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Abstract

N

Background: Significant advancements have been achieved in treating various malignancies through radiotherapy (RT) in
recent years; however, many patients often experience adverse effects from ionizing radiation. Radioprotective agents are,
therefore, recommended to mitigate these side effects.

Objectives: This study aimed to evaluate the radioprotective properties of Quercus brantii extract on HT29 cells exposed to
radiation.

Methods: Preliminary screening was undertaken to evaluate the sensitivity of HT29 cells toward ionization. A dose of 4 Gy
radiation was applied to reduce the percentage of survival of cells to 50% of the control cells. The radioprotection effect of the
total extract of Q. brantii was examined on the HT29 cells.

Results: Treatment with 10 pg/mL of Q. brantii extract significantly increased the viability of HT29 cells exposed to 4 Gy of
ionizing radiation, improving cell survival (P < 0.001). The highest radioprotective efficacy was observed when the extract was
administered 105 minutes prior to radiation exposure. Moreover, Q. brantii extract at this dose did not exhibit cytotoxicity to
HT29 cells.

Conclusions: The results indicate that Q. brantii exhibits significant radioprotective properties. Pending confirmation by in
vivo and preclinical studies, low-dose administration of Q. brantii extract could be recommended alongside RT to reduce side

-

effects and enhance both the efficacy and efficiency of RT in clinical settings.
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1. Background

Radiotherapy (RT) plays a pivotal role in the
treatment of various malignancies and is often utilized
in conjunction with surgery, chemotherapy, and
immunotherapy to effectively eliminate tumor cells (1,
2). The technique of brachytherapy is widely used in
clinical RT. The radiation transports its energy by
producing reactive oxygen and nitrogen species that
affect various components of cells, including proteins,

lipids, DNA, RNA, and the cell membrane. Consequently,
ionizing radiation has the potential to inflict damage,
ultimately leading to cell death (3). During RT, normal
tissues surrounding the tumor are also exposed to
ionizing radiation; therefore, a major challenge in RT is
the collateral damage to surrounding healthy tissues,
particularly in proliferative and radiosensitive areas (4).
Such damage can induce acute and chronic cytotoxic
effects, impairing patients’ quality of life and sometimes
leading to the discontinuation of the intended RT (5).
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Technological advancements, including conformal
RT, intensity-modulated RT, and proton therapy, have
been proposed as a variety of interventions to minimize
the cytotoxic effects of ionizing radiation (6, 7).
Nonetheless, despite these improvements, side effects
remain a significant concern. The therapeutic success of
RT partly depends on the differential sensitivity between
tumor and normal cells; therefore, interventions that
selectively enhance tumor radiosensitivity or protect
normal tissues are critical (8).

Radioprotectors represent an alternative strategy to
protect normal tissues from the cytotoxic effects of
ionizing radiation. It is essential to demonstrate that
these compounds do not protect tumor cells.
Radioprotector compounds are recommended for use
in individuals exposed to RT to safeguard them from the
lethal effects of ionizing radiation (9, 10). Among
synthetic radioprotectors, amifostine is well-known;
however, its high cost and associated side effects have
driven interest toward alternative natural compounds
(11). Herbal medicine is recommended as an alternative
to synthetic compounds, which are often considered
non-toxic or less toxic. Traditional medicinal plants,
valued for their antioxidant, free radical scavenging,
and immunomodulatory properties, offer promising
radioprotective  potential.  Understanding  their
mechanisms is essential to fully harness their
therapeutic benefits (12, 13).

Quercus brantii, a species within the Fagaceae family,
is widely distributed across various regions of Iran,
including  Kermanshah, Arak, Astaneh, and
Khorramabad. Both the fruit and bark of this plant are
composed of diverse bioactive constituents, such as
vitamins A, B, and C, pectin, mucilage, quercetin, malic
acid, glycosides, alkaloids, saponins, terpenes, steroids,
polyphenols, tannins, gallic acid, resin, and ellagic acid.
Many of these naturally occurring compounds possess
well-established antioxidant properties (14). Moreover,
Quercus species have been traditionally recognized for
their significant anti-inflammatory, antioxidant,
anticancer, and wound-healing effects. Their
phytochemical profile is notably rich in flavonoids,
tannins, polyphenols, and vitamins, all of which
contribute to their potent free radical scavenging
capabilities and ability to alleviate oxidative stress (15-
17). Given that ionizing radiation primarily exerts its
cytotoxic effects through the generation of reactive
oxygen species (ROS), the abundant presence of these

compounds in Q. brantii underscores its promising
potential as a radioprotective agent by neutralizing
deleterious free radicals.

