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Abstract

Background: Reactive oxygen species (ROS) are critical molecules produced during cellular metabolism. Macrophages, as

essential immune cells, play a pivotal role in the immune response by producing inflammatory mediators and releasing ROS.

Interferon-gamma (IFN-γ) is a key stimulator of macrophage activity, enhancing ROS production.

Objectives: With the increasing application of low-level laser therapy (LLLT) in medicine, this study aims to compare the

effects of 810 nm and 940 nm diode laser irradiation on ROS production in macrophages.

Methods: This in vitro study utilized a monocyte/macrophage cell line. Cells were seeded into microwell plates and exposed to

diode laser irradiation at 810 nm and 940 nm, with power settings of 0.4 watts (energy density 7 - 15 J/cm2) and irradiation times

of 15 and 30 seconds. The IFN-γ was added post-irradiation. The ROS production was assessed using a fluorometric method,

measuring nitric oxide (NO) as an indirect indicator.

Results: The comparison between 810 nm and 940 nm wavelengths showed no significant difference in ROS production (P >

0.05). However, higher energy density (4 J vs. 2 J, P = 0.001), longer irradiation time (30 s vs. 15 s, P = 0.001), and the presence of

IFN-γ (P < 0.001) significantly increased ROS levels.

Conclusions: This study showed that both 810 nm and 940 nm diode lasers significantly increase ROS production in

macrophage cells compared to a control group, despite no significant differences between the two wavelengths.
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1. Background

Photobiomodulation (PBM), also known as low-level

laser therapy (LLLT), was first identified nearly 50 years

ago (1). In recent years, LLLT has gained significant

traction in both medical and dental fields, primarily due

to its ability to modulate biological processes without

causing substantial cellular damage (2-4). Emerging

evidence indicates that LLLT can modulate immune

responses, including the regulation of reactive oxygen

species (ROS) levels, thereby facilitating tissue repair

and reducing inflammation (5-8).

The ROS are highly reactive oxygen-containing

molecules that play a dual role in cellular physiology (9-

11). On one hand, they are essential for cellular signaling

and defense mechanisms, particularly within the

immune system. On the other hand, excessive ROS

production can lead to oxidative stress, contributing to

cellular damage and the pathogenesis of various

diseases, including cardiovascular and

neurodegenerative disorders (9, 12-16).

Hamblin indicates that LLLT can lead to a temporary

and modest increase in ROS production in healthy cells,

resulting from an elevation of mitochondrial

membrane potential (MMP) beyond normal levels (17).

Nonetheless, when applied as a treatment for tissue

injury or muscle damage, LLLT has been shown to

effectively lower markers of oxidative stress (17-19).
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Macrophages, key players in the immune response,

are central to the production of ROS, which they use to

combat pathogens and mediate inflammation (20, 21).

Interferon-gamma (IFN-γ), a critical cytokine in both

innate and adaptive immunity, primes macrophages by

enhancing their capacity to produce ROS and other

inflammatory mediators. As a potent macrophage

activator, IFN-γ promotes the release of higher ROS

levels (22, 23). However, the interaction between IFN-γ
and laser irradiation, particularly its influence on ROS

production, remains relatively underexplored in the

current literature.

Diode lasers emitting wavelengths of 810 nm and 940

nm have been extensively studied for their capacity to

penetrate tissues and influence cellular activities (3, 5,

24, 25). Given the increasing relevance of laser

technology in modern dentistry and medicine, this

study aims to investigate a critical and underexplored

question: Do 810 nm and 940 nm diode laser

irradiations differentially affect the quantitative release

of ROS in macrophages, in both the presence and

absence of IFN-γ? If significant differences are observed,

the findings could inform the selection of optimal laser

wavelengths for therapeutic applications.

This study addresses a gap in the current research

landscape by examining the specific effects of 810 nm

and 940 nm diode lasers on ROS production in

macrophages. While previous research has

demonstrated that LLLT can enhance cellular repair

mechanisms, such as in the treatment of recurrent oral

ulcers and scar reduction (24, 26), the direct impact of

these laser wavelengths on ROS release in macrophages

remains insufficiently understood and necessitates

further investigation.

