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Abstract

Background: Cerebral ischemia activates harmful biochemical pathways that result in blood-brain barrier (BBB) breakdown
and neuronal damage. Natural compounds such as chrysin and gallic acid (GA), known for their antioxidant and anti-
inflammatory properties, may protect the BBB and reduce neuronal injury.

Objectives: This study aimed to examine the effects of combining chrysin and GA on hippocampal neuronal damage,
cognitive function, BBB integrity, and claudin-5 expression in a mouse model of cerebral ischemia.

Methods: Cerebral ischemia was induced through bilateral common carotid artery occlusion (BCCAO) for 30 minutes,
followed by 48 hours of reperfusion. Chrysin (30 mg/kg, intraperitoneally), GA (50 mg/kg, intraperitoneally), and their
combination were administered at the start of reperfusion and subsequently at 30 minutes and 1 hour. Hippocampal neuronal
damage, spatial memory, Evans blue (EB) leakage, and claudin-5 expression were evaluated 48 hours after reperfusion.

Results: Administration of chrysin, GA, and their combination significantly enhanced neuronal survival in the CA1, CA3, and
dentate gyrus (DG) regions (P < 0.001). The combination diminished neurological deficit scores (1.5 + 0.22 vs. control 3.5 £ 0.56, P

reduced EB leakage (3.46 + 0.62 vs. control 11.28 + 0.98 pg/g of brain tissue) and upregulated claudin-5 expression (38% + 1.29 vs.
control 10.75% £ 1.65, P < 0.001).

Conclusions: This study demonstrated that the combined treatment of chrysin and GA synergistically promoted
hippocampal neuron survival, improved neurological function, and maintained BBB integrity by upregulating claudin-5
expression. We suggest that this therapeutic approach may offer potential benefits for stroke patients, though further
experimental and clinical investigation is required to confirm its efficacy.
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< 0.05) and escape latency time (12.8 + 4.5 vs. control 40 + 4.82 seconds, P < 0.01). Likewise, these interventions significantly

~
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1. Background

Global brain ischemia occurs in events such as
cardiac arrest, severe hypotension, and carotid artery
stenosis (1, 2). During cerebral ischemia, the activation
of multiple toxic biochemical pathways, including
excitotoxicity, mitochondrial dysfunction, oxidative
stress, neuroinflammation, and apoptosis, leads to
blood-brain barrier (BBB) breakdown, neuronal death,

and neurological dysfunction (3). Although treatments
such as intravenous thrombolysis and mechanical
thrombectomy improve stroke outcomes,
pharmacological options for ischemic stroke remain
limited (1-3), highlighting the need for new therapeutic
solutions. Targeting pathological pathways with natural
compounds such as flavonoids and polyphenols, which
possess antioxidant, anti-inflammatory, and anti-
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apoptotic properties (4, 5), may protect the BBB and
mitigate neuronal damage in cerebral ischemia.

Chrysin, a natural flavonoid found in plants, honey,
and propolis, exhibits antioxidant, anti-inflammatory,
and anti-apoptotic properties, making it therapeutically
significant (6, 7). Preclinical research suggests that
chrysin may be beneficial in treating various
neurodegenerative disorders, including multiple
sclerosis, Parkinson’s disease, Alzheimer’s disease, and
traumatic brain injuries (7-9). Furthermore, several
recent experimental studies have demonstrated that
chrysin reduces brain damage and improves cognitive
function in ischemic stroke models (10-13). Despite these
benefits, the impact of chrysin on BBB integrity remains
unclear, warranting further investigation.

Gallic acid (GA), a natural polyphenol found in
plants, has various pharmacological effects, including
neutralizing free radicals, modulating inflammation,
and inhibiting apoptosis (4). Animal studies have
demonstrated the potential of GA to protect the brain
from ischemic damage by inhibiting oxidative stress,
pro-inflammatory cytokines, and apoptosis (14-16).
Moreover, a preclinical investigation showed the ability
of GA to preserve BBB integrity following ischemic
stroke (17).

