

Short-Term Efficacy of Hydroxychloroquine Versus Sulfasalazine in the Treatment of Undifferentiated Arthritis

Ghodratollah Dehestani¹, Hamidreza Soltani^{1,*}, Mohammad Bagher Owlia¹

¹Department of Rheumatology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran

*Corresponding Author: Department of Rheumatology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran. Email: hr.soltan@yahoo.com

Received: 29 June, 2025; Revised: 13 August, 2025; Accepted: 19 August, 2025

Abstract

Background: Early undifferentiated arthritis (UA) is an inflammatory joint disorder lasting under three months that does not meet criteria for specific rheumatic diseases. Some cases resolve spontaneously, while others progress to rheumatoid arthritis (RA) or related conditions. Early treatment may improve prognosis, but optimal therapy is uncertain. Methotrexate (MTX) is often first-line; however, sulfasalazine and hydroxychloroquine are alternatives when contraindications exist. Concerns about combination therapy toxicity and lack of direct comparisons prompted this study.

Objectives: The present study aimed to compare the clinical efficacy of sulfasalazine and hydroxychloroquine in patients with early UA.

Methods: This retrospective study evaluated 70 patients presenting with pain, swelling, or limited movement in one or both knees at Shahid Sadoughi Hospital. Patients were assigned to either sulfasalazine 1000 mg/day (n = 35) or hydroxychloroquine 400 mg/day (n = 35) for 12 weeks. Outcomes included pain scores, knee swelling, and range of joint motion. Complete clinical response rates were also assessed.

Results: The groups were similar in age and gender ($P > 0.05$). Baseline pain scores were 6.08 ± 1.14 (hydroxychloroquine) and 6.80 ± 1.30 (sulfasalazine). After treatment, pain decreased to 3.02 ± 1.97 and 1.77 ± 1.91 , respectively ($P < 0.05$ for both), with greater reduction in the sulfasalazine group. No significant between-group differences were found in swelling or range of motion ($P > 0.05$). Complete clinical response occurred in 14.2% (hydroxychloroquine) versus 37.1% (sulfasalazine) ($P < 0.05$).

Conclusions: Both treatments significantly reduced pain in early UA, but sulfasalazine provided greater pain relief and higher rates of complete clinical response, suggesting it may be more effective for this patient population in the short-term.

Keywords: Hydroxychloroquine, Sulfasalazine, Undifferentiated Arthritis, Conventional Disease-Modifying Anti-rheumatic Drugs (cDMRDs)

1. Background

Early undifferentiated arthritis (UA) encompasses a group of inflammatory joint diseases that last for less than three months and do not meet the criteria for established rheumatic diseases, such as rheumatoid arthritis (RA) (1, 2).

To be classified as early UA, patients must exhibit at least one swollen or tender joint. Individuals experiencing only stiffness, arthralgia, or discomfort during movement without the presence of swelling or tenderness do not fall under the category of UA (1). In its early stages, early UA may resemble conditions like early

RA, scleroderma, or lupus. However, a definitive diagnosis typically emerges in the following months or even a year. Approximately one-third of patients with early UA progresses to RA or another rheumatic disease (3). Many patients with develop a different definitive rheumatic disease, while some experience spontaneous remission (4).

Recent research emphasizes the crucial role of early and effective treatment for individuals at risk of developing persistent and/or erosive arthritis during the initial stages of UA. This underscores the significance of proactive medical intervention in managing the condition and potentially altering its

course (1). However, there is limited data available on the optimal choice of therapeutic agents for cases of early UA.

According to studies, using glucocorticoids in the early stages of the disease in low or moderate doses is recommended (5-7). Once disease activity is under control, it is advised to gradually reduce steroid usage. Additionally, the use of glucocorticoids should be temporary and limited to less than six months to minimize potential adverse effects (1).

If one or more high-risk features are present, patients should be started on disease-modifying antirheumatic drugs (DMARDs), preferably methotrexate (MTX), unless contraindicated (e.g., due to liver dysfunction or pregnancy planning) (8-10).

