Autophagy, a cellular self-

protection mechanism, plays a dual role in tumor

development and progression (11). The dysregulation of

apoptosis is a crucial factor in tumor formation and

drug resistance (12).

Recent studies have elucidated the autophagy-

modulating effects of shikonin in various cancers and

non-cancerous diseases. Hu et al. discovered that in

colorectal cancer, shikonin induces cellular autophagy
by modulating the microRNA-545-3p/GNB1 axis, thereby

disrupting cellular carcinogenesis (13). Liu et al.

reported that in human bladder cancer, shikonin-

induced ROS-dependent cell death involves necroptosis,

which inhibits autophagy by regulating RIP3/p62/Keap1
complex formation (14).

Shikonin has also demonstrated significant

autophagy-modulating effects in other diseases. Chen et

al. investigated the effects of shikonin on autophagy

and apoptosis in human promyelocytic leukemia cells

(15). Studies by Wang et al. have indicated that shikonin,
through the activation of autophagy, has emerged as a

potential therapeutic drug for various types of

osteoarthritis (16, 17).

These findings not only confirm the autophagy-

modulating effects of shikonin in various cancers and

diseases but also reveal its potential therapeutic

mechanisms. The ability of shikonin to induce

autophagy in cancer cells and promote apoptosis

positions it as a promising anticancer drug candidate.

Despite the demonstrated efficacy of shikonin in

multiple cancers, its specific effects and mechanisms of

action in oral cancer cells remain unclear.

Given the high incidence of oral cancer and the

limitations of existing treatments, conducting in-depth

research on the potential therapeutic value of shikonin

for oral cancer is crucial. This study aimed to establish
an in vitro experimental platform to systematically

investigate the effects of shikonin on oral cancer cells,

including its regulatory effects on cell survival,

metastasis, angiogenesis, autophagy, and apoptosis.

2. Objectives

The study provides new pharmacological evidence

for shikonin as a potential therapeutic agent for oral

cancer and lays the groundwork for future clinical
applications.

3. Methods

3.1. Drug Procurement and Cell Culture

Shikonin (517-89-5) and the other drugs used in this

study were purchased from Santa Cruz Biotechnology,

Inc. The SAS and SCC-4 cell lines are pivotal in oral

squamous cell carcinoma (SCC) research, each offering

unique insights into their distinct origins. The SAS cell

line, derived from metastatic oral SCC in the lymph

nodes, is utilized to study cancer invasion and

metastasis, making it essential for evaluating

treatments targeting advanced disease stages. In

contrast, the SCC-4 cell line originates from a primary

oral SCC tumor and represents initial tumor growth and

differentiation. Furthermore, the SCC-4 cell line is

critical for understanding the early stages of cancer and

testing therapies for primary tumors.

The combination of these two cell lines provides

diverse perspectives on oral SCC, encompassing tumor

formation and metastatic progression, and supports the
development of targeted therapies. The human oral

cancer cell lines (SCC-4 and SAS) were obtained from the
American Type Culture Collection. Cells were cultured in

DMEM/α-MEM and F12 media containing 10% fetal bovine

serum (FBS) at 37°C in a 5% CO2 incubator. The culture

medium was changed every two to three days, and when

the cells reached 80 - 90% confluence, they were

passaged or subcultured for experimental use.

3.2. Cell Viability Assay

Cell samples were divided into two groups and
cultured for 24 hours with or without shikonin

treatment. Subsequently, 3-(4,5-dimethylthiazol-2-yl)-2,5-
diphenyltetrazolium bromide (MTT) was added to the

cells at a concentration of 0.5 mg/mL and incubated for

an additional 30 minutes. The MTT reaction product was
then solubilized in dimethyl sulfoxide (DMSO).

Absorbance was measured at 550 nm using a Bio-Tek
microplate reader (Bio-Tek Instruments, Inc., Winooski,

VT, USA).

3.3. Western Blotting

After quantifying the protein samples, loading dye
was added and mixed thoroughly. The samples were
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denatured at 99°C in an incubator. The SDS-PAGE gel

consisted of a 4% stacking gel and a 10% or 12% separating

gel. The prepared gel was mounted onto an

electrophoresis device, and electrophoresis was

conducted for approximately 1.5 hours. Following
electrophoresis, protein transfer was performed. Once

the transfer was complete, the nitrocellulose membrane

was removed, and blocking buffer was added, with

shaking at room temperature for 1 hour.

