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Abstract

Background: Cardiovascular diseases (CVDs) remain a leading cause of mortality worldwide, and their growing prevalence

has been associated with exposure to environmental toxicants such as sodium arsenite (SA).

Objectives: The present study aimed to evaluate the potential cardioprotective effects of vanillic acid (VA) against SA-induced

cardiotoxicity (CTX) in male NMRI mice.

Methods: In an 8-week experimental study, 30 male NMRI mice were randomly assigned to five groups (n = 6 per group). The

control group received saline. One group received drinking water containing SA (50 ppm), another was treated with VA (100

mg/kg), and two groups received combined treatments of SA (50 ppm) plus VA at doses of 50 mg/kg or 100 mg/kg. The VA was

administered orally during the final two weeks of the study. At the end of the treatment period, serum biomarkers, oxidative

stress (OS) parameters, and inflammatory cytokines were measured.

Results: The SA exposure significantly increased serum levels of creatine kinase-MB (CK-MB), aspartate transaminase (AST), and

lactate dehydrogenase (LDH), as well as OS markers and inflammatory indices. Treatment with VA markedly lowered these

cardiac injury biomarkers and improved OS parameters, including superoxide dismutase (SOD) and catalase (CAT) activities. The

VA administration also enhanced peroxisome proliferator-activated receptor gamma (PPARγ) expression and reduced nuclear

factor kappa B (NF-κB) levels, indicating possible mechanisms underlying its protective role.

Conclusions: The findings suggest that VA exerts cardioprotective effects against SA-induced cardiac injury, likely through

modulation of OS and inflammatory signaling pathways, supporting its potential as a therapeutic agent in SA-related CTX.
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1. Background

Cardiovascular diseases (CVDs) account for the

majority of deaths worldwide and significantly

contribute to escalating healthcare expenses in nearly

every nation. Despite advancements in primary

prevention, the prevalence of CVDs has risen in recent

years. Projections suggest that by 2030, approximately

23.6 million individuals will lose their lives each year as

a result of these diseases (1). Numerous studies have

highlighted the role of various mechanistic pathways in

the development of CVDs, including oxidative stress

(OS) (2-4). Research indicates that the elevated

production of reactive oxygen species (ROS) is closely

linked to the pathogenesis of CVDs, particularly in

conditions such as cardiotoxicity (CTX), myocardial
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ischemia-reperfusion injury (MIRI), heart failure (HF),

myocardial hypertrophy, and atherosclerosis (5).

Sodium arsenite (SA) is a highly toxic inorganic

compound recognized for its potential cardiotoxic

effects (6, 7). It is a white, odorless powder that is soluble

in water and is commonly utilized in industrial

applications, including wood preservation and

pesticides (8, 9). In 2017, World Health Organization

(WHO), through the Joint FAO/WHO Expert Committee

on Food Additives (JECFA), established a provisional

drinking water guideline for inorganic SA set at 10 μg/L

(10). Exposure to inorganic SA can occur through

ingestion, inhalation, or skin contact. Classified as a

carcinogen, it is associated with a range of health issues,

such as skin lesions, gastrointestinal problems, and

respiratory and cardiovascular complications (6, 8). In

terms of its toxicological effects, SA induces OS and

triggers inflammatory responses, contributing to

damage in cardiac tissue and an increased risk of

cardiovascular disease (11). Research indicates that SA

can lead to arrhythmias and hypertension in animal

models, underscoring significant health risks, especially

for populations exposed to contaminated water sources

(12, 13). Ongoing studies are focused on identifying

protective factors or therapeutic strategies to mitigate

its CTX, highlighting the necessity for awareness and

regulation of exposure in industrial environments (14).

Vanillic acid (VA) is a phenolic acid with a molecular

weight of 168.14 g/mol and a slightly yellow hue (15, 16).

It is an oxidized form of vanillin, known for its pleasant

aroma, and is widely used as a flavoring agent in the

food industry (14, 17). The VA is primarily extracted from

medicinal plants, particularly the roots of Angelica

sinensis, and is produced through secondary metabolic

processes in plants (18). It can also be found in trace

amounts in various foods and beverages, including

olives, cereals, fruits, green tea, juices, beers, and wines

(19). The VA can effectively neutralize free radicals and

reduce OS, which are critical factors in arsenite-related

heart damage (18). Research indicates that VA not only

decreases lipid peroxidation but also enhances the

activity of natural antioxidant enzymes, providing a

protective effect against oxidative damage in cardiac

tissues (20). Given these properties, further

investigation into VA’s role could reveal its therapeutic

potential in mitigating the harmful effects of SA on the

heart, highlighting its importance in developing

strategies to combat SA-induced CTX.

2. Methods

2.1. Materials

All materials were sourced from accredited suppliers:

VA and various reagents were provided by Sigma Aldrich

Company, while SA was from Merck Company.