If MTX is contraindicated, sulfasalazine or leflunomide can be regarded as primary medications (1). In addition, MTX can be combined with either sulfasalazine and hydroxychloroquine or leflunomide, depending on factors such as patient tolerance, cost-effectiveness, and side effect profiles (1). The classical combination strategy of MTX plus hydroxychloroquine and sulfasalazine has shown good response and safety. It has been reported that 77% of refractory RA patients experienced a 50% improvement at nine months without major drug toxicity when using the MTX + hydroxychloroquine + sulfasalazine triple therapy (4). Nevertheless, determining the treatment that yields optimal results or potentially modifies the course of the disease is yet to be accomplished.

2. Objectives

Given suggestions by some authors that the combination of drugs may result in a higher toxicity profile (11, 12) and considering the absence of a comprehensive study comparing these drugs in terms of pain relief, reduction in knee swelling, and overall clinical response, the present study aims to assess and compare the efficacy of early (short-term) treatment with hydroxychloroquine and sulfasalazine over a 12-week period in patients with UA.

3. Methods

3.1. Design of the Study and Sample Selection

This retrospective study included 70 patients who experienced pain, swelling, or restricted movement in one or both knees at Shahid Sadoughi Hospital from 2018 to 2019. In this study, the diagnosis of UA was based on both clinical presentation and objective evidence of joint inflammation – such as swelling, warmth, and

restricted motion – along with elevated inflammatory markers, all confirmed by a rheumatologist. According to decision physician, one group (n = 35) was prescribed 1000 mg/day of sulfasalazine and another group received 400 mg/day of hydroxychloroquine for 12 weeks. These patients in two groups were assessed before and after treatment with regard to the range of joint motion, pain, and knee swelling. The data were obtained through a comprehensive review of patients' medical records during the specified period.

3.2. Inclusion and Exclusion Criteria

Inclusion criteria encompassed individuals aged 35 to 65 years, with no history of rheumatic disease, arthritis graded between 1 and 3, and the presence of pain, swelling, and limited movement in one or both knees.

Exclusion criteria included a history of knee joint trauma, the use of arthritis medications, and grade 4 arthritis based on knee X-rays. Furthermore, the aspiration of bloody fluid, septic knee arthritis, or the identification of crystallopathy resulted to exclude patients from the study.

3.3. Swelling of the Knee Joint

Swelling of the knee joint based on the ballottement test was classified into 4 groups, including 0 (no swelling), +1, and +2 (moderate swelling), and +3 (severe swelling).

3.4. Range of Joint Motion

Range of joint motion is classified as unrestricted knee movement (0), movement between 0 - 25% of maximum rate (+1), 25 - 50% of maximum rate (+2), 50 - 75% of maximum rate (+3), and 75% - 100% of maximum rate (+4); Furthermore, 0 - 25% is equal to a 0 - 45° range of motion reduction; 25 - 50% is equal to a 45 - 90° range of motion reduction; 50 - 75% is equal to a 90 - 135° range of motion reduction; 75 - 100% is equal to a 135 - 180° range of motion reduction.

3.5. The Pain of Knee Joint

The knee joint pain, as assessed using the visual analogue scale, was measured on a scale of 0 to 10.

3.6. Complete Clinical Response to Treatment

The reduction of pain and swelling, coupled with the restoration of unrestricted knee movement by the end of the treatment period, was considered a complete clinical response to treatment.

Table 1. The Comparison of the Two Groups in Terms of Demographic Characteristics ^{a,b}

Variables	Hydroxychloroquine	Sulfasalazine	P-Value
Age			0.467
35 - 50	16 (45.7)	13 (37.1)	
51 - 60	19 (54.3)	22 (62.9)	
Total	35 (100)	35 (100)	
Gender			0.526
Men	7 (20)	5 (14.3)	
Women	28 (80)	30 (85.7)	
Total	35 (100)	35 (100)	

^a Values are expressed as No. (%).

^b Chi-square test.

3.7. Analysis of Data

Data were entered into SPSS, version 23. The Mann-Whitney test was used for comparing variables. For comparing variables before and after treatment, the Wilcoxon test was employed. Chi-square test was used for comparison of frequency of patients in terms of variables between two groups and a P-value less than 0.05 was considered significant.

4. Results

This study was conducted on 70 patients with UA in Rheumatology Department of Shahid Sadoughi Hospital. The comparison of the two groups in terms of demographic characteristics is shown in **Table 1**.