Primary antibodies were then applied and allowed to

react at room temperature for 2 hours, followed by three

washes with 1× TBS buffer. Next, secondary antibodies

were added, and the reaction was carried out at 4°C for 2

hours, followed by a 10-minute wash with TBS. Finally, an

enhanced chemiluminescence (ECL) substrate was

applied, and the results were visualized using X-ray film.

3.4. Quantitative Polymerase Chain Reaction

Total ribonucleic acid (RNA) was extracted using the

TRIzol reagent under RNase-free conditions.

Subsequently, 1 μg of total RNA was subjected to reverse

transcription at 50°C for 2 minutes, followed by 60°C for

30 minutes. The template, equivalent to 20 ng of total

RNA, was denatured at 95°C for 5 minutes. Amplification

was performed through 40 cycles, with each cycle

consisting of denaturation at 94°C for 20 seconds and

annealing at 50°C for 1 minute. mRNA expression was

detected using the TaqMan fluorescence labeling system

and the StepOnePlus PCR Detection system.

3.5. Migration Assay

A transwell plate (Corning) with a polyethylene

terephthalate transparent membrane containing evenly

dispersed 8 μm-diameter pores was placed in a 24-well
cell culture plate. Subsequently, 1 × 10⁵ cells were

suspended in 200 μL of culture medium without FCS

and seeded into the transwell plate. After 12 hours, the

cells were fixed with 95% ethanol for 10 minutes, washed

with PBS, and stained with 25% hematoxylin for 30
minutes. Following three washes with PBS, the cells on

the upper side of the membrane were removed with a

cotton swab. The cells on the lower side of the

membrane were observed under a microscope in five

fields of view and counted to calculate the average cell
number.

3.6. Colony Formation Assay

A total of 5 × 10⁵ cells were seeded into six-well plates

and cultured with different drug concentrations for 21

days. The cells were fixed with 10% methanol and 10%

acetic acid in PBS for 5 minutes, washed with PBS, and

stained with 0.001% crystal violet for 30 minutes. After

washing, the colonies were observed in the culture dish,

and the number and area of the colonies were

calculated.

3.7. Detection of Changes in Calcium ion (Ca2+) Release

The cell suspension was aspirated into centrifuge

tubes and treated with the drugs for varying durations.

During the last 10 minutes of treatment, Fluo-3/AM

calcium ion dye (1 μL Fluo-3/AM working solution in 500

μL PBS) was added to each tube in a final volume of 500

μL. A blank tube containing only 500 μL of PBS without

drugs or dye was also prepared. The samples were

placed in a 37°C water bath in the dark. Subsequently,

the samples were analyzed using a flow cytometer, and

10,000 cells were collected from each sample to assess

the extent of calcium ion release.

3.8. Detection of Changes in Mitochondrial Membrane
Potential

Cells were seeded in a six-well plate at a density of

approximately 2 × 10⁵ cells/mL per well and allowed to

adhere for 24 hours. After cell adhesion, different

concentrations of drugs were added, and the cells were

continuously cultured for 48 hours. Next, the

supernatant from the culture dish was collected into a 1

mL centrifuge tube, and the culture dish was washed

with PBS. The wash liquid was also collected in the

centrifuge tube.

Subsequently, 0.1% trypsin was added to the culture

dishes to cover their surfaces. After incubation for 3

minutes, the dish was gently tapped to suspend the

adhered cells, which were then aspirated into the

centrifuge tube from the previous step. Centrifugation

was performed at 1500 rpm for 5 minutes to remove the

supernatant. JC-1 dye was added to the cell suspension to

achieve a uniform suspension, and the cells were

stained for 30 minutes. The mitochondrial membrane

potential of the cells was determined using a flow

cytometer, and 10,000 cells were analyzed to assess

changes in the mitochondrial membrane potential.

3.9. Detection of Cell Apoptosis

An In Situ Cell Apoptosis Detection Kit (Roche

Diagnostics, East Sussex, UK) was used to detect

apoptosis in tumor samples based on the principle of

terminal deoxynucleotidyl transferase (TdT)-mediated

deoxyuridine triphosphate-biotin nick end-labeling

(TUNEL). Tissue sections were permeabilized with 0.1%

Triton-X100 for 20 minutes, followed by a 60-minute

reaction with fluorescein-labeled deoxyuridine
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triphosphate (dUTP) and TdT. Subsequently, a 30-minute

reaction with an alkaline phosphatase-conjugated anti-

fluorescein antibody was performed, followed by

staining with a fast red solution.

