

The 21st Century Microbiology Profession and Professionals' Challenges in African Countries

Faisal Muhammad ^{1, 2,*}

¹Department of Public and Community Health, Faculty of Medicine and Health Sciences, Frontier University Garowe (FUG), Puntland, Somalia

²Otu Institute of Research and Training (OIRT), London, United Kingdom

*Corresponding author: Department of Public and Community Health, Faculty of Medicine and Health Sciences, Frontier University Garowe (FUG), Puntland, Somalia. Email: fokkanya@yahoo.com

Received 2024 February 07; Revised 2024 March 11; Accepted 2024 March 28.

Keywords: Microbiology, Human Health, Healthcare, Health Challenges, Infectious Diseases, Africa

Dear Editor,

Microbiology, the study of microscopic organisms, has emerged as a pivotal field of scientific inquiry in the 21st century (1). This branch of science plays an indispensable role across various sectors, including healthcare, agriculture, environmental science, and biotechnology (1). In African countries, microbiology faces distinctive challenges that can impede its progress and potential contributions to society (2, 3). This article explored the role of microbiology in the 21st century and illuminated the challenges confronting microbiology professionals in African nations.

Microbiology encompasses the comprehensive study of microorganisms such as bacteria, viruses, fungi, and parasites (4). These organisms exert significant influence on human health, food production, environmental sustainability, and biotechnological advancements (5-8). Microbiology professionals stand at the forefront of comprehending, combating, and harnessing the power of microorganisms.

In healthcare, microbiologists play a pivotal role in identifying and managing infectious diseases. They collaborate closely with healthcare providers to pinpoint pathogenic microorganisms, devise diagnostic tests, and formulate effective treatment strategies (9, 10). Moreover, microbiologists contribute to the development of vaccines, antibiotics, and antiviral drugs (11).

Microbiology also occupies a central position in agriculture (12). Microbiologists investigate the intricate relationships among microorganisms, plants, animals, and the environment. They explore methodologies to augment crop yields, pioneer sustainable farming

practices, and address food safety concerns (8). Additionally, microbiologists play a significant role in the production of biofuels, bioplastics, and other biotechnological advancements that promote a greener future (13, 14).

One of the primary challenges faced by microbiology professionals in African countries is the pressing need for enhanced infrastructure and resources (15). Many laboratories lack the essential equipment, reagents, and cutting-edge technology necessary for conducting advanced research. This scarcity significantly hampers their ability to perform experiments, diagnose diseases, and contribute to scientific progress. There is an urgent requirement for increased funding to support African microbiology professionals (15). Limited financial resources not only constrain research opportunities but also hinder the acquisition of state-of-the-art equipment and impede collaboration with international partners. Without adequate funding, the potential for groundbreaking discoveries and advancements in microbiology remains largely unrealized.

Furthermore, African countries frequently grapple with the issue of brain drain, as talented microbiology professionals often seek better opportunities abroad (16, 17). The allure of better pay, infrastructure, and career prospects can result in a drain of skilled individuals, detrimentally impacting the growth of the field within the continent. Retaining and attracting talent in microbiology is paramount for progress in the field.

Collaboration and networking are pivotal for scientific advancement. However, there is a pressing need for more platforms facilitating knowledge-sharing and networking

opportunities to bolster microbiology growth in African countries (18, 19). Establishing robust collaborations between research institutions, universities, and industries within Africa and internationally can catalyze scientific advancements.

Microbiology professionals in African countries often lack public awareness and recognition of the field's significance. This lack of awareness can foster misconceptions, hindering public support and funding for microbiology research (1, 20). Promoting public understanding and appreciation of microbiology can significantly contribute to its growth and recognition.

Microbiology, with its vast potential, stands as a beacon of hope in confronting the multifaceted challenges that African countries grapple with, ranging from the relentless onslaught of infectious diseases to the urgent need for bolstering food security and safeguarding environmental sustainability. Nevertheless, professionals within this dynamic field are confronted by a daunting array of obstacles, including the pervasive specter of resource limitations, the stifling constraints of inadequate funding, the insidious drain of talent abroad, and the lamentable dearth of collaborative opportunities and recognition. To overcome these formidable barriers and fully unleash the transformative power of microbiology, it is imperative that governments, institutions, and stakeholders alike prioritize substantial investments in microbiological research, fortify essential infrastructure, and invigorate educational initiatives. By cultivating an ecosystem that nurtures and empowers microbiology professionals, African nations can harness the intrinsic capabilities of this discipline to address societal needs comprehensively and propel scientific progress inexorably forward into the 21st century and beyond. Looking towards the horizon, sustained commitment and support for microbiology will not only facilitate the resolution of current challenges but also catalyze innovation, leading to the development of groundbreaking solutions for emerging issues. Thus, as we envision a future shaped by the dynamic interplay of science and society, it is abundantly clear that microbiology will continue to play a pivotal role in shaping a more prosperous and sustainable future for Africa and its diverse populace.