The BBB maintains system
homeostasis by controlling substance exchange
between the blood and brain (18). Cerebral ischemia
often leads to BBB damage, closely associated with
structural changes in tight junction proteins,
particularly claudin-5, a key component of the
intercellular junctions in endothelial cells that
preserves barrier integrity (18, 19). Loss of claudin-5
disrupts the BBB, resulting in increased permeability,
brain edema, inflammation, and worsened neuronal
damage (19). Preserving claudin-5 is essential for
minimizing injury in ischemic conditions (18, 19), as it
helps maintain tight junctions, protect BBB integrity,
and support overall cerebrovascular health.

central nervous

Chrysin and GA are natural flavonoid and polyphenol
compounds that show potential in treating ischemic
brain injury by targeting glutamate excitotoxicity,
oxidative stress, neuroinflammation, and apoptosis (7,
12, 14, 20). These compounds may act synergistically,
enhancing neuroprotection through complementary
mechanisms. Combining chrysin and GA could provide
greater protection against cerebral ischemia compared
to monotherapy in a cerebral hypoperfusion model.

2. Objectives

This study aimed to examine the effects of chrysin,
GA, and their combination on neuronal damage in the
CAl, CA3, and dentate gyrus (DG) regions of the
hippocampus, spatial memory, BBB integrity, and
claudin-5 expression in a mouse model of cerebral
hypoperfusion induced by bilateral common carotid
artery occlusion (BCCAO).

3. Methods

3.1. Animals

In this experimental study, male Swiss albino mice,
weighing 30 to 40 grams and aged 3 to 4 months, were
obtained from the animal facility at the Semnan
Research Center of Physiology. All procedures adhered
to established guidelines for the care and use of
experimental animals.

3.2. Experimental Approach and Grouping

In this study, we investigated the effects of chrysin
(purity: 97%, Cat No. C80105, Sigma-Aldrich, Germany)
and GA (purity > 98.5%, Cat No. G7384, Sigma-Aldrich,
Germany), both individually and in combination, on
neuronal damage, neurological impairments, and
spatial memory function. A total of 30 mice were
randomly assigned to five equal groups (n = 6 per
group) as follows:

(1) Sham-operated group: Animals underwent
surgical procedures without BCCAO.

(2) Ischemic control group (BCCAO + DMSO):
Dimethyl sulfoxide (DMSO 2%, intraperitoneally; 0.3 mL)
was injected at the beginning, 30 minutes, and 1 hour
after reperfusion.

(3) Treatment group 1 (BCCAO + chrysin): Chrysin (30
mg/kg, intraperitoneally) was administered at the
beginning, 30 minutes, and 1 hour after reperfusion.

(4) Treatment group 2 (BCCAO + GA): GA (50 mg/kg,
intraperitoneally) was given at the beginning, 30
minutes, and 1 hour after reperfusion.

(5) Treatment group 3 (BCCAO + chrysin + GA): Mice
received a combination of chrysin (30 mg/kg,
intraperitoneally) and GA (50 mg/kg, intraperitoneally)
at the beginning, 30 minutes, and 1 hour after
reperfusion.

Forty-eight hours after reperfusion, the neurological
deficit score and spatial memory function were assessed
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in the groups. Subsequently, four to five animals from
each group were randomly selected and deeply
anesthetized. Brains were carefully extracted and fixed
in a 10% formalin solution for neuronal damage
evaluation and claudin-5 expression analysis.

In the second part of the study, Evans blue (EB) dye
(Cat No. E2129, Sigma-Aldrich, Germany) extravasation
was utilized to assess the integrity of the BBB. To
evaluate the extent of EB leakage as an index of BBB
permeability, 35 mice were randomly assigned to five
equally sized groups (n = 7 per group), following the
experimental setup described in the first part of the
study.

3.3. Cerebral Ischemia

Transient global cerebral ischemia was induced in
mice under anesthesia with ketamine (60 mg/kg,
intraperitoneally) and  xylazine (10  mg/kg,
intraperitoneally) (21). A midline cervical incision was
made to expose the common carotid arteries, which
were bilaterally occluded for 30 minutes using clamps,
followed by reperfusion for 48 hours. Buprenorphine
(0.05 mg/kg, intraperitoneally) was administered pre-
surgery and post-surgery for pain management.

