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Abstract

Background: Parkinson's disease (PD) is one of the most prevalent neurodegenerative disorders, characterized by the

progressive loss of dopaminergic neurons in the substantia nigra pars compacta (SNc). Among the available treatments,

levodopa (L-Dopa) and apomorphine (APO) remain the most effective symptomatic treatments for managing PD.

Objectives: This study aimed not only to compare the effects of L-Dopa and APO on the behavioral and histopathological

characteristics of a rotenone-induced PD animal model but also to evaluate the levels of alpha-synuclein and tyrosine

hydroxylase (TH) in the model after treatment.

Methods: The PD was induced via stereotaxic injection of rotenone into Wistar rats. After four weeks, the animals underwent

treatment with either L-Dopa or APO for an additional four weeks. Behavioral assessments were conducted, along with

immunostaining to evaluate alpha-synuclein and TH levels. Beta-amyloid accumulation was assessed using Congo red (CR)

staining in ipsilateral and contralateral SNc regions.

Results: The Morpurgo, stride width, and left stride length findings showed no significant differences among the groups. No

significant difference was observed between the treated groups (L-Dopa and APO) and the control group regarding the right

stride length from the first to fourth week post-treatment. Immunohistochemical (IHC) staining revealed that L-Dopa and APO

administration did not alter the over-expressed alpha-synuclein levels or the decreased TH levels induced by rotenone within

the SNc region in the rat model. Reduced amyloid deposition was observed in the ipsilateral region of the L-DOPA-treated group,

as well as in the contralateral SNc of both the L-DOPA and APO-treated groups.

Conclusions: The L-DOPA and APO, though effective for symptomatic PD treatment in humans, showed only partial behavioral

improvement and modest reduction in the rotenone-induced PD rat model. The differences in drug effects among humans and

various animal models arise from a complex interplay of biological, physiological, and methodological factors.
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1. Background

Parkinson's disease (PD) is one of the most prevalent

neurodegenerative disorders, characterized by the

progressive loss of dopaminergic neurons in the

substantia nigra pars compacta (SNc) (1). The

pathological hallmarks of PD involve the accumulation
and oligomerization of a highly soluble unfolded

protein called alpha-synuclein within cells, which
disrupts the patient’s motor activity (2). However, the
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main pathogenic processes leading to neuronal loss

remain unclear (3). Despite extensive research, no

effective treatment has been discovered to prevent or
halt the neurodegenerative processes associated with

PD. However, several pharmacological compounds are
available to alleviate the clinical symptoms of the

disease. Among these, levodopa (L-DOPA), commonly

known as L-Dopa, is regarded as the gold standard for PD
treatment. The L-DOPA is transported to the brain,

where it is decarboxylated into dopamine, providing
symptomatic relief by increasing dopamine levels in the

striatum (4).

Apomorphine (APO) is a short-acting D1 and D2

receptor agonist that has demonstrated efficacy

comparable to L-Dopa. However, APO acts earlier and has

a shorter duration of action than L-Dopa (5). Recent

studies suggest that APO is associated with an earlier

onset of motor improvement and an earlier peak

response compared to L-Dopa in PD patients

experiencing "OFF" episodes (6). Several investigations

have been conducted on the effects of L-Dopa, both

alone and in combination with other chemical

compounds, in animal models of PD. Recent studies

have documented the therapeutic effects of L-Dopa-zinc

oxide nanoparticles (7), L-Dopa combined with

curcumin (8), Astragaloside IV, puerarin (9), metformin

(10), OAB-14 (11), and Pelargonium graveolens (12) in PD

animal models. However, most recent and previous

studies have primarily focused on behavioral

evaluations, with or without gene expression analysis.

2. Objectives

This comprehensive study aimed not only to

compare the effects of L-Dopa and APO on behavioral

and histopathological characteristics but also to

evaluate the levels of alpha-synuclein and tyrosine

hydroxylase (TH) proteins in a rotenone-induced PD

animal model. Rotenone is a neurotoxic pesticide

known to disrupt oxidative phosphorylation in

mitochondria (13). This disruption selectively damages

dopaminergic neurons within the nigrostriatal pathway

(14).

3. Methods

This study was conducted in accordance with the

animal care guidelines and was approved by the

Biomedical Research Ethics Committee of Tarbiat

Modares University (ethical No:

IR.MODARES.REC.1400.177). Thirty female Wistar rats

were randomly divided into five groups (n = 6): Model,

model + L-Dopa, model + APO, vehicle (DMSO), and

control groups (Figure 1).