2. Objectives

This study aimed to compare the effects of 810 nm

and 940 nm diode laser irradiation on ROS production

in macrophages.

3. Methods

3.1. Cell Line and Culture Conditions

The study utilized the murine

monocyte/macrophage cell line J774A.1 (NCBIC 483),

acquired from the Pasteur Institute of Iran. Cells were

cultured in a flask containing Dulbecco’s Modified Eagle

Medium (DMEM) enriched with 10% fetal bovine serum,

100 µg/mL penicillin, 100 µg/mL streptomycin, and 2

mM L-glutamine (27, 28). The culture was maintained at

37°C in a CO2 incubator.

3.2. Laser Parameters

Two types of lasers were employed in this study: The

940 nm Epic X diode laser, featuring an adjustable

power range from 0.1 to 10 W, manufactured by Biolase

in the USA, and a 400 µm tip; and the 810 nm Pulsar

diode laser, made in Iran, with an adjustable power

range of 0.5 to 8 W, operated at 0.4 W in this experiment.

Both lasers were calibrated before use by measuring

their output power with a power meter.

3.3. Experimental Groups

The release of ROS by macrophage cells was evaluated

in 18 different groups as presented in Table 1.

3.4. Experimental Procedure

A volume of 100 µL of the cultured J774A.1 cell line

(containing 104 cells) was transferred into each well of a

microplate (5 wells per group). Samples were allowed to

stabilize for one hour before laser irradiation. The 940

nm and 810 nm diode lasers were employed at a 45-

degree angle relative to the cell surface in the wells,

using a 400 µm tip. Laser output was set at 0.4 W, with

exposure durations of 15 or 30 seconds, divided into

intervals with 10-second pauses in a dark environment

to prevent interference from external light sources. The

effective energy per well was calibrated to

approximately 2 J and 4 J, corresponding to calculated

energy densities of ~7 - 15 J/cm2, based on the irradiated

area. These values are cumulative and not per-pulse.

Following laser irradiation, 2 µL of IFN‐γ was added to

the wells to activate macrophages (29), and 4 hours post-

irradiation, the ROS production level was assessed by

measuring nitric oxide (NO) levels using a fluorometric

method with DCFH-DA as the fluorescent probe (30, 31).

Although DCFH-DA is a widely used fluorescent probe

for general ROS detection, in this study, it was employed

to assess NO levels as an indirect marker of ROS

production. Previous research has demonstrated that

DCFH-DA can respond to both ROS and reactive nitrogen

species (RNS), including NO and peroxynitrite, making

it suitable for detecting oxidative and nitrosative stress

under specific conditions (27, 30-33).
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Table 1. The Experimental Groups a

Groups Laser Wavelength (nm) Power (W) Energy (J) Irradiation Time (s) With/Without IFN‐γ

1 810 0.4 2 15 With and without

2 810 0.4 4 15 With and without

3 810 0.4 2 30 With and without

4 810 0.4 4 30 With and without

5 940 0.4 2 15 With and without

6 940 0.4 4 15 With and without

7 940 0.4 2 30 With and without

8 940 0.4 4 30 With and without

9 Control (no laser) N/A N/A N/A With and without

Abbreviation: N/A, not applicable.

a Each group was tested twice: Once with the application of IFN‐γ and once without.

The use of NO as a proxy for ROS has been validated in

macrophage models where inducible nitric oxide

synthase (iNOS) activity contributes to oxidative

responses (31, 33). Nevertheless, we acknowledge that NO

production can also occur independently of ROS

generation, particularly via iNOS activation pathways

stimulated by IFN-γ. Therefore, while our measurements

reflect total oxidative activity, they may not exclusively

quantify ROS.

