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Background: Mental fatigue is a significant risk factor for falls in the elderly. Rapid, inexpensive, and objective diagnosis of
this condition plays a crucial role in fall prevention.

Objectives: This study aims to identify the most important gait components for diagnosing mental fatigue in the elderly
using a machine learning-based model. The model was validated against a reference standard combining the Stroop test and a
Visual Analog Scale (VAS) score > 70, a well-established method for reliably inducing and measuring cognitive fatigue in older
adults.

Methods: Thirty community-dwelling older adults (19M/11F; age 67.0 + 4.3 years) were recruited based on strict inclusion
criteria: Age 60 - 75 years, at least one fall in the past year, normal cognitive function [Mini-Mental State Examination (MMSE) >
24], and independent ambulation. Participants with neurological or orthopedic conditions were excluded. The sample size was
determined based on precedent in comparable machine learning studies involving gait and mental fatigue, with additional
robustness ensured through data augmentation techniques. Fifty-six spatiotemporal gait features were extracted before and
after standardized mental fatigue induction using the Stroop test with VAS confirmation. A total of 27,720 ternary feature
combinations were evaluated using an Optimal Decision Tree model.

Results: Analysis of five consecutive gait cycles revealed that a ternary combination of average stride time, minimum stride
length, and minimum stance phase percentage could predict the presence or absence of mental fatigue with an accuracy of
92.2% (95% CI: 86.7% - 97.8%). Unlike traditional approaches [principal component analysis (PCA), t-test, and forward-backward
selection], the proposed method preserves original features, accounts for interactions, and achieves superior performance on
small datasets, making it a more reliable and accurate tool for diagnosing mental fatigue in elderly individuals.

Conclusions: The high accuracy and minimal input requirements of this model allow for the use of inexpensive tools, such as
2D video cameras, to enable continuous, real-time, and precise assessment of mental fatigue in fall-prone elderly populations.
However, the study has limitations, including a small sample size and reliance on treadmill-based data, which may affect
generalizability.
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1. Background

The elderly constitute a substantial proportion of the
global population, with over 20% expected to be over 65
by 2030 (1). About one-third of older adults fall annually,
costing over $34 billion (2, 3). Declines in neuromuscular
function, balance, strength, vision, and cognition
increase fall risk (4). Mental fatigue — linked to mild

cognitive impairment (5) — disrupts gait and posture via
impaired neural control (6). It stems from prolonged
mental effort and reduces energy, motivation, and
cognitive capacity (7, 8). Early detection of mental
fatigue may help reduce fall risk in the elderly (1).

Mental fatigue assessment employs three primary
methods. First, questionnaires like the Psychomotor
Vigilance Test (PVT), Visual Analog Scale (VAS), and
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Checklist Individual Strength (CIS) (9) are simple and
cost-effective but rely on subjective responses and lack
real-time monitoring. Second, behavioral detection
methods analyze head position and eye-blink rates (10)
via cameras, enabling real-time assessment but being
sensitive to lighting. Third, physiological signal
methods — EEG, EOG, EMG, ECG, and BPM (11, 12) —
measure bioelectric activity (e.g., brain waves via EEG)
for real-time detection but require specialized
equipment (e.g., electrode caps), limiting practicality for
continuous use. Gait analysis, detecting mental fatigue
through kinematic changes (13), offers advantages:
Remote assessment via video without body sensors.
While 3D gait analysis needs specialized lab equipment
and markers, identifying key gait components linked to
mental fatigue could enable diagnosis using standard
cameras combined with Al pose estimation tools like
Open Pose and Open Cap, simplifying assessment while
maintaining accuracy (14).

Given the important role of cognition in balance
control and the negative impact of mental fatigue on
cognitive ability, the high prevalence of mental fatigue
may put individuals at risk of injuries resulting from
loss of balance and falls. Therefore, sensitivity to the
mental fatigue factor as an inherent risk factor for falls
in the elderly and its identification are essential to
provide effective interventions to reduce the likelihood
of falls and subsequent injuries.