On day 28 following rotenone injection, the APO

group received intraperitoneal injections of 1 mg/kg

APO hydrochloride for four weeks, administered on

alternate days (15). In the L-Dopa group, L-

Dopa/carbidopa tablets (250/25 mg) were dissolved in

water, and the rats were administered 12 mg/kg of the

solution via gavage twice daily for four weeks (16)

(further details on the methods are provided in

Appendix 1 in Supplementary File).

3.1. Behavioral Tests

To confirm the induction of the Parkinson's model,

the APO-induced rotation test was performed (5). The

bar test was used to evaluate catalepsy, a condition

characterized by impaired movement and posture

maintenance (17). Forepaw stride length measurement

was done to assess motor function impairments. Muscle

stiffness was analyzed by the Morpurgo test (5, 17).

3.2. Histochemical Analysis of the Brain Tissue

For histological analysis, at week 8 post-rotenone

injection, the rats were sacrificed, and their brains were

removed, fixed in 10% formalin, and embedded in
paraffin. The paraffin-embedded tissues were sectioned

for immunohistochemical (IHC) analysis of alpha-

synuclein and TH. Amyloid fibril deposition was studied

through Congo red (CR) staining. Four microscopic

images were taken from the left and right SNc areas of

each rat at 40X magnification, and the mean percentage

of immunoreactivity for alpha-synuclein was measured

using ImageJ software. Additionally, images were

captured from the aforementioned areas at 10X

magnification for all groups, and the total number of

TH-positive cells was counted on each side of the SNc

using ImageJ software. The mild to severe amyloid

formation was defined by an expert pathologist. When

the amyloid formation was less than 5% of the whole

section, 5 - 10%, and more than 10% at high

magnification, it was defined as mild, moderate, and

severe, respectively.

3.3. Statistical Analysis

Two-way ANOVA was used to analyze the data using

Prism version 10 software. The analysis was followed by

Tukey's post-hoc test. Data are presented as mean ±

standard deviation, and P < 0.05 was considered

statistically significant for all analyses.

4. Results
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Figure 1. CONSORT table: Study design

4.1. Behavioral Findings

4.1.1. Morpurgo Findings

There was no significant difference among the

groups in terms of Morpurgo findings.

4.1.2. Right Stride Length Findings

In the model, model + L-Dopa, and model + APO

groups, the right stride length was significantly

decreased compared to the control and vehicle groups

during the first week after rotenone injection. By the

third week, the right stride length in the model + L-Dopa

and model + APO groups remained significantly lower

than that of the control group. On the seventh week, the

right stride length in the model group was significantly

reduced compared to the control and vehicle groups.

However, in the model + L-Dopa and model + APO

groups, the right stride length showed a significant

increase compared to the model group, with no

significant difference observed when compared to the

control and vehicle groups. By the eighth week, the right

stride length in the model and model + L-Dopa groups

was significantly reduced compared to the vehicle

group. In contrast, the model + APO group exhibited a

significant increase in right stride length compared to

the model group. Notably, the right stride length in the

model + L-Dopa group was significantly lower than that

in the model + APO group during the eighth week

(Figure 2A). The significance of the differences is
presented in table 1 in Appendix 1 in Supplementary File.

4.1.3. Left Stride Length Findings

In the model, model + L-Dopa, and model + APO

groups, the left stride length was significantly decreased

compared to the control and vehicle groups in the first

week post-rotenone injection. The model group also

showed a significantly lower left stride length than the

vehicle group in the seventh and eighth weeks (Figure

2B). The significance of the differences is presented in

table 2 in Appendix 1 in Supplementary File. The

differences among the groups at other time points were

not significant.

4.1.4. Stride Width Findings

No significant differences in stride width were

observed among the groups at any time point (P > 0.05)

(Figure 2C).

https://brieflands.com/articles/jrps-162472
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Figure 2. The right stride length (A), the left stride length (B), the stride width (C), and the bar test (D) in various groups over the course of eight weeks (four weeks pretreatment
and four weeks post-treatment); all significant differences between the various groups at all time points are presented in tables 1 - 3 (in Supplementary File) in the supporting
information. No significant differences in stride width were observed among the groups at any time point (all data are presented as mean ± standard deviation; n = six animals
in each group).

