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Abstract

Background: Sexually transmitted diseases (STDs), including viral and bacterial infections such as genital warts, syphilis,

gonorrhea, and Chlamydia trachomatis (CT), present ongoing global health challenges. MicroRNAs (miRNAs) have emerged as

critical regulators of host-pathogen interactions, offering novel insights into disease mechanisms and potential clinical

applications.

Objectives: This review synthesizes current evidence on the role of miRNAs in STD pathogenesis, with a focus on their

regulatory functions in immune response modulation, signaling pathway disruption, and clinical relevance as biomarkers and

therapeutic targets.

Methods: We conducted a comprehensive analysis of miRNA studies related to STDs, integrating data from in vitro, in vivo,

and clinical research to evaluate their influence on disease progression and outcomes.

Results: Dysregulated miRNAs are central to STD pathogenesis. In HPV-induced genital warts, miR-34a-5p downregulation

correlates with PD-L1 upregulation, while miR-26a and miR-143/145 disrupt PTEN and PI3K/AKT signaling. Syphilis exhibits

elevated miR-338-5p in latent infections and miR-142-3p-mediated immune evasion. In gonorrhea, miR-146a suppresses NF-κB

signaling, aiding bacterial survival, whereas Chlamydia infections involve miR-30c-5p and miR-135a in bacterial clearance and T-

cell regulation. MicroRNAs modulate key pathways such as PI3K/AKT, TLR, and NF-κB, influencing immune responses and disease

progression across STDs. Their diagnostic and therapeutic potential is promising but requires further clinical validation.

Conclusions: MicroRNAs represent valuable biomarkers and therapeutic targets for STDs. Future research should prioritize

mechanistic elucidation and translational studies to advance STD management strategies.
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1. Introduction

Sexually transmitted diseases (STDs) constitute a

major global public health burden, transmitted

through sexual contact and associated behaviors (1).

These infections, which include viral agents such as

human papillomavirus (HPV) and bacterial pathogens

like Treponema pallidum, Neisseria gonorrhoeae, and

Chlamydia trachomatis (CT), contribute significantly to

morbidity, reproductive health complications, and

socioeconomic strain (2, 3). Despite ongoing efforts,

prevention and treatment strategies remain

suboptimal, underscoring the need for novel molecular

insights (4).

Recent advances in genomics and bioinformatics

have highlighted the regulatory roles of microRNAs

(miRNAs) in infectious diseases. MicroRNAs are small,
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non-coding RNAs that fine-tune gene expression post-

transcriptionally, influencing immune responses,

cellular signaling, and pathogen persistence (5-7). In

STDs, miRNA dysregulation has been linked to disease

progression, immune evasion, and clinical outcomes,

presenting opportunities for improved diagnostics and

targeted therapies (8, 9). This review aims to consolidate

current knowledge on miRNA involvement in both viral

and bacterial STDs, with an emphasis on mechanistic

pathways and clinical implications, thereby addressing

a critical gap in the integrative understanding of

miRNA-mediated regulation in STD pathogenesis.

2. Structure and Function of MicroRNAs

MicroRNAs are highly conserved, single-stranded

noncoding RNAs, typically 21–25 nucleotides in length,

that regulate gene expression post-transcriptionally (10,

11). By binding to the 3′-untranslated region (3′-UTR) of

target mRNAs, miRNAs guide the RNA-induced silencing

complex (RISC) to degrade transcripts or suppress

translation (12, 13). This regulatory capacity allows

miRNAs to maintain cellular homeostasis under

physiological conditions.

In pathological states, miRNA expression is

frequently altered, contributing to diseases such as

cancers, inflammatory disorders, and infections (14, 15).

Conversely, certain miRNAs may also promote

homeostasis, reflecting their dual roles in health and

disease. In the context of STDs, miRNAs modulate host

immune responses and pathogen-related signaling

pathways, influencing infection outcomes (8, 16).

3. Correlation Between MicroRNAs and Sexually
Transmitted Diseases

3.1. Role of MicroRNAs in Genital Warts

Genital warts, or condyloma acuminatum (CA), are

primarily caused by HPV types 6 and 11 (17). HPV enters

basal epithelial cells and replicates during epithelial

differentiation, leading to lesion formation (18).