2. Objectives

This study employed laboratory gait analysis
methods to identify key gait components in the elderly
before and after mental fatigue (AMF), induced by
clinically validated techniques. A machine learning-
based model was utilized to explore the feasibility of
diagnosing mental fatigue through motor signals,
emphasizing the potential for simple and cost-effective
approaches. The approach of the present study, provides
the basis for the design of a mental fatigue warning
system with available equipment and without too
complex calculations to prevent one of the factors of
falls in the elderly.

3. Methods

3.1. Subjects

A total of 30 elderly subjects (19 males and 11 females,
67.0 *+ 4.3 years, mean weight 74.5 + 17.7 kg, and mean
height 168 £+ 7.7 cm) were selected to participate in the
study. The selected sample size is consistent with
previous machine learning-based fatigue studies and

was reinforced by intra-subject data augmentation to
ensure model validity. To assess the cognitive status of
elderly participants, the Mini-Mental State Examination
(MMSE) was administered, with a maximum score of 30,
where a score below 24 was considered indicative of
cognitive impairment. The inclusion criteria for the
study comprised individuals aged 60 - 75 years, a
documented history of falls, and the ability to walk
independently on a treadmill without assistive devices.
Conversely, exclusion criteria included diagnosed
orthopedic or neurological disorders, an MMSE score
below 24, and a history of recent surgeries or injuries
that could affect gait quality.

3.2. Procedure

Participants wore sports attire and initially
acclimated to treadmill walking (HP Cosmos, Mercury
Germany) until their gait resembled natural floor
walking. Their preferred speed was determined by
incrementally adjusting the treadmill speed (0.1 km/h
every 5 seconds) until subjective comfort was reached
(15). Spatiotemporal gait data were collected using a
motion capture system (OptiTrack vi20 Duo, USA; 120
Hz), with pelvic and heel markers tracking movement.
After calibration, three one-minute gait trials were
recorded at preferred speed with rest periods to
minimize fatigue effects.

3.3. Mental Fatigue Protocol

To induce mental fatigue, participants performed a
60-minute Stroop test on a 27-inch computer monitor.
During the test, they were shown color names printed in
mismatched ink colors (e.g., the word 'red' displayed in
blue) with stimuli changing every second. Participants
were instructed to identify the color of displayed text
while ignoring semantic word content. Baseline fatigue
levels were assessed pre-test using an 18-item VAS
evaluating fatigue and energy subscales (0 - 100), with
post-test fatigue reassessed immediately afterward (16)
While a score of 50/100 is widely adopted as the fatigue
threshold in prior research (9), this study defined the
cutoff at 70/100. If participants failed to meet this
threshold, the Stroop task was extended iteratively in 10-
minute increments until the criterion was achieved. If
the fatigue threshold wasn’t met, the Stroop test was
extended in 10-minute increments until the threshold
was achieved. Following the intervention, pretest data
collection procedures were repeated identically to
evaluate the effects.

3.4. Data Analysis
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The subjects' gait cycle was determined using the
position of the two markers placed on the heels and
their relationship to the pelvic position.

Spatiotemporal gait factors including stride length,
stride width, cadence, step symmetry, stride time,
double support time, stance phase percentage, and gait
speed were extracted for each gait cycle. Also, the range,
maximum, and minimum values, as well as the integral
and derivative of the values in each of the 5 consecutive
cycles were calculated (equation 1):

Range = Maz(z1-5)—Min(z1-5)
Maz = Maz(z1_5)
Min = Min(z1_5)

Int = /lsf(m)d(:c)

lef = Maac(miH — mi,l)
In these equations, X and X5 represent, respectively,

the value of each spatiotemporal gait parameter in a
single cycle and the average across five consecutive
cycles. The terms Range, Max, and Min denote the range
of variation, maximum, and minimum values across the
five cycles, respectively. Additionally, Int refers to the
integral (area under the curve) of the values over five
cycles, and Diff indicates the derivative of that integral.

Given the importance of gait changes as an
important indicator in studies related to falls (17), the
variability of the spatiotemporal component was also
calculated. For this purpose, the dispersion of the data
of 5 consecutive gait cycles of individuals was obtained
using equation 2:

5 7.2
Variability Ide = Z Q

i=1

In this Equation, xi xi represents each component
and X represents the average of 5 consecutive cycles.
Thus, a total of 56 initial components were extracted for
input into the machine learning algorithm (Table 1).

