

Big Data and Machine Learning in Telemedicine: Implications for Nursing Practice, Patient Safety, and Care Quality

Fatemeh Rabeifar ^{1,*}

¹ Department of Computer Engineering, ShQ.C., Islamic Azad University, Shahr-e Qods, Iran

*Corresponding Author: Department of Computer Engineering, ShQ.C., Islamic Azad University, Shahr-e Qods, Iran. Email: fa.rabeifar@iau.ac.ir

Received: 14 September, 2025; Revised: 21 December, 2025; Accepted: 5 January, 2026

Abstract

Context: Telemedicine has become a central component of modern healthcare, enabling remote and accessible care delivery through digital innovations. The integration of big data analytics (BDA) and Machine learning (ML) offers significant potential to enhance nursing practice, strengthen patient safety, and improve care quality. However, the existing literature on their applications remains fragmented, underscoring the need for a comprehensive synthesis.

Objectives: This review aims to systematically examine how BDA and ML are utilized in telemedicine to support nursing practice, promote patient safety, and enhance care quality. It further identifies key challenges and outlines future directions for the ethical and sustainable integration of these technologies.

Evidence Acquisition: This systematic review was conducted using English and Persian peer-reviewed articles, systematic reviews, and grey literature published between Jan 2015 and April 2025 (PRISMA).

Data Sources: The databases searched included PubMed, CINAHL, Scopus, and IEEE Xplore. Eligible studies addressed the application of BDA or ML in telemedicine concerning nursing workflows, patient safety, or care quality. Out of 623 screened records, 47 studies met inclusion criteria and were thematically analyzed.

Results: The review indicates that BDA and ML are widely applied in predictive analytics for early deterioration detection, personalized care planning, and continuous remote monitoring with automated alerts. These technologies assist nurses by optimizing workflows, reducing administrative tasks, and enhancing evidence-based decision-making. Reported benefits include fewer medication errors, timely interventions, and improved monitoring of high-risk patients. Nevertheless, barriers such as privacy and security issues, algorithmic bias, interoperability challenges, and the need for enhanced digital literacy among nurses persist.

Conclusions: The BDA and ML hold transformative potential to advance telemedicine by empowering nurses with actionable, data-driven insights that improve patient safety and care quality. Achieving sustainable integration will require interdisciplinary collaboration, ethical artificial intelligence (AI) frameworks, robust data governance, and targeted educational initiatives to ensure equitable and effective implementation. Future implementations should prioritize nurse-led AI governance and ongoing digital competency training programs.

Keywords: Big Data Analytics, Machine Learning, Telemedicine, Nursing Informatics, Patient Safety, Systematic Review

1. Context

In recent years, telemedicine has emerged as a transformative force in the healthcare sector, enabling remote diagnosis, treatment, and monitoring of patients regardless of geographic limitations (1, 2). For nurses, these technologies enable early detection of patients' critical conditions, reduce medication errors,

and support clinical decision-making; as a result, the quality of care and the efficiency of nursing processes are enhanced (2-4). As global healthcare systems face rising demands, resource shortages, and the need for timely interventions, intelligent telemedicine systems based on advanced technologies offer a promising solution (1, 5). The integration of big data and machine learning (ML) into telemedicine systems improves

efficiency and diagnostic accuracy while enabling the delivery of personalized healthcare services (6, 7). Big data provides massive volumes of health-related information, while ML algorithms analyze this data to uncover hidden patterns, detect anomalies, and support clinical decision-making (7, 8). This combination not only improves the quality of care but also optimizes resource allocation and reduces operational costs (8, 9). Despite its great potential, the implementation of these technologies brings challenges such as data security, privacy concerns, and the need for robust infrastructure (10-12). This paper aims to explore the intersection of big data and ML in the context of intelligent telemedicine, outlining current advancements, practical applications, and existing barriers to adoption. The search strategy is detailed in [Table 1](#).