The HT29 cell line, derived from human colorectal
adenocarcinoma, was selected for this study due to its
well-characterized biological behavior and consistent,
reproducible response to ionizing radiation. As a widely
accepted in vitro model, HT29 cells provide a reliable
platform for assessing cellular viability and cytotoxicity,
which are essential for the preliminary screening of
potential radioprotective agents. While the primary aim
of radioprotection is to safeguard normal healthy
tissues, evaluating the effects on cancer cell lines such as
HT29 offers valuable initial insights into the safety
profile of the compound and its potential impact on
tumor cells. This approach aids in guiding subsequent
investigations involving normal cell models and in vivo
studies.

2. Objectives

The present study aims to investigate and evaluate
the radioprotective effects of Q. brantii on the HT29 cell
line subjected to ionizing radiation exposure.

3.Methods

All chemicals and solvents were purchased from
Merck and Sigma-Aldrich companies. They had the
highest purity and analytical grade and were used
without further purification. The cell culture analysis
was undertaken on the HT29 cell line. This cell line was
initially derived from a human colorectal carcinoma
and was sourced from the Pasteur Institute of Iran.

3.1. Preparation of Quercus brantii Extract

The tree bark of Q. brantii was collected from the
Abdanan region in Ilam province. The collected samples
were identified by the Medicinal Plant Research Center,
Ahvaz Jundishapur University of Medical Sciences,
Ahvaz, Iran. A voucher specimen (No.: A19111112FP) was
kept at the Herbarium of the Medicinal Plant Research
Center. The bark pieces of Q. brantii were washed with
distilled water and then air-dried. Initially, 200 g of the
sample was manually crushed into a fine powder. The
powder was then immersed in ethanol and left to soak
for 48 hours at room temperature while being shaken
multiple times using a shaker. After filtering the
mixture, the volume of the extract was reduced by about
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one-third using a rotary evaporator. Finally, the extract
was completely concentrated and dried using a freeze-
dryer (18). The extract of Q. brantii was dissolved in
dimethyl sulfoxide (DMSO) to achieve a final
concentration of 1% v/v, which was confirmed to be non-
toxic before application.

3.2. Cell Culture

The cells were grown as an attached monolayer in
Roswell Park Memorial Institute medium 1640 (RPMI
1640) enriched with 10% fetal bovine serum, 100 U/mL
penicillin, and 100 pg/mL streptomycin in T25 flasks at
37°C in 5% CO,, 95% air, and complete humidity. The

subculture was carried out two or three times per week.
The passage range was 15 to 20 after receiving the HT29
cell lines from the source.

3.3. MIT Assay

The cytotoxicity was evaluated by the 3-(4,5-
dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide

(MTT) assay (19). HT29 cells, at a density of 10%, were
plated in 100 pL of culture media in each well of 96-well
plates and incubated for 24 hours. Then, the
supernatant was carefully removed, and 30 pL of MTT
reagent was added to each well. The plates were
incubated for 4 hours, after which the resulting
formazan crystals were dissolved with 150 uL of DMSO.
The absorbance for each well of the 96-well plates was
measured using an ELISA reader (Bio-Tek Instrument,
Inc., USA) at a wavelength of 570 nm. The cell survival
was calculated by dividing the absorbance of treated
cells by that of control cells, multiplied by 100 (20).

3.4. Evaluating Different Doses of Radiation on HT29 Cells

A preliminary investigation was conducted to assess
the sensitivity of HT29 cells to ionizing radiation (X-
rays). Plates intended for radiation treatment were
incubated for 24 hours, after which they were exposed
to radiation doses of 2, 3, and 4 Gy. After irradiation, the
cells were incubated for an additional 24 and 48 hours.
Following the incubation periods, cell viability was
assessed using the MTT method. To minimize potential
bias in interpreting data regarding the radioprotective
effects of the Q. brantii extract, the dose and timing of
ionizing radiation were selected such that the
percentage of surviving cells could be reduced to
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approximately 50% of the control group (cells not
exposed to radiation or any treatment).

3.5. Evaluating the Effect of Different Concentrations of
Quercus brantii Extract on Cells Without Radiation Exposure

After 24 hours of incubation, the plates intended for
Q. brantii extract treatment were taken out, and
concentrations of 10, 25, 50, 75, and 100 pg/mL of the
extract were added to the wells. The plates were then
incubated for an additional 48 hours, after which cell
viability was assessed using the MTT method.

3.6. Evaluating the Viability of HT29 Cells Irradiated with a
Toxic Dose of Radiation in the Presence and Absence of
Quercus brantii Extract

After 24 hours, the respective plates were removed
from the incubator, and one plate was treated with a
concentration of 10 ug/mL of extract. Then, both plates
were irradiated with 4 Gy Cell viability was
subsequently evaluated using the MTT method.