The study faced limited training data from 30
subjects, which was insufficient for robust machine
learning model training. To address this, a moving
average method was applied to augment the dataset. For
each subject providing at least 10 consecutive 5-cycle
gait data series, this technique expanded 30 original
observations into 300 pre-fatigue and 300 post-fatigue
data points. To develop a parsimonious mental fatigue
detection model while preventing overfitting, the
analysis distilled 3 key components from an initial set of
56 spatiotemporal gait parameters. The combinatorial
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formula yielded 27,720 possible ternary

(n —k)k!
combinations fo)r model input. Data labeling assigned 0
for before mental fatigue (BMF) and 1 for AMF states.
Classification employed an Optimal Decision Tree
approach, utilizing MATLAB R2023b's Bayesian
Optimization Algorithm across 30 generations. The
dataset was split with 85% for training and 15% for testing
to validate model performance.

4. Results

Figure 1 shows the analysis of 27,720 ternary
combinations of the 56 components considered as
input to the machine learning model. As can be seen,
the highest validation accuracy is achieved when the
three components numbered 6,33, and 40 are selected.

These three features included the average stride time,
minimum stride length, and minimum stance phase
percentage for 5 consecutive cycles, which was able to
show an accuracy of 92% on the training data. Figure 2
shows the confusion matrix for validating the machine
learning algorithm. As can be seen, 90.9% of the data
labeled as BMF were correctly predicted, and 9.1% of the
data were incorrectly labeled BMF. For AMF data, 93% of
the predictions were correct, and 7% of the data were
incorrectly labeled as AME. These values demonstrate
the algorithm's high accuracy and minimal error in
detecting the presence or absence of mental fatigue in
older adults, outperforming comparable studies in the
field.

The results of the analysis of the test data, which
included 15% of the total data that did not participate in
the training phase, showed that using the three
components of average stride time, minimum stride
length, and minimum stance phase percentage was able
to predict the presence or absence of mental fatigue
with an accuracy of 92.2% (95% CI: 86.7% - 97.8%).

The present study proposes a method through which
mental fatigue can be detected with desired accuracy
from the gait pattern of elderly people. To validate the
proposed method for selecting the best features for
diagnosing mental fatigue, its accuracy was compared
with three common feature selection methods: (1)
Principal component analysis (PCA), (2) feature selection
based on statistical methods (t-test), and (3) forward-
backward feature selection. Table 2 shows the selected
features and the accuracy of training and testing of
these three conventional methods.

To features selection, the method proposed in this
study demonstrates several advantages over traditional
techniques. Unlike PCA, which alters features and may
overlook critical factors, the current approach examines
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Table 1. Input Components of the Machine Learning Algorithm

Variables Mean Var Range Max Min Int Diff
Stride length (m) 1 9 17 25 33 41 49
Step width (m) 2 10 18 26 34 42 50
Cadence (step/min) 3 1 19 27 35 43 51
Step symmetry (%) 4 12 20 28 36 44 52
Double support time (s) 5 13 21 29 37 45 53
stride time (s) 6 14 22 30 38 46 54
Speed (m/s) 7 15 23 31 39 47 55
Stance phase percent (%) 8 16 24 32 40 48 56

Abbreviations: Var, variability; Range, range of variation; Max, maximum; Min, minimum; Int, integral; Diff, derivative of 5 consecutive cycles.
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Figure 1. Validation of three input components of a machine learning model; the large circle indicates the best combination of 3 components.

all possible states without changing the features. It also
accounts for the overlap and interactions between
selected features, which is a limitation of the t-test
method. Additionally, this method achieves higher
classification accuracy compared to Forward-backward
Feature Selection, with training and testing accuracies
significantly surpassing those obtained through PCA

and the ttest. Specifically, the current method is
particularly effective for small datasets, allowing for the
selection of principal components with a limited
number of features. Overall, this study presents a robust
alternative for accurately diagnosing mental fatigue,
emphasizing the importance of considering feature
interactions and maintaining component integrity