2. Objectives

We decided to conduct a systematic and comprehensive investigation of the impact of big data analytics (BDA) and ML in telemedicine to support nursing practice, promote patient safety, and enhance care quality. The existing challenges and proposed solutions for the ethical and sustainable integration of these technologies into nursing clinical environments have also been discussed.

3. Methods

3.1. Machine Learning

3.1.1. Definitions, Algorithms, and Applications in Healthcare

Machine learning is a branch of artificial intelligence (AI) that focuses on the development of algorithms and statistical models that enable computers to learn from and make predictions or decisions based on data (13-22). Unlike traditional programming, where explicit instructions are given, ML systems identify patterns and improve their performance over time without being explicitly programmed for each task (22-24). There are three main types of ML (1, 25-27):

-Supervised learning: Where the algorithm learns from labeled training data (e.g., disease diagnosis based on patient records). Nurses play a key role by providing labeled data and clinical insights to train accurate algorithms.

-Unsupervised learning: Where the algorithm discovers hidden patterns in unlabeled data (e.g., clustering patients with similar symptoms). Nurses contribute by interpreting patterns and clusters identified by the algorithm to inform clinical decisions.

-Reinforcement learning: Where the system learns by receiving rewards or penalties based on its actions (used in optimizing treatment protocols). Nurses help guide algorithms by providing feedback on actions and outcomes to optimize clinical decision-making.

In healthcare, ML has a wide range of applications, including early disease detection, predictive analytics, personalized medicine, medical image analysis, drug discovery, and remote patient monitoring (28, 29). For example, ML models can analyze medical images to detect tumors with high accuracy, or predict patient deterioration in ICUs in real time (30, 31). The ability of ML to process large volumes of data and generate actionable insights makes it an essential tool in building intelligent, data-driven healthcare systems (32-34). Despite its transformative potential, challenges such as data quality, algorithm transparency, and ethical considerations must be carefully addressed to ensure safe and effective implementation in clinical settings (33, 35, 36).

3.2. The Role of Machine Learning in Telemedicine

In telemedicine, ML is applied in several key areas (19, 33, 36-40).

-Remote diagnosis: The ML models can analyze patient symptoms, images, or video data to assist healthcare providers in diagnosing conditions such as skin diseases, respiratory issues, or eye disorders via teleconsultation platforms.

-Predictive analytics: By identifying patterns in patient history and real-time data, ML can predict disease progression or the risk of complications, allowing for early intervention and proactive care.

-Virtual assistants and chatbots: The ML powers intelligent virtual agents that can handle initial consultations, triage symptoms, and provide guidance, improving efficiency and accessibility in telehealth systems.

-Personalized treatment plans: The ML enables the tailoring of treatment recommendations based on individual patient data, lifestyle, and genetics – even when care is delivered remotely.

Nurses face challenges, including ensuring data quality and maintaining patient safety.

3.3. Priority Clinical Use-Cases

3.3.1. Nursing Applications in Intelligent Telemedicine Systems

The integration of BDA and ML into telemedicine is not only transforming diagnosis and treatment but also

Table 1. Mapping Machine Learning Use-Cases to Nursing Roles, Patient Safety, and Cost Outcomes

ML Use-Case	Nursing Roles	Patient Safety Impact	Cost and Outcome Benefits
Diabetes management	Remote monitoring, patient education, early intervention	Reduced hypoglycemia/hyperglycemia events	Lower emergency visits, improved glycemic control
Heart failure monitoring	Alert triage, care coordination, patient counseling	Early detection of decompensation, reduced readmissions	Decreased hospital stays, optimized medication use
COPD exacerbation prediction	Symptom monitoring, inhaler/O ₂ adherence coaching	Reduced exacerbations and acute care visits	Lower hospitalization costs, improved patient QoL
Wound care assessment	Image capture, wound evaluation, care planning	Early infection detection, standardized wound care	Faster healing, fewer complications, reduced specialist visit
Alert fatigue management	Customize alert responses, prioritize clinical actions	Avoid missed critical alerts, reduce cognitive overload	Increased provider efficiency, reduced error rates
Personalized care plans	Use AI insights for tailored patient education and follow-up	Improved adherence and outcomes	Enhanced patient engagement, reduced complications

Abbreviations: ML, machine learning; COPD, chronic obstructive pulmonary disease; AI, artificial intelligence.

redefining the role of nurses across various clinical settings. Below are key use-cases that illustrate how these technologies support nursing workflows, improve patient safety, and enhance care quality (3, 4, 41-47).