As shown in **Table 1**, no notable distinction was seen between the two groups in terms of age, and gender ($P > 0.05$). The comparison of the two groups regarding the knee injury, and duration of arthritis is shown in **Table 2**. As shown in **Table 2**, no notable distinction was observed between the two groups in terms of knee injury, and duration of arthritis ($P > 0.05$), indicating that the two groups were the same before treatment.

The frequency comparison of patients between the two groups with respect to knee swelling, and range of joint motion is shown in **Table 3**. Although knee swelling and range of joint motion improved significantly after treatment in both groups, no remarkable difference was observed between the two groups before treatment ($P > 0.05$) and after treatment ($P > 0.05$) (**Table 3**).

The comparison of pain between the two groups is shown in **Table 4**. According to **Table 4**, although pain significantly decreased after intervention in both groups, the reduction was more pronounced in the

sulfasalazine group compared to the hydroxychloroquine group ($P < 0.05$).

Table 5 displays a comparison of the frequency of patients with a complete clinical response between the two groups.

Table 5 indicates a notable distinction between the two groups in terms of the frequency of patients achieving a complete clinical response ($P < 0.05$). Specifically, the frequency of patients with a complete clinical response in the sulfasalazine group was significantly higher than in the hydroxychloroquine group. Additionally, no complications were observed in either of the two treatment groups at the end of the treatment period.

5. Discussion

This study is the first to compare the use of hydroxychloroquine and sulfasalazine in patients with UA. These components, including hydroxychloroquine and sulfasalazine, share a similar mechanism in inhibiting cytokine production. Hydroxychloroquine disrupts lysosomal activity and autophagy, destabilizes cell membranes, and modifies signaling pathways and transcriptional activity. These actions lead to the inhibition of cytokine production and the modulation of specific co-stimulatory molecules (13). The exact mechanism of action of sulfasalazine remains unclear, but it is known to inhibit cytokine release, including interleukins (IL-1, IL-2, IL-6, IL-12), and tumor necrosis factor- α , as well as immunoglobulin M (IgM) and IgG production, as observed in studies (14). Although treatment allocation in this study was non-randomized, the two groups were matched for baseline characteristics (age, gender, duration of arthritis, and symptom severity), ensuring a homogeneous study population and minimizing potential confounding.

Table 2. The Comparison of the Two Groups Regarding Variables^{a,b}

Variables	Hydroxychloroquine	Sulfasalazine	P-Value
Knee injury			0.937
Right	5 (14.3)	4 (11.4)	
Left	4 (11.4)	4 (11.4)	
Both	26 (74.3)	27 (77.1)	
Total	35 (100)	35 (100)	
Duration of arthritis (wk)			0.759
< 6	6 (17.1)	7 (20)	
≥ 6	29 (82.9)	28 (80)	
Total	35 (100)	35 (100)	

^a Values are expressed as No. (%).^b Chi-square test.**Table 3.** The Comparison of the Frequency of Patients in Two Groups Considering Knee Swelling, and Range of Joint Motion^a

Variables and Grades	Hydroxychloroquine	Sulfasalazine	P-Value ^b
Knee swelling (before)			0.190
0	2 (5.7)	3 (8.6)	
+1	30 (85.7)	23 (65.7)	
+2	3 (8.6)	7 (20)	
+3	0 (12)	2 (5.7)	
Knee swelling (after)			0.057
0	12 (34.3)	20 (57.1)	
+1	23 (65.7)	15 (42.9)	
+2	0 (0)	0 (0)	
+3	0 (0)	0 (0)	
Comparison (before and after)	P < 0.001 ^c	P < 0.001 ^c	
Range of joint motion (before)			0.089
0	4 (11.4)	5 (14.3)	
+1	27 (77.2)	17 (48.6)	
+2	4 (11.4)	13 (37.1)	
+3	0 (0)	0 (0)	
Range of joint motion (after)			0.094
0	16 (45.7)	23 (65.7)	
+1	19 (54.3)	12 (34.3)	
+2	0 (0)	0 (0)	
+3	0 (0)	0 (0)	
Comparison (before and after)	P < 0.001 ^c	P < 0.001 ^c	

^a Values are expressed as No. (%).^b Mann-Whitney test.^c Wilcoxon test.