] Motor Control Learn. 2025; 7(2): e161864
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Figure 2. Confusion matrix for machine learning model validation
Table 2. Selected Features, Training and Testing Accuracy of Three Conventional Methods for Feature Selecting and Current Method
Method selected Features Training Accuracy Testing Accuracy
(%) (%)
PCA First three components (80.2%,15.5%, and 1.7% variance) 78.4 733
t-test statistical test Mean, maximum, and Integral of cadence 72.4 60.0
Forwa.rd-backward feature Average cadence, maximum gait speed, and integral of stride length 87.6 822
selection
e nod Average stride time, minimum stride length, and minimum stance phase 92 922

percentage

Abbreviation: PCA, principal component analysis.

5. Discussion

This study aimed to identify key gait features in the
elderly for detecting mental fatigue. Previous research
has shown varied effects of cognitive load and mental
fatigue on gait, influenced by task type, duration, and
attentional allocation. The parallel information
processing model (18) and perceptual narrowing
perspective suggest that mental fatigue impairs dual-
task performance by diverting attention from optimal

] Motor Control Learn. 2025; 7(2): €161864

task execution. Supporting this, van der Linden et al. (19)
found that mental fatigue compromises focus, response
preparation, and adaptive strategies. Conversely, the
CRUNCH model (20) posits that older adults
compensate for cognitive decline in moderately difficult
tasks but struggle with highly demanding ones. Dubost
et al. (21) reported reduced stride speed and increased
variability under cognitive load in older adults, though
their findings partially contrast with the current study’s
results.
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McAuley et al. (17) demonstrated that cognitive load
impacts spatiotemporal gait parameters in older adults,
linking reduced stride length and stride time to declines
in perceptual attention and processing speed. They
proposed that decreased stride length may serve as an
early marker of cognitive load and elevated fall risk,
preceding other neuropsychological and gait changes.
These findings align with the present study, indirectly
identifying stride length and stride time as mental
fatigue indicators. Verlinden et al. (22) further noted
that mental fatigue slows brain processing speed,
manifesting in gait timing variables like cadence, stride
time, and stance/swing phases. They highlighted that
optimal movement speed depends on coordinated limb
movements (e.g., stride width, double support), while
executive functions govern stride length and gait speed.
The current study builds on these insights by
pinpointing three key diagnostic components of mental
fatigue: Minimum stride length, average stride time,
and minimum stance phase duration. These metrics
reflect how mental fatigue alters processing speed and
executive function in older adults — dual factors that
collectively heighten fall risk.

This study proposes a practical method for detecting
mental fatigue — a major fall risk factor in older adults —
using three gait parameters measurable via a simple 2D
camera over five gait cycles. Unlike subjective
questionnaires or complex brain signal measurements
(EEG/EOG), this approach offers an objective, low-cost
solution suitable for non-laboratory environments.

While the study demonstrates promising accuracy, it
has notable limitations, including a small sample size
and a lack of overground walking data. To address these
issues, data augmentation techniques were applied —
such as transforming existing datasets, combining
transformations, and generating synthetic data —
alongside treadmill-based data collection after
participant familiarization to simulate natural gait
patterns. However, it is important to note that although
treadmill acclimation aimed to approximate natural
gait, inherent differences between treadmill and
overground walking may still exist. Furthermore, the
model's performance in real-world environments
remains untested, which limits the generalizability of
the findings. These gaps underscore the need for
cautious interpretation of the results and highlight
critical directions for future research. Subsequent
studies should prioritize validation against objective
neural measures (e.g., EEG) to strengthen physiological
correlations, comparative validation of gait parameters
using affordable Al-based imaging systems versus gold-
standard precision motion capture tools, and

expanding sample sizes while employing advanced
optimization algorithms to enhance the robustness of
complex models. Despite these limitations, this work
represents a meaningful advancement in developing
accessible tools for monitoring elderly health, bridging
technological innovation with practical clinical
applications. Future validation in diverse, real-world
settings will be essential to confirm its broader utility.
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