3.5. Data Analysis

The collected data were analyzed using SPSS 24. The

Kolmogorov-Smirnov test was utilized to analyze the

normal distribution of data, the t-test to assess the

effects of IFN-γ in each group, and the two-way analysis

of variance (ANOVA) to compare ROS levels in the

examined groups. A P-value < 0.05 was considered

statistically significant.

4. Results

Table 2 presents a consolidated summary of NO levels

under different experimental conditions, including

laser wavelength, energy, exposure time, and the

presence or absence of IFN-γ. The values are expressed as

means ± standard deviations (SD) in micromoles (µmol).

In addition to descriptive statistics, the table includes

corresponding P-values and Cohen’s d effect sizes for

IFN-γ comparisons to show the magnitude of biological

effects.

Cohen’s d values were calculated for each condition

to quantify the magnitude of IFN-γ's effect on NO levels.

The results demonstrate consistently large effect sizes (d

> 0.8), with several conditions exceeding d = 2.0,

indicating a very large stimulatory effect of IFN-γ on ROS

production as measured by NO.

Based on the Kolmogorov-Smirnov test, data were

normally distributed (P = 0.390), and Levene's test for

equality of variances resulted in a P-value of 0.82,

confirming that the variances are homogeneous.

One-way ANOVA revealed that irradiation energy (F =

19.00, P = 0.001), irradiation time (F = 12.20, P = 0.001),

and the presence of IFN-γ (F = 40.60, P < 0.001) all had

significant main effects on NO production. In contrast,

laser wavelength (810 nm vs. 940 nm) showed no

significant effect (F = 0.22, P = 0.63). Additionally, no two-

way, three-way, or four-way interaction terms were

statistically significant (all P > 0.05), suggesting that

these factors act independently rather than

synergistically in modulating NO levels.

5. Discussion

This study aimed to evaluate the effect of two diode

laser wavelengths, 810 nm and 940 nm, on ROS in

macrophage cells, using NO levels as an indirect but

widely accepted proxy for total oxidative activity. We

hypothesized that the two wavelengths might influence

ROS production differently due to their distinct

absorption profiles. Additionally, we assessed how

variations in irradiation energy, irradiation time, and

the presence of IFN-γ as a stimulant influenced ROS

release. A control group, not exposed to laser

irradiation, was included to provide a baseline for

comparison.

Our results demonstrated that both 810 nm and 940

nm diode lasers can significantly increase ROS

production compared to the control group. However, no
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Table 2. Mean ± Standard Deviations of Nitric Oxide Levels Under Different Experimental Conditions a, b

Laser Wavelength (nm) Energy (J) Irradiation Time (s) IFN‐γ Presence Mean ± SD Cohen’s d P-Value

810 nm

2

15
With 18 ± 2.73

3.33 0.001 c

Without 11 ± 1.18

30
With 21 ± 2.64

2.55 0.001 c

Without 13.8 ± 3.00

4

15
With 22.6 ± 3.7

1.51 0.005 d

Without 15 ± 6.1

30
With 25.2 ± 5.2

0.75 0.01 d

Without 21 ± 6.0

940 nm

2

15
With 17.8 ± 3.1

1.85 0.002 d

Without 11.4 ± 3.8

30
With 21 ± 3.2

2.23 0.001 c

Without 14.4 ± 2.7

4

15
With 20.8 ± 4.49

1.05 0.006 d

Without 15.2 ± 6.1

30
With 24.6 ± 5.0

1.14 0.008 d

Without 18.6 ± 5.5

Control (no laser) N/A N/A
With 9.2 ± 0.83

0.66 0.05 e

Without 8.4 ± 1.5

Abbreviation: SD, standard deviations.

a The mean values indicate that nitric oxide (NO) levels were consistently higher at 4 J compared to 2 J, and with 30 seconds of irradiation compared to 15 seconds. Across all

conditions, the presence of IFN-γ resulted in substantially increased NO production compared to IFN-γ-absent groups. These differences were statistically significant across all

laser settings (P ≤ 0.01) and were also reflected by Cohen’s d effect sizes ranging from 0.66 to 3.33, indicating moderate to very large biological effects of IFN-γ.