3.7. Evaluating the Duration Needed for Quercus brantii
Extract to Take Effect Prior to Radiation Exposure

Following 24 hours of incubation, the respective
plates were treated with the optimal concentration of Q.
brantii extract at intervals of 60, 105, and 150 minutes
before radiation exposure. Radiation was then applied
at a dose of 4 Gy, which was determined based on
preliminary experiments to reduce HT29 cell viability to
approximately 50% of the control cells. Following
irradiation, cells were incubated for an additional 48
hours, and cell viability was evaluated using the MTT
assay.

3.8. Evaluating the Effect of Different Concentrations of
Quercus brantii Extract Prior to Radiation Exposure of 4 Gy

After 24 hours of incubation, the respective plates
were treated with various concentrations of Q. brantii
extract. They were then maintained in the incubator for
105 minutes before being subjected to 4 Gy of radiation.
Following radiation, the cells were incubated for
another 48 hours. The MTIT method was utilized to
assess cell viability, and the percentage of viable cells
was calculated.

3.9. Statistical Analysis
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Figure 1. Impact of different doses of ionizing radiation on the viability of HT29 cells over 48 hours post-seeding (n =3); ** P < 0.01, *** P < 0.001

The data were stated as mean + standard deviation
(SD). The statistical analysis was performed using SPSS
(SPSS Inc, Chicago IL, USA), and the graphs were
generated using GraphPad Prism. A one-way analysis of
variance (ANOVA) and a t-test with two independent
samples were used for data analysis. Post-hoc
comparisons following ANOVA were conducted using
Tukey’s Honestly Significant Difference (HSD) test to
determine pairwise group differences. A P-value of less
than 0.05 was considered statistically significant.

4.Results

4.1. Assessment of the Viability of HT29 Cells to Radiation

As shown in Table 1, the percentage of survival of the
HT29 cells was reduced to approximately 50% of the
control cells when the dose of ionizing radiation was 4
Gy, and radiation was carried out 48 hours after the
harvesting of the HT29 cells in the 96-well plates. Based

on the cell viability data presented in Table 1, a dose-
response curve was constructed to evaluate the effect of
ionizing radiation on HT29 cells at 48 hours post-
irradiation. Figure 1 demonstrates a dose-dependent
decline in cell viability, with survival rates decreasing
from approximately 83.7% at 2 Gy to 49.7% at 4 Gy.

Table 1. The Assessment of HT29 Cell's Sensitivity Against lonizing Radiation * b,c
Radiation (Gy) 2 3 4
24h 79+7.21 75+2.65 69.67+9.5
48h 83.67+6 71.67+4.73 49.67+2.31

?Values are expressed as mean * standard deviation (SD).

b The different doses of radiation were applied up to 48 hours after seeding the
HT29 cells on the 96-well plate (n =3).

¢ The percentage of survival cells was calculated by dividing the absorbance of
treated cells by control cells.

4.2. Assessment of the Viability of HI29 Cells in Different
Doses of Quercus brantii Extract
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Figure 2. The cytotoxicity effect of the different concentrations of Quercus brantii extract on the viability of HT29 cells (n =3); * P< 0.05, ** P < 0.01, *** P < 0.001
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Figure 3. The effect of combining 10 ug/mL of Quercus brantii extract with 4 Gy of radiation on the viability of HT29 cells (n =3); ***P < 0.001

The data presented in Figure 2 indicate that cell
survival is higher at a concentration of 10 pg/mL of the
extract than that observed at other concentrations.

4.3. Assessment of the Viability of HI29 Cells with a
Combination of the Plant Extract and Ionizing Radiation
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Figure 4. Effect of adding 10 pg/mL of Quercus brantii extract at different times before ionizing radiation on HT29 cell viability (n=3); *P < 0.05

As shown in Figure 3, the cell viability in the group
treated with a combination of 10 pg/mL of the extract
and 4 Gy of radiation is significantly higher than that in
the group treated with 4 Gy of radiation alone (P <
0.001).

4.4. Assessment of the Viability of HT29 Cells with Quercus
brantii Extract at Different Times Before Ionizing Radiation

The data presented in Figure 4 demonstrate that the
highest level of radioprotection activity occurred when
the plant extract was administered 105 minutes prior to
exposure to radiation.

4.5. Assessment of the Effect of Different Concentrations of
Quercus brantii Extract Prior to Radiation Exposure of 4 Gy

As illustrated in Figure 5, the radioprotective effect
on the treated cells 105 minutes before being irradiated
with 4 Gy has been observed at concentrations ranging
from 0 pg/mL to 100 pg/mL of the plant extract. While
different doses of Q. brantii extract demonstrated
significant radioprotective effects, the concentration of
10 pg/mL exhibited the highest level of radioprotection.