3.4. Neurological Examination

Sensory and motor dysfunctions were evaluated 48
hours after ischemia/reperfusion using a standardized
guideline (21). According to the protocol, animals were
assigned scores ranging from 0 to 14. Scores between 10
and 14 indicated severe disability, scores from 5 to 9
reflected moderate disability, and scores from 1 to 4
represented mild disability.

3.5. Radial Arm Water Maze Test

Sensory and motor dysfunctions were evaluated 48
hours after ischemia/reperfusion using a standardized
guideline (21). According to the protocol, animals were
assigned scores ranging from 0 to 14. Scores between 10
and 14 indicated severe disability, scores from 5 to 9
reflected moderate disability, and scores from 1 to 4
represented mild disability.

3.6. Hematoxylin and Eosin Staining

Hematoxylin and eosin (H&E) staining was used to
assess neuronal damage in the hippocampal CA1, CA3,
and DG regions. Brain tissue was fixed in formalin,
embedded in paraffin, sectioned at 5 pm, deparaffinized,
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and stained with H&E. Sections were then dehydrated,
cleared, and examined under a 400x light microscope.
Image] software was used to calculate the percentage of
living cells in five random fields. Living cells exhibited
distinct borders, blue nuclei, and pink cytoplasm,
whereas damaged neurons displayed dark, condensed
cytoplasm and irregular features.

3.7. Blood-Brain Barrier Permeability

Approximately 60 minutes after BCCAO, a 2% EB dye
solution (2 mL/kg) was injected via the tail vein. After 48
hours of reperfusion, animals were euthanized under
deep anesthesia, and cardiac perfusion with saline was
performed to clear the vascular system. Brains were
homogenized in phosphate-buffered saline (PBS) and
60% trichloroacetic acid, then centrifuged. The
absorbance of the supernatant was measured at 610 nm
to determine the EB concentration. Values were
compared to a standard curve and expressed as pg/g of
brain tissue (23).

3.8. Immunohistochemistry

The brain was fixed in 10% formalin, embedded in
paraffin, and sectioned at a thickness of 5 um. Sections
were deparaffinized, rehydrated, and treated with 5%
goat serum and 0.4% Triton X-100 (X100, Sigma-Aldrich
Chemie GmbH, Germany) to block non-specific binding.
They were incubated overnight with rabbit anti-claudin-
5 primary antibodies (1:100, Cat No. GTX00796, GeneTex,
Inc., CA 92606, USA), followed by incubation with FITC-
conjugated secondary antibodies (1:150, Cat No.
orb688925, Biorbyt Ltd., United Kingdom). Cell nuclei
were stained with DAPI, and sections were examined
under a fluorescent microscope at 400x magnification
to detect claudin-5 expression (green fluorescence).
Image] software was used to quantify claudin-5 positive
cells as a percentage of DAPI-stained nuclei.

3.9. Data Analyses

The Shapiro-Wilk test was used to assess data
normality. Parametric data, including hippocampal
damage, claudin-5 expression, BBB permeability, and
target zone time, were analyzed using one-way ANOVA
with Tukey's post-hoc test. Non-parametric data,
including neurological scores and escape latency, were
analyzed using the Kruskal-Wallis test with Dunn's post-
hoc tests. The overall experimental procedure was
conducted in a blinded manner to minimize bias.
Results are presented as mean + SEM for parametric data
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Figure 1. A, representative images of tissue sections stained with hematoxylin and eosin (H&E) in the hippocampal CA1, CA3, and D.G regions (400x magnification). The
percentages of living cells in the hippocampal regions; B, CA1, C, CA3; and D, D.G are presented for the sham-operated group, the control group [bilateral common carotid artery
occlusion (BCCAO) + DMSO], and groups treated with chrysin (BCCAO + chrysin), gallic acid (GA) (BCCAO + GA), and their combination (BCCAO + chrysin + GA). The results are
presented as the mean + SEM (n =5, each). ### P < 0.001 vs. sham group, *** P < 0.001, vs. BCCAO + DMSO as control group. A P < 0.001 vs. chrysin and G.A groups, + P < 0.05 vs.

chrysin group.

and median (IQR) for non-parametric data, with
significance set at P < 0.05. Analyses were performed
using GraphPad Prism 10.