4.1.5. Bar Test Findings

There was no significant difference among the

groups in terms of bar scores in the first week of the

study. A significant increase in the bar score was found
in the model groups compared to the control and

vehicle groups in the second week. The bar score was

significantly higher in the model + APO group than in

the control groups in the second week. The bar score

was also significantly higher in the model, model + APO,
and model + L-Dopa groups than in the control groups

in the third week. In the fourth week, the bar score of

the control group was significantly lower than those of

the model, model + APO, and model + L-Dopa groups.

There was a significant difference between the control
and model groups in terms of the bar score in the fifth

week. The bar score was significantly higher in the

model and model + L-Dopa groups than in the control

and vehicle groups in the sixth week. Hence, the bar

score was also significantly lower in the model + APO

groups than in the model groups in the sixth week. In

the seventh and eighth weeks, the model groups

showed a higher bar score than those of the control and

vehicle groups. At these times, a significant decrease in

the bar score was seen in the model + APO group

compared to the model group (Figure 2D). The

significance of the differences is presented in table 3 in

Appendix 1 in Supplementary File.

4.2. Immunohistochemistry Findings

The mean percentage of alpha-synuclein expression

and the total number of TH-positive cells counted by

ImageJ software in the ipsilateral and contralateral SNc

of different groups are shown in Figure 3B and D,

respectively.

https://brieflands.com/articles/jrps-162472
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Figure 3. Immuno-reactivity for alpha-synuclein (A), and The mean percentage of alphasynuclein expression (B), and tyrosine hydroxylase (TH) (C) in various groups within
ipsilateral and contralateral areas of substantia nigra pars compacta (SNc); the brown colors (dark blue arrowhead) in A and the brown colors in C show immuno-reactivity for
alpha-synuclein, and TH immunohistochemical (IHC) staining respectively. The mean TH positive cells (D) were shown in various group within ipsilateral and contralateral areas
of SNc (*P < 0.05, **P < 0.01, ***P < 0.001, and ****P < 0.0001 illustrate comparison with control group; #P < 0.05, ##P < 0.01, ###P < 0.001, and ####P < 0.0001 illustrate
comparison with vehicle group; &P < 0.05 illustrate comparison with model + levodopa (L-Dopa) group; @P < 0.05, @@P < 0.01, and @@@P < 0.001 illustrate comparison of
ipsilateral SNc with contralateral SNc in each group. All data presented as mean ± standard deviation; n = six animals in each group).

The mean percentage of alpha-synuclein protein

expression in both ipsilateral and contralateral SNc

regions showed no significant differences between the

control and vehicle groups. However, the mean

expression of alpha-synuclein protein in both ipsilateral

and contralateral SNc regions was significantly higher

in the model and model + APO groups compared to the

control and vehicle groups (P < 0.05). Although the

mean expression of alpha-synuclein protein in the

ipsilateral SNc of the model + L-Dopa group was

significantly increased compared to the ipsilateral SNc

of the control and vehicle groups (P < 0.01), the mean

expression of alpha-synuclein in the contralateral SNc

was not significantly different among the model + L-

Dopa, control, and vehicle groups (P > 0.05).

Furthermore, the mean expression of alpha-synuclein

protein in the ipsilateral SNc of the model + L-Dopa

group was significantly lower compared to the model

and model + APO groups (P < 0.05). In addition, the

mean expression of alpha-synuclein within the

ipsilateral SNc of the model and model + APO groups

was significantly increased compared to the

contralateral SNc of the model and model + APO (P <

0.01). Hence, there was no significant difference

between the ipsilateral and contralateral SNc of the

model + L-Dopa in terms of the mean percentage of

alpha-synuclein protein expression (Figure 3B). The

microscopic images of the immune-stained tissue

sections for alpha-synuclein are shown in Figure 3A.

The contralateral and ipsilateral SNc of the control

and vehicle groups showed no significant difference in

terms of TH-positive cells (P > 0.05). The TH-positive cells

inside the contralateral SNc in all groups were not

significantly different (P > 0.05); however, the TH-

positive cells within the ipsilateral SNc of the model,

model + L-Dopa, and model + APO groups were

significantly decreased compared to the control and

vehicle groups (P < 0.05) (Figure 3D). The microscopic

images of the immune-stained tissue sections for TH are

shown in Figure 3C.