5. Discussion

Ionizing radiation induces cellular damage primarily
through direct ionization of biomolecules and
indirectly via the generation of free radicals,
predominantly targeting DNA (21, 22). While cells
employ various defense mechanisms, such as
antioxidant enzymes (catalase, glutathione peroxidase,
superoxide dismutase) to counteract this damage, the
role of exogenous radioprotective agents is crucial in
mitigating radiation-induced cytotoxicity (23, 24). The
proposed mechanisms of action for radioprotective
compounds include the neutralization of free radical
species by donating electrons, reducing the generation
of ROS, enhancing the function of antioxidant enzymes,
and promoting the proliferation and differentiation of
hematopoietic stem cells (25, 26).

Recent literature emphasizes the potential of plant-
based radioprotectors, particularly due to their
antioxidant properties, low toxicity, and accessibility.
Flavonoids, prevalent polyphenolic compounds found
in plants such as Q. brantii, exhibit strong free radical
scavenging effects, which are essential in reducing
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Figure 5. The effect of various concentrations of Quercus brantii extract administered 105 minutes prior to exposure to radiation (n =3); * P < 0.05, ** P < 0.01, ***P < 0.001

radiation-induced oxidative damage (17, 27, 28). Our
findings reveal a significant radioprotective effect of Q.
brantii extract on HT29 cells, consistent with earlier
studies on plant-derived flavonoids. For instance,
Shimoi et al. demonstrated substantial radioprotection
in mice models through flavonoid-induced free radical
scavenging (29), while Devi et al. similarly observed
chromosomal protection by orientin and vicenin
flavonoids in irradiated mice (30). Additionally, studies
by Shourmij et al. have highlighted the significant anti-
cancer effects of Q. brantii in human breast cancer cells,
underscoring its potential as a novel therapeutic agent
(31). This multifaceted action positions Q. brantii not
merely as a radioprotective agent but as an innovative
candidate for cancer treatment strategies, warranting
further investigation into its therapeutic mechanisms
and applications.

Importantly, our methodological approach involved
a stepwise evaluation beginning with the assessment of
radiation doses to establish a toxic dose that reduces cell
viability by approximately 50% (section 2.4), followed by
testing the cytotoxicity of different concentrations of Q.
brantii extract in the absence of radiation (section 2.5).
The combined effect of the extract at a selected
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concentration with radiation was then analyzed to
identify the radioprotective potential (section 2.6).
Subsequently, we focused on determining the optimal
pre-treatment timing of the extract before radiation
exposure (section 2.7). Building on these findings, we re-
examined the dose-dependent radioprotective effects
specifically at the optimal timing identified (105
minutes before irradiation) by testing different
concentrations once again (section 2.8). This
comprehensive and sequential evaluation of dose and
timing effects allowed us to thoroughly characterize the
radioprotective efficacy of Q. brantii extract, ensuring
robust and reliable conclusions with respect to both
concentration and temporal parameters.

The innovative aspect of our study lies in the
systematic and integrated evaluation of both
concentration and timing parameters in assessing the
radioprotective effects of Q. brantii extract. Unlike
previous studies, our stepwise methodology offers a
comprehensive characterization of how optimal dosing
and pre-treatment timing influence radioprotection.

In considering the radioprotective effects of Q.
brantii, it is important to contextualize these findings
within the broader landscape of existing natural and
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synthetic radioprotective agents. While our study
demonstrates significant protective effects, further
comparative analyses with well-established compounds,
curcumin, catechins, and synthetic
radioprotectors like amifostine, could provide a more

such as

comprehensive understanding of Q. brantii's efficacy.
This comparative framework will help delineate its
unique mechanisms and potential advantages, thereby
better informing future research and therapeutic
applications in radioprotection. Nevertheless, our
findings serve as a promising foundation for exploring
Q. brantii's role in mitigating radiation-induced cellular
damage.

It is important to acknowledge that this study
exclusively utilized the MTT assay to assess cellular
viability. Therefore, future studies incorporating
molecular assays such as qPCR, Western blotting, or ROS
measurements are essential to further elucidate the
precise mechanisms underlying the radioprotective
effects of Q. brantii and to validate the findings
presented here.

5.1. Conclusions

In conclusion, our study demonstrates that Q. brantii
extract at a concentration of 10 pg/mL exhibits
significant radioprotective effects on HT29 cells,
effectively enhancing cell viability without inducing
cytotoxicity. The optimal radioprotection was achieved
when the extract was administered 105 minutes prior to
exposure to ionizing radiation. These promising in vitro
findings suggest that Q. brantii has potential as a natural
radioprotective agent. However, given the limitations
inherent in our experimental design — including the use
of a single cell line and in vitro conditions —
comprehensive in vivo investigations and clinical trials
are essential to confirm safety, efficacy, and optimal
dosing strategies. Furthermore, elucidating the
underlying molecular mechanisms will provide
valuable insight into its therapeutic potential.
Ultimately, this work lays the foundation for future
studies aimed at developing Q. brantii as a
complementary adjunct to RT, potentially improving
treatment outcomes and reducing radiation-induced
side effects in cancer patients.
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