4.Results

4.1. The Combination of Chrysin with Gallic Acid Protects
Hippocampal Neurons Against Cerebral Ischemia

Hematoxylin and eosin staining results showed that
cerebral ischemia led to a marked decrease in viable
neurons in the CA1 (26 +1.6%), CA3 (34 £ 1.7%), and DG (33
11.03%) regions compared to the sham group (Figure 1A
and B; P < 0.001). Chrysin treatment significantly
improved neuronal survival in the CA1 (46 £ 2.3%), CA3
(55 £ 1.3%), and DG (50 + 1.3%) regions (Figure 1A - D; P <
0.001). Similarly, GA administration enhanced neuronal
survival in the CA1(37 £1.4%), CA3 (58 £ 1.4%), and DG (51t
1.32%) regions (Figure 1A - D; P < 0.001). Moreover, the

combined treatment with chrysin and GA resulted in a
substantial increase in neuronal survival in the CA1(69 £
2.5%), CA3 (71 + 218%), and DG (72 + 1.28%) regions,
compared to the BCCAO + DMSO and individual
treatment groups (Figure 1A - D; P < 0.001).

4.2. The Combination of Chrysin with Gallic Acid Reduced
Spatial Memory Impairment and Neurological Deficit Score
Following Cerebral Ischemia

A two-way repeated measures ANOVA (group x days)
indicated no significant differences between the groups
(P =0.95), but a significant difference between days (P <
0.0001), and no interaction (Figure 2A; P = 0.99). The
administration of chrysin (P = 0.0048) and its
combination with GA (P = 0.002) significantly reduced
escape latency time (P = 0.008) and increased the time
spent in the target zone (Figure 2B and C; P = 0.027).
Moreover, chrysin + GA treatment significantly reduced
neurological deficit scores (Figure 2D; P = 0.0346).
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Figure 2. A, escape latency time (in seconds) during the four days of training using the RAWM,; B, escape latency time in the probe trial; C, time spent in the target zone; and D,
neurological deficit scores are shown in the sham-operated group, control group [bilateral common carotid artery occlusion (BCCAO) + DMSO], and groups treated with chrysin
(BCCAO + chrysin), gallic acid (GA) (BCCAO + GA), and their combination (BCCAO + chrysin + GA). Parametric results are presented as mean + SEM, while non-parametric data
(escape latency time and neurological deficit scores) are displayed as the median and interquartile range (IQR) (n = 6, each). Statistical significance is indicated as ### P < 0.001,
## P <0.01,and # P < 0.05 compared to the sham group, and **P < 0.01and * P < 0.05 compared to the BCCAO + DMSO group.

4.3. The Combination of Chrysin with Gallic Acid Enhanced
the Expression of Claudin-5 and Reduced Blood-Brain Barrier
Disruption Following Cerebral Ischemia

Assessment of claudin-5 expression 48 hours after
ischemia showed a marked reduction in claudin-5
protein levels (11 + 1.65%) compared to the sham group
(64 £ 1.64%) (Figure 3A and B; P < 0.001). Administration
of chrysin (31 + 2.02%), GA (29 + 2.13%), and their
combination (38 * 1.29%) significantly enhanced the
expression of claudin-5 in the brain compared to the
BCCAO + DMSO group (Figure 3A and B; P < 0.001). The
combination of chrysin and GA significantly increased
claudin-5 expression compared to the GA group (Figure
3B; P = 0.016). The EB dye leakage into brain tissue
increased significantly at 48 hours post-ischemia (Figure
3C; P < 0.001). Treatment with chrysin, GA, or their
combination significantly reduced EB leakage
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compared to the BCCAO + DMSO group (Figure 3C; P <
0.001).