4.3. Congo Red Findings

No amyloid deposits were formed in the

contralateral and ipsilateral SNc of the control and

vehicle groups. A severe deposition of amyloids was

observed in the ipsilateral SNc of the model and model +

APO groups, as well as in the contralateral SNc of the

https://brieflands.com/articles/jrps-162472
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Figure 4. Congo red (CR) staining indicating deposition of amyloids fibril formation (dark blue arrowhead) in various groups within ipsilateral and contralateral areas of
substantia nigra pars compacta (SNc).

model group. A moderate deposition of amyloids was

found in the ipsilateral SNc of the model + L-Dopa

group. There was mild deposition of amyloids in the

contralateral SNc of the model + L-Dopa and model +

APO groups (Figure 4).

5. Discussion

Among the available treatments, L-DOPA and APO

administration are widely used for managing PD. This

study provides a comparative analysis of the therapeutic

effects of L-DOPA and APO on behavioral and

histopathological changes, as well as the expression of

alpha-synuclein and TH, in a rotenone-induced PD rat

model. In rat models of PD, the duration of studies

varies according to the specific model employed and the

research objectives. Some investigations utilize 8 or 16

days after PD induction (18), while others consider 4

weeks or more after PD induction to assess the effects of

pharmacological interventions (19). However, in this

study, the animals were investigated for 4 weeks post-PD

induction.

The absence of differences between the treatment

groups (APO and L-Dopa) and the control group in terms

of right stride length, a motor function indicator,

during weeks five to eight post-induction suggests that

both treatments effectively improved the rotenone-

induced impairment in right stride length. Conversely,

the left stride length remained unaffected from the

second week post-induction through the treatment

period. A significant increase in bar scores, indicative of

catalepsy (20), was observed in all groups compared to

the control group during the second week following PD

induction. By the fifth week post-induction,

corresponding to one week after treatment initiation,

the elevated bar scores in the model and treatment

groups, compared to the control group, suggest that

none of the treatments effectively improved bar scores

within this timeframe. However, the lower bar scores in

the model + APO group compared to the model group

during weeks six to eight suggest that APO

administration may be a more effective strategy for

addressing catalepsy in the PD model. The APO is

commonly used in the management of PD to alleviate

motor fluctuations and reduce “off” episodes. The APO

may improve overall motor function, potentially

mitigating symptoms associated with cataleptic states

(21). In this study, APO treatment significantly improved

performance in the bar test as a measure of cataleptic

behavior, yet failed to improve stride length, a

parameter of ambulatory gait patterns in rats. These

findings suggest that APO could selectively improve

certain motor deficits associated with PD, but not

others. Considering that catalepsy predominantly arises

from impaired dopaminergic signaling, the observed

effects of APO as a dopamine agonist align with its

expected pharmacodynamic properties. In contrast,

locomotor parameters like stride length are modulated

by more integrative neural pathways encompassing not

only dopaminergic circuits but also cerebellar, spinal,

and sensorimotor networks (22, 23). This differential

response underscores the heterogeneous

neurophysiological basis of motor impairments in PD.

Recent studies have demonstrated that L-Dopa

effectively alleviates behavioral deficits in mice with PD

https://brieflands.com/articles/jrps-162472
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symptoms (24). Although L-Dopa and APO are the two

most effective therapies for PD in a rat model (7, 25), it

remains unknown whether these drugs have any effect

on the formation of pathogenic abnormal α-synuclein

in vivo. There is a discrepancy in the reported efficacy of

L-Dopa treatment in SNc-lesioned rodents

overexpressing α-synuclein. While acute L-Dopa

treatment has been found to possess rewarding

properties in rodents overexpressing α-synuclein in

rodent PD models (26), other studies indicate that L-

Dopa fails to condition a rat model of PD (27). It has been

recently shown that L-DOPA regulates α-synuclein

accumulation in a 1-methyl-4-phenyl-1,2,3,6-

tetrahydropyridine non-human primate model of PD

(28). Conversely, APO has been shown to inhibit α-

synuclein fibrillation, leading to the formation of large

oligomeric species in primary cell cultures (29). In this

study, the administration of L-Dopa and APO did not

alleviate the overexpression of α-synuclein induced by

rotenone in the ipsilateral and contralateral regions of

the SNc in the rat PD model.