Experimental kits were acquired from ZellBio, Germany.

Reagents for manual tests, including thiobarbituric acid

and DTNB, were also from Sigma Aldrich. Serum factors

were measured using a commercial kit from Pars

Azmoon.

2.2. Animals

The study involved 30 male mice, each weighing

between 23 and 27 grams, obtained from Ahvaz

Jundishapur University of Medical Sciences (AJUMS).

They were housed in a controlled environment with a

temperature range of 22 to 25°C and 55 ± 5% humidity,

with a 12-hour light/dark cycle and free access to food

and water. All procedures adhered to ethical standards

approved by the Ethics Committee of AJUMS

(IR.AJUMS.AEC.1403.017).

2.3. Experimental Method

The mice were randomly divided into five groups.

Each group consisted of 6 mice and was treated as

follows: The control group received saline, the SA group

was given drinking water containing 50 ppm of SA, the

VA group was administered 100 mg/kg of VA, and treated

groups received 50 and 100 mg/kg of VA along with SA at

50 ppm. Mice were exposed to saline or water

containing 50 ppm of SA for a total of 8 weeks, and

during the final two weeks, the treatment groups

received daily oral doses of VA at two different

concentrations: Fifty mg/kg and 100 mg/kg. We declare

that blinding was implemented throughout the critical

stages of our study to minimize bias. The VA doses were

selected based on previous studies (15, 16), while the

concentration of SA was selected in line with the study

conducted by Dutta et al. (21).

2.4. Sample Collection

After 8 weeks, and exactly 24 hours following the

administration of the last doses, the animals were

anesthetized via intraperitoneal injection of ketamine

at a dose of 100 mg/kg, along with 10 mg/kg of xylazine.

Blood was drawn from the heart, centrifuged, and the

serum was separated and stored at -70°C until
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biochemical tests could be conducted. Subsequently, the

heart was carefully removed; due to the deep anesthesia,

the animals experienced no pain. The remaining heart

tissue was stored in special containers in the freezer at

-70°C for further analysis of OS factors, inflammation,

and protein expression.

2.5. Biochemical Assays

2.5.1. Cardiac Serum Biomarkers

Serum activity of creatine kinase-MB (CK-MB),

aspartate transaminase (AST), and lactate

dehydrogenase (LDH) enzymes was measured based on

the Pars Azmoon commercial kit.

2.5.2. Cardiac Oxidative Stress and Nitric Oxide

Total thiols (TT) (22), thiobarbituric acid reactive

substances (TBARS) levels (23), and catalase (CAT) activity

(24) were measured according to specified studies,

while superoxide dismutase (SOD) activity and

glutathione peroxidase (GPx) levels were assessed using

ZellBio kits and read with a plate reader.

2.5.3. Nitric Oxide Measurement

To measure NO in the cardiac supernatant samples,

the methods of ZellBio kits were used and read with a

plate reader.

2.6. Cardiac Western Blot Assay

Cardiac tissue was homogenized in RIPA lysis buffer

containing 1 mM phenylmethylsulphonyl fluoride. The

homogenates were centrifuged at 14,000 × g for 10

minutes, and the supernatants were collected for

protein analysis. Protein concentrations were measured

using the Bradford assay, and 50 µg of protein was

loaded onto a 10% SDS-PAGE gel before transferring to a

nitrocellulose membrane. After blocking with 5% skim

milk for 2 hours, the membranes were incubated

overnight at 4°C with primary antibodies against

GAPDH, PPAR-γ, and nuclear factor kappa B (NF-κB).

Following two washes, membranes were treated with

anti-rabbit IgG for 2 hours. Immunoreactive bands were

detected using the Excellent Chemiluminescent

Substrate (ECL) kit and quantified with a JS 2000

scanner. The expression of PPAR-γ and NF-κB was

evaluated by comparing the density of these proteins to

that of GAPDH.

2.7. Statistical Analysis

The research data were analyzed using one-way

ANOVA with Tukey’s post hoc test, presenting results as

mean ± SD, with (P < 0.05) deemed statistically

significant. For normality of the data, the Shapiro-Wilk

test was conducted; for homogeneity of the data,

Bartlett’s test was automatically conducted when one-

way ANOVA was used. All analyses were conducted using

Prism 9 software.

3. Results

3.1. Effects of Vanillic Acid on Serum Factors

The results in Figure 1 show that SA administration

significantly increased CK-MB, AST, and LDH levels

compared to the control group (P < 0.001), indicating

potential cardiac damage. In contrast, VA treatment in

SA-pretreated mice resulted in significant reductions in

CK-MB and AST levels (P < 0.001), and also decreased LDH

levels (P < 0.001 and P < 0.01). This suggests that VA may

have cardioprotective effects, counteracting the harmful

impacts of SA.