In understanding microbiology's role in addressing challenges in African countries, it's crucial to note limitations in this study. Firstly, generalization poses a challenge, as each nation has unique socio-economic and environmental contexts. Limited data availability constrains analysis, potentially hindering comprehensive insights. The study's scope may overlook emerging challenges or alternative perspectives. Bias in source

selection may influence interpretations, affecting credibility. Additionally, the long-term impacts of proposed solutions may be inadequately explored. Implementing recommendations faces practical challenges, including political barriers and institutional capacity limitations. Acknowledging these limitations ensures transparency and rigor in the research process, though overcoming them remains a crucial endeavor.

Footnotes

Authors' Contribution: The entire work was carried out by Faisal Muhammad.

Conflict of Interests: The author declares no conflict of interest.

Funding/Support: There is no Funding/Support.

References

1. Microbiology in the 21st Century. Where Are We and Where Are We Going? This report is based on a colloquium sponsored by the American Academy of Microbiology held September 5-7, 2003, in Charleston, South Carolina. Washington (DC). *Microbiology in the 21st Century: Where Are We and Where Are We Going? This report is based on a colloquium sponsored by the American Academy of Microbiology held September 5-7, 2003, in Charleston, South Carolina. Washington (DC): American Society for Microbiology; 2004.* <https://doi.org/10.1128/AAMCol.5Sept.2003>.
2. Kumwenda S, Niang EHA, Orondo PW, William P, Oyinlola L, Bongo GN, et al. Challenges facing young African scientists in their research careers: A qualitative exploratory study. *Malawi Med J.* 2017;29(1):1-4. [PubMed ID: 28567188]. [PubMed Central ID: PMC5442483]. <https://doi.org/10.4314/mmj.v29i1>.
3. Iskandar K, Molinier L, Hallit S, Sartelli M, Hardcastle TC, Haque M, et al. Surveillance of antimicrobial resistance in low- and middle-income countries: a scattered picture. *Antimicrob Resist Infect Control.* 2021;10(1):63. [PubMed ID: 33789754]. [PubMed Central ID: PMC8011122]. <https://doi.org/10.1186/s13756-021-00931-w>.
4. Cotter PD. *Microbiology. Reference Module in Life Sciences.* 2017. <https://doi.org/10.1016/b978-0-12-809633-8.12379-9>.
5. Chowdhary P, Raj A, Verma D, Akhter Y. *Microorganisms for sustainable environment and health.* Elsevier; 2020.
6. Ciani M, Lippolis A, Fava F, Rodolfi L, Niccolai A, Tredici MR. Microbes: Food for the Future. *Foods.* 2021;10(5). [PubMed ID: 33925123]. [PubMed Central ID: PMC8145633]. <https://doi.org/10.3390/foods10050971>.
7. Sudheer S, Bai RG, Usmani Z, Sharma M. Insights on Engineered Microbes in Sustainable Agriculture: Biotechnological Developments and Future Prospects. *Curr Genomics.* 2020;21(5):321-33. [PubMed ID: 33093796]. [PubMed Central ID: PMC7536804]. <https://doi.org/10.2174/I389202921999200603165934>.
8. Suman J, Rakshit A, Ogireddy SD, Singh S, Gupta C, Chandrakala J. Microbiome as a Key Player in Sustainable Agriculture and Human Health. *Frontiers in Soil Science.* 2022;2. <https://doi.org/10.3389/fsoil.2022.821589>.
9. Canton R. Role of the microbiology laboratory in infectious disease surveillance, alert and response. *Clin Microbiol Infect.* 2005;11 Suppl 1:3-8. [PubMed ID: 15816099]. [PubMed Central ID: PMC7128898]. <https://doi.org/10.1111/j.1469-0691.2005.01081.x>.