Clinically, genital warts are classified into four types:

Classic CA, keratotic warts, popular warts, and flat warts,

all characterized by high contagiosity and recurrence

(19).

MicroRNAs play a pivotal role in CA pathogenesis by

regulating cell proliferation, apoptosis, and

differentiation. For example, miR-34a-5p is

downregulated in CA tissues, while PD-L1 is upregulated,

demonstrating an inverse correlation with diagnostic

potential (AUC: 0.954) (20). miR-26a overexpression

degrades PTEN mRNA, impairing tumor suppression

(21). Loss of miR-143 or miR-145 disrupts NRAS/PI3K/AKT

signaling (22), and reduced miR-99b elevates IGF-1R

expression, further activating PI3K/AKT and driving

proliferation (23). Autophagy-related miRNAs, such as

miR-30a-5p and miR-514a-3p, are diminished in CA, while

autophagy proteins (Atg5, Atg12, Atg3) are upregulated

(24). Additional miRNAs, including miR-22-3p (25), miR-

31, miR-9 (26), miR-155, and miR-203 (27), correlate with

wart size, HPV subtype, and recurrence, though their

precise mechanisms require further study (Table 1).

3.2. Role of MicroRNAs in Syphilis

Syphilis, caused by Treponema pallidum, progresses

through distinct clinical stages (37). Beyond traditional

serological tests (28), miRNAs show promise for early

detection and monitoring. miR-338-5p is elevated in

latent syphilis and associated with T-cell receptor

signaling (38). Differential expression of miR-195-5p,

miR-223-3p, and miR-589-3p distinguishes serofast from

cured patients (39). Mechanistically, miR-101-3p

downregulates TLR2, reducing cytokine production in

macrophages (31), while miR-142-3p impairs

phagocytosis in dendritic cells and macrophages during

secondary syphilis (35) (Table 2).

3.3. Role of MicroRNAs in Gonorrhea

Gonorrhea, caused by Neisseria gonorrhoeae, affects

millions annually, with rising antimicrobial resistance

(33, 41). Bacterial lipo-oligosaccharide (LOS) induces miR-

146a overexpression in monocytes, inhibiting NF-κB via

IRAK1/TRAF6 and suppressing TNF-α and IL-1β
production, which may facilitate bacterial persistence

(42). Reduced miR-718 in infected macrophages

enhances PI3K/AKT signaling via PTEN downregulation,

dampening inflammatory responses and increasing

host susceptibility (43).

3.4. Role of MicroRNAs in Genital Chlamydia trachomatis
Infection

The CT infections are often asymptomatic but can

lead to pelvic inflammatory disease and infertility (36,
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Table 1.  Regulatory Effects of MicroRNAs on Condyloma Acuminatum Through Host Protein Modulation

miRNA Biological Function Molecular Target Ref

miR-9 Influences disease progression, lesion size, and HPV strain specificity HK2 (28)

miR-22-3p Determines HPV variant susceptibility VEGF (29)

miR-26a Promotes abnormal cellular proliferation PTEN (30)

miR-30a-5p/miR-514a-3p Mediates autophagy processes in CA pathogenesis Atg5, Atg12, Atg3 (31)

miR-34a-5p Affects clinical course, wart dimensions, HPV subtype, and diagnostic potential PD-L1 (32)

miR-99b Contributes to disordered cell growth IGF-1R (24)

miR-143/miR-145 Drives aberrant proliferative activity NRAS, PI3K p110α, and phosphorylated AKT (33)

miR-143/miR-155 Modulates disease characteristics and HPV strain specificity NRAS, PI3K p110α, and phosphorylated AKT (34)

miR-149-3p Impacts disease progression and lesion morphology HE4 (35)

miR-203 Determines HPV variant specificity p63 and Survivin (36)

Abbreviations: HPV, human papillomavirus; CA, condyloma acuminatum; HK2, hexokinase 2; VEGF, vascular endothelial growth factor; PTEN, phosphatase and tensin homolog;
Atg, autophagy-related proteins; PD-L1, programmed death-ligand 1; IGF-1R, insulin-like growth factor 1 receptor; HE4, human epididymis protein 4; MicroRNAs, miRNA,
microRNA.