3.3.2. Diabetes Management

3.3.2.1. Use of Artificial Intelligence

Machine learning algorithms analyze continuous glucose monitoring (CGM) data, dietary inputs, and medication adherence to predict glycemic events (e.g., hypoglycemia):

Nursing role: Remote patient monitoring and education via telehealth platforms; early intervention based on predictive alerts from AI systems; counseling patients on lifestyle changes using personalized data.

Workflow effects: Reduction in emergency visits due to early detection; streamlined triage for high-risk patients, improved efficiency in follow-up scheduling and documentation.

3.3.3. Heart Failure Monitoring

3.3.3.1. Use of Artificial Intelligence

Predictive models use wearable device data (e.g., heart rate, weight, fluid retention) to anticipate decompensation episodes:

Nursing role: Monitoring dashboards and escalating alerts to cardiology teams; educating patients on signs/symptoms of worsening Heart Failure (HF); adjusting care plans collaboratively with physicians based on AI insights.

Workflow effects: Reduced readmission rates; enhanced coordination between home care and

specialist teams; improved timeliness in medication adjustments.

3.3.4. Chronic Obstructive Pulmonary Disease

3.3.4.1. Use of Artificial Intelligence

ML algorithms analyze spirometry, oxygen saturation, and patient-reported symptoms to detect early signs of exacerbation:

Nursing role: Guiding patients on inhaler use and oxygen therapy adherence; remote coaching and breathing technique reinforcement; triaging patients based on AI-generated risk scores.

Workflow effects: Fewer acute care visits and hospitalizations; efficient use of teleconsultations for symptom escalation; empowerment of patients through data-informed self-care.

3.4. Inclusion Criteria

-Peer-reviewed articles in English and Persian between 2015 and 2025.

-Studies focusing on the application of big data and/or ML in telemedicine.

-Research explicitly addressing nursing practice, patient safety, or care quality.

-Empirical studies (qualitative, quantitative, or mixed methods), systematic reviews, or implementation reports.

3.5. Exclusion Criteria

-Editorials, opinion papers, and non-peer-reviewed sources.

-Studies not involving telemedicine or not integrating big data/ML.

-Articles with no mention of nursing or patient-centered outcome.

These technologies enable early detection of patients' critical conditions, reduce medication errors, and support clinical decision-making; as a result, the quality of care and the efficiency of nursing processes are enhanced.

4. Results

4.1. Common Machine Learning Algorithms for Telemedicine and Their Applications

4.1.1. Decision Tree

Classifying patient symptoms and recommending appropriate treatment paths in teleconsultation systems (48-50). Example: Determining whether a patient requires urgent in-person care or can be treated with medication remotely.

4.1.2. Random Forest

Predicting hospital readmission or risk of chronic conditions using historical health data (51, 52). Example: Forecasting kidney failure risk in diabetic patients via remote monitoring.

4.1.3. Support Vector Machine

Diagnosing diseases from medical images shared through telemedicine platforms (e.g., dermatology, radiology) (53-55). Example: Identifying potentially cancerous skin lesions from patient-uploaded images.

4.1.4. Artificial Neural Networks and Deep Neural Networks

Analyzing complex data such as ECG signals, heart sounds, or patient speech (33, 56). Example: Detecting arrhythmia from ECG data collected via wearable devices.

4.1.5. Naïve Bayes

Classifying patient questions and providing automated responses via medical chatbots (57, 58). Example: Determining whether a patient's question is about symptoms, medication, nutrition, or emergencies.