3.2. Effects of Vanillic Acid on Oxidative Stress Factors

In SA-treated mice (Figure 2A), TBARS levels were

significantly elevated compared to controls (P < 0.001),

while VA treatment led to a notable reduction in TBARS

levels (P < 0.001 and P < 0.01). Additionally, OS markers

such as SOD, GPx, and CAT decreased in the SA group (P <

0.001) but increased significantly with VA treatment

(Figure 2B - E) (P < 0.001 and P < 0.01). This indicates that

VA effectively mitigates OS in heart tissue.

3.3. Effects of Vanillic Acid on Nitric Oxide Levels

The SA group (Figure 3) showed significantly higher

levels of NO compared to the control group (P < 0.001),

while VA treatment notably decreased NO levels (P < 0.01

and P < 0.001). Therefore, VA treatment effectively

reduced the activity of NO.

3.4. Effects of Vanillic Acid on Nuclear Factor Kappa B and
Peroxisome Proliferator-Activated Receptor Gamma Protein
Expressions

Western blot analysis revealed that NF-κB expression

was significantly increased in the SA group (P < 0.001)

(Figure 4), while peroxisome proliferator-activated

receptor gamma (PPARγ) levels were notably lower in
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Figure 1. The effects of vanillic acid (VA) on serum concentration of A, creatine kinase-MB (CK-MB); B, aspartate transaminase (AST); and C, lactate dehydrogenase (LDH) in each
group. Significant difference compared to the control group (*** P < 0.001). # Significant difference compared to the sodium arsenite (SA) group (## P < 0.01 and ### P < 0.001).

Figure 2. Effects of vanillic acid (VA) on A, oxidative stress (OS) thiobarbituric acid reactive substances (TBARS); B, catalase (CAT); C, superoxide dismutase (SOD); D, glutathione
peroxidase (GPx); and E, total thiols (TT) in cardiotoxicity (CTX) induced by sodium arsenite (SA) in mice. Significant difference compared to the control group (## P < 0.01 and
*** P < 0.001). # Significant difference compared to the SA group (## P < 0.01 and ### P < 0.001).

the SA group compared to the control (P < 0.001). In

contrast, VA treatment significantly boosted PPARγ
expression and decreased NF-κB levels compared to the

SA group (P < 0.001).

4. Discussion

In the present study, the antioxidant and anti-

inflammatory effects of VA on cardiac damage induced

by SA have been investigated. In its inorganic form, SA

can have destructive effects on the environment,

particularly because this substance is abundant in

water. It can cause poisoning and chronic diseases in

both humans and animals through drinking, including

serious skin damage, diabetes, and cardiovascular

problems (25). The CK-MB is an isoenzyme

predominantly found in cardiac muscle and serves as a

crucial biomarker for diagnosing myocardial injury,

such as that occurring during a heart attack. Elevated

CK-MB levels in the blood indicate damage to the heart

https://brieflands.com/journals/jjnpp/articles/166500
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Figure 3. Effects of vanillic acid (VA) on the level of nitric oxide (NO) in cardiotoxicity (CTX) induced by sodium arsenite (SA) in mice. Significant difference compared to the
control group (*** P < 0.001). Significant difference compared to the SA group (## P < 0.01 and ### P < 0.001).

muscle. While CK-MB is specific to cardiac tissue, it can

also be present in smaller amounts in skeletal muscle,

requiring careful interpretation in clinical contexts. In

cases of CTX, such as that caused by SA, monitoring CK-

MB levels is essential for assessing the extent of cardiac

damage and guiding treatment strategies (26).

The AST is an enzyme found in various tissues,

including the heart, liver, and muscles, and serves as an

important biomarker for assessing tissue damage.

Elevated AST levels in the bloodstream indicate cellular

injury, particularly in the heart and liver, making it

useful for diagnosing conditions such as myocardial

infarction and liver disease. In the context of CTX, such

as that induced by SA, increased AST levels suggest

myocardial damage and can help evaluate the severity

of cardiac injury (27). The LDH is an enzyme involved in

energy production and is present in various tissues

throughout the body, including the heart, liver, kidneys,

and muscles. It plays a crucial role in converting lactate

to pyruvate during metabolic processes. Elevated levels

of LDH in the bloodstream can indicate tissue damage

or necrosis, making it a valuable biomarker for

assessing conditions such as myocardial infarction and

other forms of organ injury. In cases of CTX, these

elevations reflect cardiac tissue damage and provide

insights into the extent of injury, aiding in diagnosis

and treatment decisions (28). Collectively, these

biomarkers offer important insights into the severity of

cardiac injury resulting from SA exposure, assisting in

the diagnosis and treatment of affected patients.