The findings of this study showed that knee swelling and range of joint motion improved significantly after treatment in both groups, but there was no significant difference between the two groups after treatments. Additionally, although pain decreased significantly after

intervention in both groups, the reduction of pain in the sulfasalazine group was greater than in the hydroxychloroquine group. Moreover, after treatment, the frequency of patients who responded to treatment in the sulfasalazine group was significantly higher than

Table 4. The Comparison of Pain Between the Two Groups ^a

Variables	Hydroxychloroquine		Sulfasalazine		P-Value ^b
Pain (before)	6.080 ± 1.140	6 (1.5)	6.80 ± 1.30	7 (1.8)	0.031
Pain (after)	3.020 ± 1.970	4 (2.7)	1.77 ± 1.91	1 (2.6)	0.012
Comparison of before and after		P < 0.001 ^c	P < 0.001 ^c		-

^a Values are expressed as mean ± SD or median (IQR).

^b Mann-Whitney test.

^c Wilcoxon test.

Table 5. A Comparison of the Frequency of Patients with a Complete Clinical Response Between the Two Groups ^a

Variable	Hydroxychloroquine	Sulfasalazine	P-Value ^b
Complete clinical response			0.029
Yes	5 (14.2)	13 (37.1)	
No	30 (85.8)	22 (62.9)	
Total	35 (100)	35 (100)	

^a Values are expressed as No. (%).

^b Chi-square test.

in the hydroxychloroquine group, indicating a higher efficacy of sulfasalazine in the treatment of patients with UA. Limited studies have explored the effects of hydroxychloroquine and sulfasalazine, either as monotherapy or in combination in UA therapy.

Muiu et al. (15), conducted a nationwide register-based study in Finland in 2020, evaluating the use of various anti-rheumatic drugs by the end of the first year following arthritis diagnosis in 2433 patients with UA. The study observed that 1121 patients (46.1%) utilized sulfasalazine, while 472 patients (19.4%) were prescribed hydroxychloroquine (15), suggesting a higher utilization of sulfasalazine in UA therapy in Finland. However, it is noteworthy that the study did not include a comparison of the efficacy between these two components.

Mahmoud et al., examined the efficacy of hydroxychloroquine as monotherapy for early UA. The study involved thirty patients diagnosed with early UA, all of whom received hydroxychloroquine after the UA diagnosis was established. The results showed a positive response in 96% of the patients, and 10% experienced a favorable response after doubling the treatment duration. Additionally, the study observed a higher incidence of early UA in female patients compared to males, particularly among those in middle age, as indicated in the study results (16).

Wevers-De Boer et al., investigated the impact of drug therapy on UA, revealing that combination DMARD therapy, including MTX, sulfasalazine, and hydroxychloroquine is superior to MTX alone, particularly after a minimum of 4 months. This combination therapy demonstrated greater effectiveness in suppressing disease activity in patients with UA at a high risk of developing persistent arthritis. Therefore, it seems that initiating treatment early may lead to rapid suppression of inflammation (17). Mashayekhi et al. also assessed the outcomes of patients with undifferentiated peripheral inflammatory arthritis treated with DMARDs. Their findings revealed that although the majority of cases treated with combination therapy (DMARDs) do not progress to RA, most still require ongoing therapy, and only a few achieve medication-free remissions (18).

Heimans et al. conducted a study on UA patients and early RA, evaluating remission after a one-year follow-up. In this study, all patients initiated MTX, accompanied by prednisone. Patients who achieved early remission had their prednisone gradually tapered to zero. If they remained in remission at the 8-month MTX was also tapered to zero. If remission was not achieved at 8 months, participants were randomly assigned to either arm 1, consisting of a combination of MTX (25 mg/week), hydroxychloroquine (400 mg/day), sulfasalazine (2000 mg/day), and prednisone (7.5 mg/day), or arm 2, consisting of adalimumab (ADA) at

40 mg every 2 weeks along with MTX at 25 mg/week. The findings demonstrated that for those not achieving early remission, treatment with ADA leads to higher remission rate compared to a combination of DMARDs with a low dose of prednisone (19). Considering the diverse findings from various studies, further research is warranted for the treatment of patients with UA.