4.1.6. K-Nearest Neighbors

Suggesting similar treatments for patients with comparable medical histories and symptoms (59-61).

Example: Recommending medication based on successful treatments in similar cases.

4.2. The Role of Big Data in Relation to Machine Learning Algorithms in Telemedicine

Big data serves as the backbone of ML-driven telemedicine systems. The ML algorithms require massive amounts of diverse, accurate, and well-structured data to function effectively – and big data naturally fulfills this need (41, 62). In telemedicine, data is collected from a wide range of sources including electronic health records (EHRs), medical imaging, physiological signals (such as ECG), wearable devices, patient-reported outcomes, chatbots, and prescription histories. This massive volume of information forms the foundation for training, validating, and optimizing ML models (63, 64). For example: Deep neural networks used for automated disease detection require millions of medical images to learn accurately (33, 58). Classification and decision-making models for predicting hospital admission or symptom categorization rely on both historical and real-time patient data (19, 61). In predictive analytics, big data helps identify early signs of chronic diseases like diabetes or HF (17, 42, 46).

4.3. Integration of Machine Learning and Big Data in Telemedicine

The integration of ML and big data in telemedicine marks a significant step toward intelligent, efficient, and personalized healthcare delivery. Individually, ML enables systems to learn from data and make predictions or decisions, while big data provides access to vast and diverse health-related datasets. When combined, these technologies create powerful telemedicine systems capable of real-time analysis, predictive modeling, and decision support (63-65). For example, ML algorithms can process real-time data collected from wearable devices and remote monitoring tools, detecting anomalies or signs of health deterioration. Big data supplies the historical and contextual information that strengthens the accuracy and relevance of such predictions. Together, they support early diagnosis, personalized treatment plans, and proactive patient care – all delivered remotely (Table 1).

4.4. Ethics, Privacy, and Equity in Intelligent Telemedicine Systems

The integration of BDA and ML into telemedicine brings tremendous opportunities but also significant ethical, privacy, and equity challenges. Addressing these

issues is essential to safeguard patient rights, ensure trust, and promote fair access to care (46, 63, 65).

4.4.1. Informed Consent

-Patients must be fully informed about the types of data collected, purposes of use, and potential risks and benefits associated with AI-driven telemedicine.

-Consent should be explicit, ongoing, and revisited especially when new analytics or ML models are introduced.

-Special attention is needed for vulnerable populations, including older adults, cognitively impaired patients, or those with limited digital literacy.

4.4.2. Data Minimization and Security

-Data collection should be limited to the minimum necessary to achieve clinical objectives, reducing unnecessary exposure.

-Robust cybersecurity measures (encryption, secure transmission, access controls) are mandatory to protect sensitive health information.

-Telemedicine platforms must comply with relevant regulations (e.g., HIPAA, GDPR) and undergo regular security audits.

5. Discussion

5.1. Workflow and Evaluation in Intelligent Telemedicine Systems

The successful deployment of BDA and ML in telemedicine critically depends on well-designed workflows and continuous evaluation to maximize patient safety, care quality, and operational efficiency (1, 33, 41, 42, 57).

5.1.1. Human-in-the-Loop

-HITL systems integrate human judgment with AI-driven decision-making to ensure contextual understanding, ethical oversight, and clinical validation.

-Nurses and clinicians review and interpret AI-generated alerts or recommendations before acting, maintaining ultimate responsibility.

-This collaboration enhances trust, reduces errors, and ensures AI serves as a support tool rather than a replacement for clinical expertise.

-This approach reinforces digital trust by keeping human oversight central to automated decision-making.

5.1.2. Alert Fatigue Management

-Excessive or irrelevant alerts can overwhelm healthcare providers, causing desensitization and increased risk of missing critical warnings.

-Strategies to manage alert fatigue include:

-Prioritizing alerts by severity and clinical relevance.

-Customizing alert thresholds based on patient profiles.

-Implementing tiered alert systems (e.g., informational, warning, critical).