The OS is one of the important factors in maintaining

the balance of homeostasis in the body. One of the

important factors that can disrupt this balance is toxic

substances, and SA is one of these toxins. The SA, by

disrupting the balance of homeostasis in the body,

interferes with the function of internal antioxidants in

the body, including SOD, GPx, etc. (29). In the meantime,

SA also increases lipid peroxidation, which is one of the

factors that damage cells. The result of this damage

ultimately causes tissue damage in the cells. One of the

parts of the body where a lot of blood supply occurs is

the heart, and SA can penetrate the tissue in greater

amounts (7).

The VA can directly activate PPARγ, a key player in

managing gene expression linked to inflammation and

metabolism. When PPARγ is activated, it can suppress

NF-κB signaling, which results in a lower production of

pro-inflammatory cytokines (20). By modulating the

expression of specific transcription factors, VA can

directly reduce NF-κB activity. This reduction results in

decreased inflammatory responses and OS in cardiac

tissues (30). The VA’s regulation of transcription factors

can lead to decreased levels of tumor necrosis factor

https://brieflands.com/journals/jjnpp/articles/166500
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Figure 4. Effects of vanillic acid (VA) on the expression of A, nuclear factor kappa B (NF-κB); and B, peroxisome proliferator-activated receptor gamma (PPARγ); and C, western
blot bonds in cardiotoxicity (CTX) induced by sodium arsenite (SA) in mice. Significant difference compared to the control group (*** P < 0.001). Significant difference compared
to the SA group (### P < 0.001).

alpha (TNF-α), interleukin-6 (IL-6), and other

inflammatory markers, thereby alleviating cardiac

inflammation caused by SA exposure (31, 32). In fact, it

can be said that it is one of the most susceptible tissues

to damage is heart tissue.

On the other hand, PPARγ serves as a counterbalance

to the effects of NF-κB. It plays a protective role by

modulating metabolic processes and exhibiting

significant anti-inflammatory properties (33, 34). By

inhibiting the expression of inflammatory cytokines

and reducing OS, PPARγ helps to mitigate the damage

caused by SA. The interaction between these two

pathways, NF-κB, which promotes inflammation, and

PPARγ, which offers protection, highlights a complex

regulatory network that is crucial for understanding the

mechanisms underlying cardiac injury (34, 35). This

interplay is essential not only for elucidating the

biological responses to SA but also for developing

potential therapeutic strategies aimed at protecting the

heart from such injuries. Targeting these pathways

could pave the way for novel treatments that enhance

cardiac resilience and improve outcomes in conditions

characterized by OS and inflammation.

In many studies, VA has been able to significantly

reduce OS caused by SA damage. In a study by

Baniahmad et al. investigating the effect of VA on

doxorubicin-induced CTX, VA was found to reduce levels

of LDH, malondialdehyde (MDA), and CK-MB, which is

consistent with the results of our study. In fact, in our

study, VA also reduced SA-induced CTX by decreasing

LDH, MDA, and CK-MB levels (36). Stanely Mainzen Prince

et al. investigated the protective effects of VA against

cardiac toxicity induced by isoproterenol in male Wistar

rats. Administration of VA prior to exposure to

isoproterenol significantly improved cardiac

biomarkers, reduced lipid peroxidation, increased

https://brieflands.com/journals/jjnpp/articles/166500
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antioxidant levels, and diminished inflammatory

responses. Notably, a dosage of 10 mg/kg proved to be

more effective than 5 mg/kg, highlighting the potential

of VA as a therapeutic agent in mitigating cardiac

damage. These findings suggest that VA may play a

crucial role in enhancing cardiac health by

counteracting OS and inflammation associated with

isoproterenol-induced CTX. The results of our study

were also consistent with this study (37).

Various antioxidants can be effective against heart

damage caused by SA. In a study conducted by Goodarzi

et al., the effect of ellagic acid on SA-induced CTX in rats

was investigated. In this study, ellagic acid increased CAT

and TT. It also decreased LDH, CK-MB, and AST. The

results of our study were also consistent with this study,

and VA was effective as an antioxidant agent (38).

The current study presents promising findings

regarding the cardioprotective effects of VA against SA-

induced cardiac damage; however, it is crucial to

acknowledge its limitations, particularly in terms of

clinical applicability. The research primarily utilizes

rodent models, which may not accurately reflect human

physiological responses. Future research must prioritize

clinical trials to validate these findings in human

populations, establish appropriate dosages, and assess

long-term safety and efficacy to ensure that the benefits

of VA can be effectively translated into clinical practice.

4.1. Conclusions

Our findings suggest that VA could be a promising

treatment for reducing heart injury caused by

environmental toxic agents like SA. We believe further

research is essential to understand the mechanisms

behind these effects and to assess the potential clinical

uses of VA in promoting heart health.
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