Loss of TH in rotenone-induced rat models of PD has

been widely documented (30, 31). Rotenone has been

well established to reduce TH-positive neurons and

dopamine receptor-expressing neurons throughout the

central nervous system (CNS) (32). Interestingly, drugs

that inhibit TH have demonstrated protective effects

against neurodegeneration in various animal models of

PD (33). In this study, similar immunoreactivity for TH

was observed in the contralateral SNc across all groups.

However, in the ipsilateral SNc, a significant reduction

in TH-positive cells was observed in the model, model +

L-Dopa, and model + APO groups compared to the

control group, indicating that neither treatment was

able to restore the decreased TH-positive cell population

in the PD model.

This result contrasts with the findings of a previous

study reporting elevated TH levels in the striatum and

substantia nigra following L-DOPA treatment in a mouse

model of PD (24). In that study, PD was induced by

administering 1-methyl-4-phenyl-1,2,3,6-

tetrahydropyridine at a dose of 25 mg/kg/day directly

into the substantia nigra and striatum, followed by L-

DOPA treatment at 8 mg/kg/day. The discrepancy

between the findings may be attributed to differences in

PD induction methods, L-DOPA dosing regimens, and

the duration of the experimental protocols.

Amyloid-like deposits have been observed in the

brains of rat models of PD induced by rotenone

injection. It has been shown that rotenone exposure can

lead to amyloidogenic changes, including the formation

of amyloid fibrils and protein aggregates in regions like

the SNc (34, 35). The severe amyloid deposition observed

in the ipsilateral SNc of the model and model + APO

groups, along with the moderate deposition of amyloid

in the ipsilateral SNc of the model + L-Dopa group,

suggests that L-Dopa is more effective than APO in

reducing amyloid formation in the ipsilateral region of

the PD model. Furthermore, the severe beta-amyloid

formation in the contralateral SNc of the model group,

compared to the mild amyloid deposition in the

contralateral SNc of the model + L-Dopa and model +

APO groups, indicates that both treatment approaches

can reduce amyloid deposition.

Amyloid reduction may occur without changes in the

levels of TH and alpha-synuclein due to a few potential

mechanisms. One possibility is that the reduction in

amyloid is due to the removal or destabilization of pre-

existing oligomers or seeds, which are the initial

nucleation sites for amyloid fibril formation, rather

than a change in the overall levels of alpha-synuclein

(36). Moreover, other factors like changes in the

conformation or modification of alpha-synuclein, or

altered amyloid fibril formation kinetics, could lead to a

decrease in amyloid deposition without affecting the

total amount of alpha-synuclein (37). In addition,

increased oxidative stress has been shown to accelerate

the aggregation of alpha-synuclein into amyloid fibrils

(38). However, further investigation is needed to unravel

the exact mechanism of the reduction of amyloid

deposition by the administration of L-Dopa/APO in the

developed PD model.

In summary, while L-DOPA and APO are among the

most effective drugs for the symptomatic treatment of

PD in humans, in this study, their administration led to

only partial improvement in the behavioral

abnormalities and some levels of reduction in amyloid

deposition in the contralateral SNc region. The

differences in drug effects between humans and animal

models arise from a complex interplay of biological,

physiological, and methodological factors. Notably,

absorption, distribution, metabolism, and excretion

(ADME) profiles can vary significantly across species

(39). For example, a drug may be rapidly metabolized in

rodents but exhibit prolonged retention in humans.

Additionally, differences in receptor binding affinities

and downstream signaling pathways may influence

both drug efficacy and toxicity (40). Another critical

factor is the method of animal model development. In

this case, the model was chemically induced, which fails

to fully replicate the multifactorial and progressive

nature of human pathophysiology.

5.1. Conclusions

https://brieflands.com/articles/jrps-162472
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Although APO and L-Dopa are among the most

conventional treatments for PD, they could only

improve some behavioral changes of PD in the

rotenone-induced rat model of PD. Both treatment

approaches could reduce amyloid deposition in the

contralateral SNc of the PD model without affecting the

alpha-synuclein and TH levels. These findings

underscore a key translational gap, highlighting the

limitations of animal models in drug development.

Although animal models have played a pivotal role in

drug development for decades, they may fail to reliably

predict clinical outcomes in humans. The limitations of

animal testing stem from a combination of interspecies

biological differences and artificially controlled

experimental conditions.

Supplementary Material

Supplementary material(s) is available here [To read
supplementary materials, please refer to the journal
website and open PDF/HTML].
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