-Integrating AI-driven filtering to reduce false positives.

-Effective management preserves provider attention and improves response times.

-Nurses play a crucial role in configuring and prioritizing AI-generated alerts to maintain clinical relevance.

5.1.3. Outcome Key Performance Indicators

Regular measurement of KPIs is essential to evaluate the impact of intelligent telemedicine on patient outcomes and workflow. Examples of relevant KPIs include:

-Reduction in hospital readmission rates.

-Time-to-intervention after AI alert.

-Patient adherence to care plans.

-Nurse workload and documentation time.

-Patient satisfaction and engagement scores.

-Continuous KPI monitoring enables iterative improvements in AI models and care protocols.

5.1.4. Cost-Benefit Perspective

5.1.4.1. Costs

Investments include technology infrastructure, training, ongoing maintenance, and potential workflow redesign. Early adopters may face upfront costs, but long-term savings arise from reduced complications and optimized resource use.

5.1.4.2. Benefits

Improved clinical outcomes, reduced emergency visits and hospitalizations, enhanced nursing efficiency, and higher patient satisfaction. Ultimately, a cost-benefit perspective grounded in long-term patient outcomes and system resilience will support equitable, scalable telemedicine adoption. [Figure 1](#) illustrates the integrated workflow architecture, highlighting data

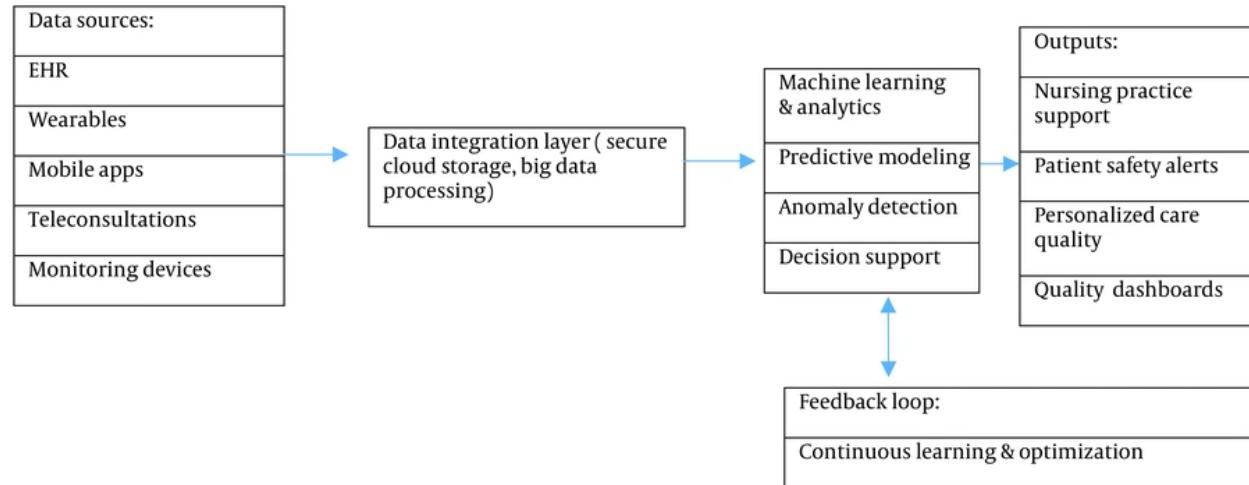


Figure 1. System and workflow architecture for intelligent telemedicine

inputs, analytical layers, and feedback mechanisms for continuous optimization.

This section highlights visual wound assessment with AI support, automated infection-risk alerts, and remote dressing protocols to improve monitoring, accessibility, and adherence. Nurses play a central role in patient education, triage, and translating remote assessments into clinical actions (Figure 1).

The cost-benefit analysis should report specific KPIs including 30-day readmission rate (%), number of avoided emergency visits per 100 patients, patient adherence rate (%), patient satisfaction score (Likert 1-5), and nursing workload (minutes per patient-day). Clearly defining these metrics and their measurement methods ensures reproducibility and comparability in clinical outcomes research.