Tissues without TdT labeling were used as negative

controls. Two sections from each sample were analyzed,

and 10 random images were selected for observation at

400× magnification to calculate the staining results.

Finally, the samples were re-stained with 4',6-diamidino-

2-phenylindole dihydrochloride (DAPI; 2 μg/mL, Sigma-

Aldrich Inc.) at 37°C for 30 minutes. Cells showing

TUNEL-positive and DAPI-positive reactions along with

condensed or fragmented chromatin in the nucleus

were considered apoptotic.

After three replicates of the experiment, nine

random images were selected for observation at 200 ×

magnification using an Axiovert 200 inverted

fluorescence microscope equipped with an Axiocam

HRM-cooled charge-coupled device camera and Axio

Vision 4 image analysis software (Carl Zeiss, Göttingen,

Germany). The number of apoptotic and total cells was

counted, and the apoptotic ratio was calculated.

3.10. Animal Experiment

Male BALB/c nude mice were purchased from

BioLASCO Taiwan Co., Ltd. (Taipei, Taiwan) and

acclimatized for one week. SCC-4 cells were seeded in a

10 cm dish and allowed to adhere for 24 hours. After cell

adhesion, the supernatant from the culture dish was

collected in a 1 mL centrifuge tube, and the culture dish

was washed with PBS. Subsequently, 0.1% trypsin was

added to the culture dish to cover the surface. After 3

minutes of incubation, the dish was gently tapped to

suspend the adhered cells.

The cell suspension was aspirated into a centrifuge

tube and centrifuged at 1500 rpm for 5 minutes. The

supernatant was removed, and serum-free culture

medium was added to evenly disperse the cells. The cell

density was approximately 1 × 10⁶ cells/L. A 200 μL cell

suspension was then subcutaneously injected into the

lower abdomen of each mouse. Drug administration

was initiated when the tumor size reached 100 mm³,

and the tumor size and body weight of each mouse were

monitored until day 28.

All experimental methods were approved by Tunghai

University of Medicine (Taichung, Taiwan) in accordance

with the National Institutes of Health Guide for the Care

and Use of Laboratory Animals. Temperature, humidity,

and light-dark cycle were maintained under controlled

conditions.

3.11. Histological Analysis

Specimens were fixed in 4% formaldehyde, embedded

in paraffin, and sectioned into 4 μm-thick slices.

Hematoxylin-eosin (HE) and Alcian blue staining

(Sigma-Aldrich Inc., St. Louis, MO) were performed to

examine and analyze the morphology of the tumor

tissue.

3.12. Statistical Analysis

For all quantified results, the mean ± SD of at least
three experiments was calculated using GraphPad Prism

5.0 software. Student’s t-test was employed for statistical

comparison between two groups, while two-factor

analysis of variance (ANOVA) with the Bonferroni post

hoc test or the Mann-Whitney U test was used for
statistical comparisons involving more than two

groups, as appropriate. In all cases, statistical

significance was defined as a P-value of less than 0.05.

4. Results

4.1. Shikonin Exhibits Specific Inhibitory Effects on Oral
Cancer Cells

Shikonin is a naphthoquinone derivative, and its

structure is shown in Figure 1A. Previous studies have

demonstrated the significant benefits of shikonin for

cancer treatment (1, 2). However, its effects on oral

cancer have not been fully elucidated. Oral cancer

encompasses various pathological types, including

squamous cell carcinoma (SCC), verrucous carcinoma,

adenoid cystic carcinoma, and mucoepidermoid

carcinoma. SCC accounts for more than 90% of all oral

cancers and is associated with a poor prognosis.

Some systemic cancers, including those of the

digestive tract, breast, lung, liver, prostate, multiple

myeloma, and malignant lymphoma, can also

metastasize to the oral cavity. To clarify the impact of

shikonin on oral cancer cells, we conducted a cell

viability analysis on two SCC cell lines, SCC4 and SAS,

which have been less commonly used in previous

studies on shikonin and oral cancer. The purpose of this

study was to demonstrate the specificity of shikonin for

oral cancer cells and confirm its inhibitory effect

through MTT experiments.

The results revealed that shikonin effectively

inhibited the growth of oral cancer cells in a

concentration-dependent manner (Figure 1B).