10. Fournier PE, Drancourt M, Colson P, Rolain JM, La Scola B, Raoult D. Modern clinical microbiology: new challenges and solutions. *Nat Rev Microbiol.* 2013;11(8):574-85. [PubMed ID: 24020074]. [PubMed Central ID: PMC7097238]. <https://doi.org/10.1038/nrmicro3068>.
11. Alghamdi S. The role of vaccines in combating antimicrobial resistance (AMR) bacteria. *Saudi J Biol Sci.* 2021;28(12):7505-10. [PubMed ID: 34867055]. [PubMed Central ID: PMC8626314]. <https://doi.org/10.1016/j.sjbs.2021.08.054>.
12. Coton B. *Microbiology and the Agriculture Industry: a brief overview. Unsustainable Magazine.* 2023. Available from: [https://www.unsustainablemagazine.com/microbiology-agriculture-industry/#:~:text=Microbiology%20has%20a%20pivotal%20role,to%20prevent%20toxins%20in%20agriculture%20\[Accessed%20on%20June%2022,%202023\]](https://www.unsustainablemagazine.com/microbiology-agriculture-industry/#:~:text=Microbiology%20has%20a%20pivotal%20role,to%20prevent%20toxins%20in%20agriculture%20[Accessed%20on%20June%2022,%202023]).
13. Degli Esposti M, Morselli D, Fava F, Bertin L, Cavani F, Viaggi D, et al. The role of biotechnology in the transition from plastics to bioplastics: an opportunity to reconnect global growth with sustainability. *FEBS Open Bio.* 2021;11(4):967-83. [PubMed ID: 33595898]. [PubMed Central ID: PMC8016133]. <https://doi.org/10.1002/2211-5463.13119>.
14. Samadhiya K, Sangtani R, Nogueira R, Bala K. Insightful Advancement and Opportunities for Microbial Bioplastic Production. *Front Microbiol.* 2021;12:674864. [PubMed ID: 35058887]. [PubMed Central ID: PMC8763809]. <https://doi.org/10.3389/fmicb.2021.674864>.
15. Revathi G. *Challenges and Promise Microbiology Laboratories in Sub-Saharan Africa.* 1st Global Forum on Bacterial Infections; 2017. Available from: https://onehealthtrust.org/wp-content/uploads/2017/06/prof_gunturu_revathi_0.pdf.
16. Kweitsu R. *Brain drain: A bane to Africa's potential.* Mo Ibrahim Foundation; 2018. Available from: [https://mo.ibrahim.foundation/news/2018/brain-drain-bane-africas-potential%20\[Accessed%20on%20June%2022,%202023\]](https://mo.ibrahim.foundation/news/2018/brain-drain-bane-africas-potential%20[Accessed%20on%20June%2022,%202023]).
17. IRIN UN. *Brain drain reportedly costing \$4 billion a year. The New Humanitarian.* Journalism from the Heart of Crises; 2002. Available from: [https://www.thenewhumanitarian.org/report/31711/africa-brain-drain-reportedly-costing-4-billion-year%20\[Accessed%20on%20June%2002,%202023\]](https://www.thenewhumanitarian.org/report/31711/africa-brain-drain-reportedly-costing-4-billion-year%20[Accessed%20on%20June%2002,%202023]).
18. Havemann J, Dine RD, Elkheir IYM, Raimi MO, Alemayehu M, Mohamed SY, et al. Ten simple rules for successful and sustainable African research collaboration. *AfricArXiv.* 2023. <https://doi.org/10.21428/3b2160cd.19c9abf8>.
19. Nyirenda T, Bockarie M, Machingaidze S, Nderu M, Singh M, Fakier N, et al. Strengthening capacity for clinical research in sub-Saharan Africa: partnerships and networks. *Int J Infect Dis.* 2021;110:54-61. [PubMed ID: 34216733]. <https://doi.org/10.1016/j.ijid.2021.06.061>.
20. Adebamowo SN, Francis V, Tambo E, Diallo SH, Landoure G, Nembaware V, et al. Implementation of genomics research in Africa: challenges and recommendations. *Glob Health Action.* 2018;11(1):1419033. [PubMed ID: 29336236]. [PubMed Central ID: PMC5769805]. <https://doi.org/10.1080/16549716.2017.1419033>.