5. Discussion

Our findings indicated that the administration of
chrysin or GA alone can effectively protect hippocampal
neurons from ischemic injury, consistent with several
earlier studies (11, 15-17). Additionally, we demonstrated
that the combined intervention synergistically
enhanced neuron survival in the hippocampus, which
had not been addressed in previous research. The
synergy between chrysin and GA might arise from their
complementary effects on reducing oxidative stress,
inflammation, and apoptosis. The most significant
finding of this study was that the combined
intervention notably reduced sensory-motor and spatial
memory dysfunction. These behavioral improvements
were further supported by histological analysis, which
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Figure 3. A, immunofluorescence images show claudin-5 expression in the endothelial cells of brain blood vessels (400x magnification). Green indicates claudin-5, while blue
represents DAPI (nuclear stain); B, quantitative analysis of claudin-5 expression (n = 4, each); and C, EB leakage (ug/g/tissue, n = 7, each) into brain tissue are presented for the
sham-operated group, the control group [bilateral common carotid artery occlusion (BCCAO) + DMSO], and the groups treated with chrysin (BCCAO + chrysin), gallic acid (GA)
(BCCAO + GA), and their combination (BCCAO + chrysin + GA). Results are expressed as mean + SEM, with statistical significance indicated as ### P < 0.001 compared to the sham

group, ***P < 0.001 compared to the BCCAO + DMSO group, and A P < 0.05 compared to the BCCAO + GA group. Scale bar =100 pm.

revealed a significant increase in neuronal survival in
the combined treatment group. These results suggest a
positive correlation between improvements in
behavioral outcomes and enhanced neuronal survival
rates.

Cerebral ischemia disrupts the BBB, worsening brain
damage and neurological outcomes. Our findings
revealed that treatment with chrysin, GA, or their
combination reduced BBB disruption. In line with our
results, a recent study demonstrated that GA protected
the BBB against cerebral ischemia (17). In the present
study, the reduction in BBB disruption was accompanied
by improved survival of hippocampal neurons and
behavioral outcomes. This data suggests that preserving
BBB integrity may help promote neuronal survival and
improve overall brain health in stroke patients.

In this study, claudin-5 was chosen as a key marker of
tight junction proteins due to its high expression in the
BBB (19, 22) and its vital role in maintaining barrier
integrity (18, 19). Our results showed a significant
decrease in claudin-5 expression 48 hours after
ischemia-reperfusion, indicating its role in BBB
disruption. Consistent with previous studies (17), we
found that GA upregulated claudin-5 expression,
suggesting its potential to preserve BBB integrity during
ischemia. The mechanism by which GA and Chrysin
protect claudin-5 against cerebral ischemia remains
unclear. However, evidence suggests that they may
enhance claudin-5 expression and maintain BBB
integrity by activating the MAPK/ERK and PI3K/Akt
pathways. These pathways play a crucial role in
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mitigating inflammation and oxidative stress (19, 23,
24), ultimately supporting neuroprotection (25).

This study did not fully clarify the molecular
mechanisms underlying the neuroprotective effects of
chrysin, GA, and their combination. However, their
antioxidant, anti-inflammatory, and anti-apoptotic
properties, as well as their ability to reduce BBB
permeability, may contribute to these effects (6, 12, 16,
20). Additionally, they may promote BDNF expression
and mitigate glutamate excitotoxicity (26, 27), further
supporting their neuroprotective potential.

5.1. Conclusions

This study found that the combination of chrysin
and GA synergistically enhanced neuron survival and
improved neurological outcomes, while also reducing
spatial memory loss in a non-synergistic manner. The
treatment preserved BBB integrity by upregulating
claudin-5 expression. We suggest that this combined
intervention could serve as a promising therapeutic
approach for ischemic stroke patients in clinical
practice. Further research is needed to investigate the
underlying mechanisms of this synergy and evaluate its
long-term effects in both experimental and clinical
settings.
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