Furthermore, we investigated the effects of shikonin on

normal tissues by establishing C2C12 cells as mature

myoblasts and G7 cells as skeletal muscle cells for
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Figure 1. A, structure of shikonin known as a naphthoquinone derivate; B, shikonin effectively inhibited oral cancer cells in a concentration-dependent manner, as observed
through (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) (MTT) experiments. (* represented SAS cell line was significantly inhibited by shikonin and # represnted
SCC-4 cell line was significantly inhibited by shikonin); C, accidental discovery that shikonin promoted the proliferation of muscle cells (* represented significant proliferation
of SAS cell line the and # represnted the SCC-4 cell line).

Figure 2. A and B, Shikonin effectively inhibited the migration of oral cancer cells as the concentration increased (* represented significantly inhbitied migration of SAS cell line
and # represented significantly inhbitied migration of SCC-4 cell line); C, enzyme activity tests; D and F, mRNA expression, which represented the expression of matrix

metalloproteinases-2 (MMP-2) and MMP-9 (# represented significantly suppressed); E, were suppressed by shikonin stimulation; at the lethal dose of 5 μM, which induced cell
death, shikonin further inhibited the expression of MMP-2 and MMP-9.

comparison with normal tissues and oral cancer cells.

Preliminary findings indicated that shikonin

specifically inhibited cancer cells without affecting

normal tissues. Interestingly, this study unexpectedly

showed that shikonin promoted the proliferation of

muscle cells (Figure 1C).

4.2. Shikonin Inhibits Cancer Cell Migration and Wound
Healing Ability by Suppressing Matrix Metalloproteinases

Metastasis is a critical factor in cancer progression (3,

4). We investigated the ability of shikonin to inhibit

cancer cell migration. To ensure that the shikonin-

mediated inhibition of cancer cell migration was not

solely due to the induction of apoptosis in oral cancer

cells, as observed in previous experiments where

concentrations exceeding 5 μM significantly caused

cancer cell death, we tested the effect of different

concentrations (0, 0.3, 1, 3, and 5 μM) of shikonin on cell

migration.

https://brieflands.com/articles/jjnpp-151564


Wu MH et al. Brieflands

6 Jundishapur J Nat Pharm Prod. 2024; 19(4): e151564

Figure 3. Shikonin may potentially inhibit angiogenesis in cancer cells. Panel A, B, and C, showed significantly suppressed the mRNA and cellular proteins expressions of both
vascular endothelial growth factor A (VEGF-A) and VEGF-C; panel D and E, exhibited the secretion of VEGF-A and VEGF-C were significantly inhibited by shikonin based on the
enzyme-linked immunosorbent assay (ELISA) analysis. # represented significanted suppressed when compared to the control group.

The preliminary experimental results indicated that

as the concentration of shikonin increased, the

migration ability of oral cancer cells decreased. This

finding suggests that shikonin effectively inhibits the

migration of oral cancer cells, as depicted in Figure 2A

and B.

Next, we aimed to identify the specific protein that

shikonin regulates to inhibit cancer cell migration. At

the lethal dose of 5 μM, which induced cell death,

shikonin was found to inhibit the expression of matrix

metalloproteinases-2 (MMP-2) and matrix

metalloproteinases-9 (MMP-9) proteins (Figure 2E).

Additionally, mRNA expression and enzymatic activity

tests revealed that the expression of MMP-2 and MMP-9

was suppressed by shikonin stimulation (Figure 2C, D,

and F).

4.3. Shikonin Inhibits the Production of Vascular Endothelial
Growth Factor-A and Vascular Endothelial Growth Factor-C
in Oral Cancer Cells

Both vascular endothelial growth factor-A (VEGF-A)

and vascular endothelial growth factor-C (VEGF-C) have

been identified as crucial factors in inducing

angiogenesis and lymphangiogenesis (5, 6). These

proteins play significant roles in directly generating

blood or lymphatic vessels to supply nutrients to cancer

cells, facilitate cancer cell metastasis, and cooperate

with other oncogenes to promote tumor cell

proliferation. This underscores the importance of VEGF-

A and VEGF-C as key proteins in cancer cell malignancies.