5.1. Conclusions

While pain decreased significantly after intervention in both groups, the alleviation was more pronounced in the sulfasalazine group than in the hydroxychloroquine group. In addition, the frequency of patients with a complete clinical response was higher in the sulfasalazine group. Therefore, it appears that sulfasalazine played a more prominent role in treatment of UA patients in the short term.

5.2. Limitations

Although sulfasalazine generally has a faster onset of action compared to hydroxychloroquine — which may require 24 - 48 weeks to achieve maximal effect — our 12-week evaluation primarily reflects short-term clinical response and may not fully capture hydroxychloroquine's potential efficacy. Furthermore, important patient information, such as medical history (e.g., hypothyroidism, diabetes), concurrent medication use, and disease complications, was not consistently recorded in the medical files.

Acknowledgements

We thank the staff of the department of rheumatology.

Footnotes

Authors' Contribution: Gh. D. contributed to the study concept and designed the study. M. B. O. contributed to the statistical analysis and interpretation of data. H. S. designed the study and collected data, and wrote the paper.

Conflict of Interests Statement: The authors declare no conflict of interests.

Data Availability: The dataset is available on request from the corresponding author during submission.

Ethical Approval: This study was approved by the Ethics Committee of Shahid Sadoughi University of Medical Sciences (IR.SSU.MEDICINE.REC.1395.015).

Funding/Support: The present study received no funding/support.

References

- Vaidya B, Baral R, Nakarmi S. Early Undifferentiated Arthritis: A Developing Country Perspective from Nepal. *JNMA J Nepal Med Assoc.* 2018;56(214):983-90. [PubMed ID: 31065150]. [PubMed Central ID: PMC8827612]. <https://doi.org/10.31729/jnma.3893>.
- Sakalyte R, Bagdonaitė L, Stropuviene S, Naktinyte S, Venalis A. VEGF Profile in Early Undifferentiated Arthritis Cohort. *Medicina (Kaunas).* 2022;58(6). [PubMed ID: 35744097]. [PubMed Central ID: PMC9230586]. <https://doi.org/10.3390/medicina58060833>.
- Hazez JM, Luime JJ. The epidemiology of early inflammatory arthritis. *Nat Rev Rheumatol.* 2011;7(7):381-90. [PubMed ID: 21670767]. <https://doi.org/10.1038/nrrheum.2011.78>.
- de la Calle-Fabregat C, Niemantsverdriet E, Canete JD, Li T, van der Helm-van Mil AHM, Rodriguez-Ubreva J, et al. Prediction of the Progression of Undifferentiated Arthritis to Rheumatoid Arthritis Using DNA Methylation Profiling. *Arthritis Rheumatol.* 2021;73(12):2229-39. [PubMed ID: 34105306]. <https://doi.org/10.1002/art.41885>.
- Verschueren P, De Cock D, Corluy L, Joos R, Langenaken C, Taelman V, et al. Methotrexate in combination with other DMARDs is not superior to methotrexate alone for remission induction with moderate-to-high-dose glucocorticoid bridging in early rheumatoid arthritis after 16 weeks of treatment: the CareRA trial. *Ann Rheum Dis.* 2015;74(1):27-34. [PubMed ID: 25359382]. <https://doi.org/10.1136/annrheumdis-2014-205489>.
- Verschueren P, De Cock D, Corluy L, Joos R, Langenaken C, Taelman V, et al. Patients lacking classical poor prognostic markers might also benefit from a step-down glucocorticoid bridging scheme in early rheumatoid arthritis: week 16 results from the randomized multicenter CareRA trial. *Arthritis Res Ther.* 2015;17(1):97. [PubMed ID: 25889222]. [PubMed Central ID: PMC4422551]. <https://doi.org/10.1186/s13075-015-0611-8>.
- Seegobin SD, Ma MH, Dahanayake C, Cope AP, Scott DL, Lewis CM, et al. ACPA-positive and ACPA-negative rheumatoid arthritis differ in their requirements for combination DMARDs and corticosteroids: secondary analysis of a randomized controlled trial. *Arthritis Res Ther.* 2014;16(1):R13. [PubMed ID: 24433430]. [PubMed Central ID: PMC3979097]. <https://doi.org/10.1186/ar4439>.
- Combe B, Landewe R, Dajen CI, Hua C, Aletaha D, Alvaro-Gracia JM, et al. 2016 update of the EULAR recommendations for the management of early arthritis. *Ann Rheum Dis.* 2017;76(6):948-59. [PubMed ID: 27979873]. <https://doi.org/10.1136/annrheumdis-2016-210602>.
- Gaujoux-Viala C, Nam J, Ramiro S, Landewe R, Buch MH, Smolen JS, et al. Efficacy of conventional synthetic disease-modifying antirheumatic drugs, glucocorticoids and tofacitinib: a systematic literature review informing the 2013 update of the EULAR recommendations for management of rheumatoid arthritis. *Ann Rheum Dis.* 2014;73(3):510-5. [PubMed ID: 24395555]. [PubMed Central ID: PMC3932966]. <https://doi.org/10.1136/annrheumdis-2013-204588>.
- Smolen JS, Landewe R, Bijlsma F, Burmester G, Chatzidionysiou K, Dougados M, et al. EULAR recommendations for the management of rheumatoid arthritis with synthetic and biological disease-modifying antirheumatic drugs: 2016 update. *Ann Rheum Dis.* 2017;76(6):960-77. [PubMed ID: 28264816]. <https://doi.org/10.1136/annrheumdis-2016-210715>.
- Toth P, Bernd R. Severe leukopenia in a rheumatoid arthritis patient treated with a methotrexate/leflunomide combination. *Rev Bras Reumatol.* 2014;54(2):152-4. [PubMed ID: 24878863].