b Laser treatment at both 810 nm and 940 nm, with varying energy levels and exposure times, significantly enhanced NO production when combined with IFN-γ stimulation

compared to both IFN-γ-absent groups and untreated controls. The control group also demonstrated a significant difference between IFN-γ-stimulated and unstimulated

conditions (P = 0.05, Cohen’s d = 0.66), supporting the role of IFN-γ in promoting oxidative activity even in the absence of photostimulation.

c P ≤ 0.001.

d P ≤ 0.01.

e P ≤ 0.05.

significant difference was observed in ROS release

between the two wavelengths, leading to the rejection

of the null hypothesis. Additionally, we observed that

higher irradiation energy (4 J versus 2 J) and longer

irradiation times (30 seconds versus 15 seconds)

substantially elevated NO levels, indicating a

corresponding increase in ROS production.

These results align with previous studies like

Cerdeira et al(34) and Ivanov et al. (31). Cerdeira et al.(34)

found that LLLT can increase ROS production in

neutrophils. Ivanov et al. (31) identified a positive

correlation between ROS production and irradiation

time but did not examine energy density (31). Our study

builds on this by demonstrating that higher energy

density also leads to increased ROS production, aligning

with the results of Chen et al. (35).

In contrast to our findings, da Silva Neto Trajano et al.

(36) observed no significant difference in ROS

production between laser-irradiated groups and the

control group. Similarly, Yin et al. (37) reported a

reduction in ROS levels with a 660 nm diode laser

compared to their control, which is contrary to our

results showing increased ROS levels with both 810 nm

and 940 nm lasers. These discrepancies may be

attributed to differences in experimental conditions,

such as laser wavelength, power, energy density, and the

use of IFN-γ as a stimulant in our study.

Our study extends existing research by comparing

two different diode laser wavelengths (810 nm and 940

nm). Previous studies, such as those by Yin et al. (37) and

Chen et al. (35), primarily focused on single wavelengths

without directly comparing different wavelengths as we

did. The results of the current study also revealed that

IFN-γ led to a significant increase in ROS levels,

indicating its efficacy in stimulating macrophage

activation. The IFN-γ is an important cytokine in both

innate and adaptive immune responses, and it enhances
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the secretion of anti-inflammatory cytokines by

macrophages (29, 30).

While no other studies have used IFN-γ to stimulate

ROS production, our findings show a significant

increase in ROS levels with its use. Compared to other

priming agents such as LPS (31, 37), IFN-γ appears to elicit

a distinct and possibly more sustained activation of

ROS-generating pathways. Ivanov et al. (31)

demonstrated that LPS-stimulated serum proteins

generate long-lived ROS species following laser

exposure, whereas IFN-γ may more directly and robustly

activate intracellular enzymatic machinery. In fact, the

observed synergistic effect between IFN-γ and laser

irradiation in enhancing ROS production may be

attributed to the activation of multiple ROS-generating

pathways. The IFN-γ is known to prime macrophages

through the upregulation of NADPH oxidase, an enzyme

complex responsible for producing superoxide radicals

during the respiratory burst (20, 29, 38). Simultaneously,

laser irradiation, particularly in the near-infrared range,

can stimulate mitochondrial ROS production via

cytochrome c oxidase (CCO) activation. The combined

stimulation of mitochondrial and NADPH oxidase

pathways likely accounts for the significantly elevated

ROS levels observed in IFN-γ-treated, laser-irradiated

groups. This dual-pathway activation supports the

hypothesis that IFN-γ sensitizes macrophages to LLLT by

amplifying oxidative responses.