Therefore, we aimed to evaluate the effects of

shikonin on VEGF-A and VEGF-C expression and clarify its

potential to inhibit angiogenesis. The results

demonstrated that shikonin significantly suppressed

the mRNA and protein expression of both VEGF-A and

VEGF-C (Figure 3A - C). Furthermore, ELISA analysis of

protein expression in the culture supernatant of oral

cancer cells revealed that shikonin significantly

inhibited the secretion of VEGF-A and VEGF-C (Figure 3D

and E). These findings suggest that shikonin effectively

inhibits angiogenesis in cancer cells.
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Figure 4. Shikonin can significantly affect cancer cell growth, migration, and autophagy, as shown by the following results. A, B, and C, levels of autophagy-related proteins such

as Belin-1, autophagy related 5 (ATG-5), and 1A/1B-light chain 3 (LC-3) increased with the concentration of shikonin, reaching a peak at cytotoxic doses of 3 μM and 5 μM; D,
Mammalian target of rapamycin(m-TOR) and other related proteins were suppressed, initiating autophagy. * represented significantly increased when compared to the control
group.

4.4. Effects of Shikonin on Autophagy in Oral Cancer Cells

Stimulation with high concentrations of shikonin

inhibits cancer cell proliferation and autophagy (7, 8).

However, the detailed mechanisms underlying protein

regulation during shikonin-induced autophagy in oral

cancer cells remain unclear. Therefore, this study

further validated the effects of shikonin on autophagy

and aimed to determine its influence on autophagy-

related proteins.

We found that the levels of autophagy-related

proteins, such as Beclin-1, ATG5, and light chain-3 (LC-3),

increased with the concentration of shikonin, reaching

a peak at cytotoxic doses of 3 μM and 5 μM, which were

above the IC50 (Figure 4A - C). Additionally, mTOR and

other related proteins were inhibited, thereby initiating

autophagy (Figure 4D).

These results indicate that shikonin significantly

affects cancer cell growth, migration, and autophagy.

Future studies should investigate the potential

induction of apoptotic responses at cytotoxic doses.

4.5. Effects of Shikonin on the Colony-formation Ability and
Apoptosis of Oral Cancer Cells

The ability of cancer cells to detach from their

environment and independently form colonies is a

critical indicator of cell survival (9). This study found

that shikonin inhibited the colony-forming ability of

oral cancer cells, leading to apoptosis (Figure 5A). In

experiments investigating the effects of shikonin on

apoptosis in oral cancer cells, it was observed that

shikonin increased the activity of the apoptotic protein

Caspase 3 (Figure 5B). The TUNEL experiment, which

involved nuclear staining, demonstrated that high

concentrations of shikonin induced nuclear

fragmentation and apoptosis in oral cancer cells (Figure

5C).

Moreover, shikonin stimulated the release of calcium

ions in cancer cells, leading to changes in the

mitochondrial membrane potential and subsequent cell

death. Conversely, pretreatment with the calcium ion

chelator (BAPTA-AM) inhibited shikonin-induced

apoptosis (Figure 5D). Annexin V/PI double labeling was

used to detect phosphatidylserine externalization, a

hallmark of the early phase of apoptosis. A higher

proportion of Annexin V-positive labeling was observed

in cells treated with increasing doses of shikonin

(Figure 5E).
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Figure 5. A, shikonin inhibited the colony formation ability of oral cancer cells (SCC-4), leading to apoptosis; B, elevated activity of the apoptotic protein Caspase 3; C, in the
terminal deoxynucleotidyl transferase biotin-dUTP nick end labeling (TUNEL) experiment, in which the nucleus is stained, high concentrations of shikonin induced nuclear
fragmentation and apoptosis in oral cancer cells; D, shikonin caused the release of calcium ions in cancer cells, resulting in changes in the mitochondrial membrane potential
and consequent cell death. Conversely, pretreatment of a calcium ion chelator (BAPTA-AM) can stop shikonin-induced cell apoptosis; E, higher proportion of Annexin V +
labeling, a hallmark of early phase of apoptosis, was detected in cells treated with increasing doses of shikonin. * represened significantly increased and # represented
significantly suppresed.

Furthermore, a mouse model was established by

subcutaneously transplanting SCC-4 oral cancer cells

into the backs of mice. Once the tumor masses reached a

size of 1 cm × 1 cm, shikonin was administered regularly

to observe its impact on tumor formation. After 20 days

of treatment, tumor formation was inhibited, and

tumor growth was significantly limited. Histological

examination of the extracted tumors, stained with HE,

revealed signs of apoptosis, including necrosis and

cavities in tumors treated with shikonin. These in vivo
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Figure 6. A, mouse model was established by subcutaneously transplanting the SCC-4 oral cancer cell line into the back of the mice; B, tumor formation was inhibited, and
tumor growth was significantly limited; C, histological examination of the extracted tumors stained with hematoxylin-eosin (HE) revealed signs of apoptosis, such as necrosis
and cavities in the tumors treated with shikonin. # represented significantly inhibited when compared to the wild type.

experiments demonstrated that shikonin effectively

induced apoptosis in oral cancer cells (Figure 6A - C).