Table 2.  MicroRNAs Modulate Syphilis Infection by Regulating Host Proteins

miRNA Biological Function Molecular Target Ref

miR-101-3p Suppresses cytokine production in macrophages TLR2 3' UTR (4)

miR-142-3p Enhances syphilis disease progression DC (6)

miR-195-5p/miR223-3p, mir-598-3p Serves as diagnostic biomarker and treatment response predictor Multiple gene targets (40)

miR-338-5p Identifies serofast patients and aids in latent syphilis diagnosis RANBP17, XPO1, and XPO6 (2)

Abbreviations: TLR2, toll-like receptor 2; UTR, untranslated region; DC, dendritic cells; RANBP17, RAN binding protein 17; XPO1, Exportin 1; XPO6, Exportin 6; miRNA, microRNA.

44). Dysregulated miRNAs influence susceptibility and

outcomes. miR-146a and miR-155 alter vaginal

microbiota and T-cell function (45). Symptomatic

infections show elevated miR-142 and miR-147, while

asymptomatic cases upregulate miR-449c, miR-6779,

and miR-519d (46). Experimentally, miR-378b deficiency

impairs bacterial clearance but reduces inflammation

(47). miR-30c-5p modulates mitochondrial dynamics via

Drp1, inhibiting CT replication (48), and miR-135a

regulates CD4+ T-cell trafficking through the

CXCL10/CXCR3/CCR5 axis (30) (Table 3).

4. Discussion

MicroRNAs serve as master regulators of cellular

processes, including differentiation, apoptosis, and

signaling, and are increasingly recognized for their roles

in STD pathogenesis (5, 49). Their ability to modulate

immune responses and pathogen persistence

underscores their potential as biomarkers and

therapeutic targets (50).

In HPV infection, miRNAs such as miR-34a-5p and

miR-26a disrupt PI3K/AKT and MAPK signaling,

promoting epithelial proliferation and immune evasion

(20, 51). Similarly, in gonorrhea, miR-146a and miR-718

fine-tune NF-κB and PI3K/AKT pathways, influencing

bacterial survival and host inflammation (42). Syphilis

presents a unique challenge with the serofast state,

where miRNAs like miR-338-5p and miR-142-3p modulate

TLR pathways and phagocytic functions, impairing

clearance of Treponema pallidum (35, 38). In chlamydia
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Table 3.  Micro RNAs Modulate Genital Chlamydia Infection by Regulating Host Proteins

miRNA Biological Function Molecular Target Ref

miR-30c-5p Impairs bacterial growth and alters mitochondrial dynamics Tumor protein p53 (19)

miR-135a Modulates immune cell trafficking and regulatory functions CXCL10 (23)

miR-142/miR-147/miR-449c/miR-6779/miR-519d/miR-449a/miR-2467 Potential biomarkers for tracking disease progression Multiple gene targets (44)

miR-146a/miR-155 Alters vaginal microbial environment Not specified (45)

miR-378b Regulates CT replication and influences reproductive complications EMT markers (46)

Abbreviations: CXCL10, C-X-C motif chemokine ligand 10; EMT, epithelial-mesenchymal transition; miRNA, MicroRNA.

infection, miRNAs coordinate immune cell recruitment

and bacterial containment through mitochondrial

regulation and chemokine signaling (30, 48).

A unifying theme across these infections is miRNA-

mediated regulation of key pathways such as PI3K/AKT,

TLR/NF-κB, and autophagy. These interactions highlight

conserved mechanisms of host-pathogen interplay and

suggest broad therapeutic potential. However,

translational applications require deeper mechanistic

insights and validation in larger clinical cohorts (52).

5. Conclusion

This review underscores the central role of miRNAs in

regulating immune responses and signaling pathways

in STDs. While significant progress has been made in

identifying dysregulated miRNAs and their targets,

challenges remain in translating these findings into

clinical practice. Future research should focus on:

-Elucidating precise mechanistic networks through

integrated omics approaches

-Validating miRNA biomarkers in diverse, large-scale

clinical populations

-Developing targeted miRNA-based therapies for

enhanced STD management

By bridging molecular insights with clinical

applications, miRNA research holds promise for

advancing diagnostic accuracy, therapeutic precision,

and preventive strategies in STD care.
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