The absorption of light by mitochondrial

chromophores, particularly CCO, is significant due to its

prominent absorption peaks in the near-infrared

region, especially around 810 nm (12). While we

hypothesized that 810 nm would stimulate ROS

production more effectively due to stronger CCO

absorption, our findings showed no significant

difference between the 810 nm and 940 nm

wavelengths. This suggests that, although 940 nm is

outside CCO’s peak absorption range, it may still exert

biological effects via secondary pathways such as water

absorption or less well-characterized mitochondrial

components. These results highlight the complexity of

wavelength-specific interactions and underscore the

need for further mechanistic studies.

While NO was used as a surrogate marker of ROS in

this study, it is important to acknowledge that NO

production can occur independently via iNOS activity

and may not fully capture the complexity of ROS.

Nonetheless, DCFH-DA is a validated probe for detecting

general oxidative and nitrosative stress, including

species such as NO, hydrogen peroxide, and

peroxynitrite (27, 31). To improve specificity, future

studies should incorporate direct ROS detection

methods, such as dihydroethidium (DHE) for

superoxide and Amplex Red for hydrogen peroxide, to

obtain a more nuanced profile of oxidative changes in

macrophages post-irradiation.

The ROS are central to many physiological and

pathological processes, ranging from microbial defense

and wound healing to chronic inflammation and

carcinogenesis (39, 40). The ability to modulate ROS

levels via laser therapy has potential clinical

applications in tissue regeneration, immune

modulation, and inflammation control (39-41). Given

ROS’s dual role, being both beneficial and potentially

harmful, precise control of laser parameters

(wavelength, energy density, duration) is essential to

ensure therapeutic safety and efficacy (42, 43).

While our study provides valuable insights, it is

important to acknowledge its limitations. This study

was conducted on a specific type of macrophage cell,

and the results may not be generalizable to other cell

types or in vivo conditions. The J774A.1 murine

macrophage cell line was selected due to its

reproducibility, availability, and established use in

oxidative stress and immunomodulation studies. While

this model provides consistency for controlled in vitro

experimentation, it may not fully reflect the complexity

of primary macrophages derived from human tissue.

Differences in receptor expression, mitochondrial

function, and cytokine responsiveness between murine

cell lines and primary human macrophages could

influence ROS production. Therefore, caution should be

exercised when extrapolating these results to human

physiology, and future studies should validate these

findings using primary macrophages or human-derived

cell models.

Future studies should aim to replicate these findings

in different cell lines and explore the effects of other

laser wavelengths and energy densities. Specifically,

future studies should investigate the relationship

between LLLT, ROS production, and clinical outcomes.

Additionally, more extensive cellular studies are

suggested to better understand the underlying

mechanisms of laser-induced ROS production and its

therapeutic potential.

Temperature changes during laser exposure were not

continuously monitored in this study. However, the low-

level irradiation parameters used (0.4 W for a maximum

https://brieflands.com/articles/jrps-160276


Sadeghi M et al. Brieflands

6 J Rep Pharm Sci. 2025; 13(1): e160276

of 30 seconds) fall within established non-thermal LLLT

thresholds (3, 25). Previous studies have shown that

under such conditions, cellular temperature elevations

are minimal and unlikely to contribute significantly to

the observed biological effects. Nevertheless, future

work should incorporate direct temperature

monitoring to definitively exclude thermal

contributions to ROS generation.

In addition, future work should investigate how the

mode of laser emission, pulsed versus continuous wave,

modulates ROS production. Pulsed lasers may reduce

heat buildup while still stimulating mitochondrial

chromophores efficiently, potentially resulting in

distinct oxidative responses compared to continuous

wave modes. Some studies suggest that pulsed

irradiation may produce lower peak ROS levels or

induce different signaling cascades. Exploring this

variable will be critical for optimizing LLLT protocols for

specific clinical applications.

5.1. Conclusions

In conclusion, our study demonstrates that while the

specific diode laser wavelengths of 810 nm and 940 nm

do not significantly differ in ROS release, both

significantly increase ROS production compared to a

control group. Furthermore, irradiation time, energy

density, and the presence of IFN-γ play crucial roles in

modulating ROS production in macrophage cells.
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