5. Discussion

Shikonin, a naphthoquinone derivative extracted

from the root of L. erythrorhizon, is widely used in

traditional Chinese medicine (10, 11). Over the past few

decades, numerous studies have demonstrated various

biological effects of shikonin, including anti-HIV (12),

anti-inflammatory (18, 19), antibacterial (20), and

anticancer (21, 22) properties. Its anticancer function is

particularly notable for its ability to induce cell

apoptosis and necroptosis.

Previous studies have shown similar effects of

shikonin on oral cancer cell lines, such as Tca-8113, Ca9-

22, and SCC-25. It induces apoptosis through the caspase

pathway and effectively inhibits cancer cell growth in

cell cycle experiments (23, 24). However, the

reproducibility and relationship between autophagy

and apoptosis in different cell lines, as well as the effects

of varying autophagy concentrations, remain unclear.

Additionally, its potential to inhibit angiogenesis has

not been thoroughly studied.

Therefore, this study aimed to address these

uncertainties by confirming whether shikonin exhibits

similar effects on the SCC-4 and SAS oral cancer cell lines,

exploring the effects of different concentrations of

shikonin on oral cancer, investigating the relationship

between autophagy and apoptosis, and elucidating the

potential benefits of shikonin in the inhibition of

angiogenesis.

The results of this study demonstrated that shikonin

exerts a dose-dependent inhibitory effect on SCC-4 and

SAS oral cancer cell lines, significantly suppressing cell

growth. Moreover, the effective concentration required

for inhibiting oral cancer growth is lower than the

previously reported 20 μM, with an IC50 value achieved

at concentrations as low as 3 μM. Shikonin also

influences autophagy by activating downstream

proteins, initiating caspase pathways, and releasing

calcium ions, ultimately leading to apoptosis.
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Recent studies (from 2021 to 2024) have provided

additional evidence supporting the autophagy-inducing

properties of shikonin in various cancer types and other

diseases. Hu et al. demonstrated that shikonin induces

autophagy in colorectal cancer cells by modulating the

microRNA-545-3p/GNB1 axis (13). Liu et al. reported that

shikonin-induced ROS-dependent cell death involves

complex interactions between necroptosis and

autophagy (14). Furthermore, Chen et al. and Wang et al.

observed autophagy-activating effects of shikonin in

leukemia cells and osteoarthritis models, respectively

(15, 16). These studies collectively reinforce our findings

on the ability of shikonin to modulate autophagy in oral

cancer cells and suggest a consistent mechanism across

different cellular contexts.

The convergence of these recent findings with our

results underscores the potential of shikonin as a

promising therapeutic agent that acts via the activation

of autophagy, warranting further investigation in oral

cancer treatment. These findings align with previous

studies on the effectiveness of shikonin in treating

breast and colorectal cancer (25-27).

Interestingly, this study revealed that shikonin spares

skeletal muscle cells and promotes their proliferation.

This unexpected discovery indicates the potential of

shikonin to facilitate skeletal muscle cell growth.

However, this aspect was not explored further as it was

beyond the scope of this study. Future research is

warranted to investigate the feasibility of using

shikonin to promote skeletal muscle cell proliferation.

Our study also revealed that shikonin significantly

inhibits the synthesis of VEGF-A and VEGF-C, two key

factors driving angiogenesis in oral cancer cells.

Although angiogenesis was not directly simulated in

vitro or in vivo in this study, these findings align with

previous research on naphthoquinone derivatives,

demonstrating their role in suppressing angiogenesis.
For example, shikonin, along with acetylshikonin and

isobutyrylshikonin, has been shown to inhibit VEGF

activity in human umbilical vein endothelial cells and

reduce tumor formation and angiogenesis in animal

models (28). Moreover, beyond its anti-angiogenic
effects in cancer, shikonin has demonstrated efficacy in

inhibiting angiogenesis in rheumatoid arthritis (18),
highlighting its therapeutic potential against excessive

angiogenesis in various diseases.