12. Rutanen J, Kononoff A, Arstila I, Elfving P, Koskela H, Kaipiainen-Seppanen O. Five cases of interstitial lung disease after leflunomide was combined with methotrexate therapy. *Scand J Rheumatol*. 2014;43(3):254-6. [PubMed ID: 24650220]. <https://doi.org/10.3109/03009742.2013.868511>.
13. Schrezenmeier E, Dorner T. Mechanisms of action of hydroxychloroquine and chloroquine: implications for rheumatology. *Nat Rev Rheumatol*. 2020;16(3):155-66. [PubMed ID: 32034323]. <https://doi.org/10.1038/s41584-020-0372-x>.
14. Plosker GL, Croom KF. Sulfasalazine: a review of its use in the management of rheumatoid arthritis. *Drugs*. 2005;65(13):1825-49. [PubMed ID: 16114981]. <https://doi.org/10.2165/00003495-200565130-00008>.
15. Muilu P, Rantalaiho V, Kautiainen H, Virta IJ, Eriksson JG, Puolakka K. First-year drug therapy of new-onset rheumatoid and undifferentiated arthritis: a nationwide register-based study. *BMC Rheumatol*. 2020;4:34. [PubMed ID: 32637868]. [PubMed Central ID: PMC7333434]. <https://doi.org/10.1186/s41927-020-00127-6>.
16. Mahmoud ZI, Hussein MM, Essa ME, Osman SM, Haron MD, Alshykh MA, et al. The Role of Hydroxychloroquine as Monotherapy in Managing Early Undifferentiated Arthritis: A Prospective Hospital-Based Study. *Global J Public Health Med*. 2019;1(2):52-62. <https://doi.org/10.37557/gjphm.v1i2.9>.
17. Wevers-De Boer KVC, Heimans I, Huizinga T, Allaart C. THU0244 Drug Therapy in Undifferentiated Arthritis: A Systematic Literature Review. *Annals Rheumatic Diseases*. 2013;72:A247-8. <https://doi.org/10.1136/annrheumdis-2013-eular.772>.
18. Mashayekhi M, Khalaji A, Malek Mahdavi A, Khabbazi A. Outcomes of undifferentiated peripheral inflammatory arthritis in real-world practice. A longitudinal cohort study. *Clin Rheumatol*. 2023;42(11):3143-52. [PubMed ID: 37407905]. <https://doi.org/10.1007/s10067-023-06678-6>.
19. Heimans I, Wevers-de Boer KVC, Visser K, Ronday HK, Oosterhout M, Harbers JB, et al. FRI0061 Remission after one year follow up of the improved-study, a randomized clinical trial aiming at remission in patients with early rheumatoid and undifferentiated arthritis. *Annals Rheumatic Dis*. 2012;71:329-30. <https://doi.org/10.1136/annrheumdis-2012-eular.2518>.