In terms of cancer metastasis, shikonin exhibited

inhibitory effects on the migration and adhesion

capabilities of SCC-4 and SAS oral cancer cells. The

expression levels of metastasis-related proteins, such as

MMP-2 and MMP-9, decreased in a concentration-

dependent manner, as evidenced by zymography

experiments showing suppressed MMP activity. This

inhibitory effect has also been observed in other cancer

types, including lung cancer, hepatocellular carcinoma,

and thyroid tumors (29-31).

One notable finding of this study is that the

induction of autophagy by shikonin acts as a precursor

to apoptosis. Previous studies have debated whether

autophagy plays a protective or pro-apoptotic role in

shikonin-treated cells. Kim et al. reported that

autophagy activation protects cells from shikonin-

induced apoptosis (32), whereas other studies have

suggested that autophagy activation contributes to

apoptosis (33). Our results demonstrated that shikonin-

induced autophagy led to cell death once a lethal dose

was reached, confirming that autophagy could not

protect cells against the effects of high concentrations

of shikonin.

These findings underscore the considerable potential

of shikonin as a therapeutic agent against oral cancer.

5.1. Conclusions

This study demonstrated that shikonin significantly

inhibits the mRNA and protein expression of VEGF-A and

VEGF-C, thereby suppressing angiogenesis. It also

impedes cell migration by inhibiting the expression of

MMP-2 and MMP-9. As the drug concentration increased,

autophagosome formation was induced in both oral

cancer cell lines (SCC-4 and SAS) through the promotion

of LC3 cleavage. Concurrently, Caspase 3 activation

occurred, and calcium ions, indicative of endoplasmic

reticulum stress, were released.

In addition, shikonin effectively inhibited oral cancer

growth in a mouse model. Thus, shikonin exhibited

remarkable inhibitory effects on cell growth,

angiogenesis, and migration. However, this study

primarily focused on comprehensively investigating the

cancer treatment aspects of shikonin through cell and

animal experiments.

Future research should explore detailed pathways

and pharmacokinetics to achieve a deeper

understanding of its mechanisms. These findings are

expected to provide indispensable insights into the

molecular mechanisms underlying oral cancer

treatment and contribute to future advancements in the

field.

5.2. Limitations and Future Work

Although our study provides compelling evidence for

shikonin's anticancer effects on oral cancer, several

limitations must be acknowledged. First, while we

conducted preliminary in vivo experiments to examine
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tumor size reduction and histological changes, these

animal studies were limited in scope. Specifically, they

did not fully explore the effects of shikonin on

metastasis and angiogenesis or its potential systemic

side effects in living organisms. Second, our molecular

investigations, although informative, primarily focused

on a selected set of pathways and markers. While this

targeted approach provided valuable insights, it may

have overlooked other significant molecular

mechanisms influenced by shikonin. Finally, this study

did not address the long-term effects of shikonin

treatment or its potential interactions with other

therapeutic agents commonly used in oral cancer

management.

To address these limitations and advance our

understanding of shikonin's therapeutic potential,

future studies should focus on several key areas.

Comprehensive in vivo studies are essential to elucidate

the effects of shikonin on oral cancer progression. These

studies should employ advanced imaging techniques

and a broader array of biomarkers to track cancer

development and treatment responses in real time,

providing a more holistic view of the efficacy and safety

profile of shikonin. At the molecular level, high-

throughput technologies such as RNA-seq and

proteomics can be employed to uncover additional

targets and signaling pathways affected by shikonin,

both in vitro and in vivo. This broader mechanistic

insight would not only enhance our understanding of

shikonin's mode of action but also potentially reveal

new therapeutic targets.

Furthermore, investigating the potential synergistic

effects of shikonin in combination with current

standard-of-care treatments for oral cancer could open

new avenues for combination therapies. Such studies

may result in more effective treatment regimens with

fewer adverse effects. As we move toward potential

clinical applications, future research should also

prioritize optimizing the pharmacokinetic profile of

shikonin and developing innovative drug delivery

systems. These advancements could address challenges

related to bioavailability and target specificity, which

are critical for translating laboratory findings into

clinical success. The initiation of preclinical safety

studies and early-phase clinical trials will be a crucial

step in assessing the viability of shikonin as a novel

therapeutic agent for oral cancer.

By systematically addressing these research

priorities, we can build on our current findings,

overcome the limitations of this study, and potentially

pave the way for the integration of shikonin into clinical

practice, offering new hope for patients with oral cancer.
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