Several future trends and opportunities are expected to shape this evolving field.

5.2. Enhanced Real-time Analytics

With the proliferation of Internet of Things (IoT) devices and wearable sensors, the volume of real-time health data will dramatically increase. The ML algorithms will evolve to process and analyze this data more efficiently, enabling instant diagnosis and timely intervention.

5.3. Explainable Artificial Intelligence

As ML models become more complex, there is growing emphasis on explainability to build trust among healthcare providers and patients. Explainable AI techniques will improve transparency, making it easier to understand, validate, and regulate ML-driven decisions in telemedicine.

5.4. Conclusions

The convergence of ML and big data in telemedicine marks a pivotal evolution toward intelligent, patient-centered healthcare. By combining the predictive power of ML algorithms with the vast, diverse datasets provided by big data, telemedicine can move beyond basic remote consultations toward intelligent, personalized, and proactive medical care. This integration allows for early disease detection, real-time patient monitoring, personalized treatment plans, and data-driven clinical decision-making — all while expanding access to care in underserved regions. As technology continues to advance, this synergy is expected to further transform healthcare systems worldwide, improving efficiency, reducing costs, and enhancing patient outcomes. However, to fully realize these benefits, challenges related to data privacy, algorithm transparency, and infrastructure must be carefully addressed. Ultimately, the fusion of ML and big data paves the way for a smarter, more equitable, and adaptive global healthcare ecosystem — one that continuously learns and evolves with the needs of patients in the digital era.

Footnotes

AI Use Disclosure: The authors declare that no generative AI tools were used in the creation of this article.

Authors' Contribution: Conceptualization, methodology, investigation, writing original draft, writing-editing, visualization, project administration, and formal analysis: F. R.

Conflict of Interests Statement: The author declares no conflict of interest.

Data Availability: The dataset presented in the study is available on request from the corresponding author during submission or after publication.

Funding/Support: The present study received no funding/support.

References

9. Rao Chinta PC. Predictive Analytics for Disease Diagnosis: A Study on Healthcare Data with Machine Learning Algorithms and Big Data. *J Cancer Sci.* 2025;10(1). <https://doi.org/10.13188/2377-9292.1000029>.
10. Rabeifar F, Radfar R, Toloie Eshlaghy A. Security in Telemedicine based IoT. *Health Manag Inform Sci.* 2021;8(3):200-9. <https://doi.org/10.30476/jhmi.2022.92061.1091>.
11. Javed H, El-Sappagh S, Abuhmed T. Robustness in deep learning models for medical diagnostics: security and adversarial challenges towards robust AI applications. *Artific Intell Rev.* 2024;58(1). <https://doi.org/10.1007/s10462-024-11005-9>.
12. Balandran A, Beji C, Bouvier F, Khalifa O, Evgeniou T, Ravaud P, et al. A scoping review of robustness concepts for machine learning in healthcare. *NPJ Digit Med.* 2025;8(1):38. [PubMed ID: 39824951]. [PubMed Central ID: PMC11742061]. <https://doi.org/10.1038/s41746-024-01420-9>.
13. Rabeifar F, Radfar R, Toloie Eshlaghy A. Cloud-Based Smart Telemedicine. *Int J Basic Sci Med.* 2022;7(3):96-7. <https://doi.org/10.34172/ijbsm.2022.17>.
14. Menagadevi M, Madian N, Thiagarajan D, Rajendran R. Smart medical devices: making healthcare more intelligent. In: Tripathi SL, Balas VE, Mahmud M, Banerjee S, editors. *Machine Learning Models and Architectures for Biomedical Signal Processing*. London, UK: Academic Press; 2025. p. 487-501. <https://doi.org/10.1016/b978-0-443-22158-3.00020-x>.
15. Yang Y, Siu K, Xie W, Sun Y. Smart Health. *J Organiz End User Comput.* 2022;34(1):1-14. <https://doi.org/10.4018/joeuc.308814>.
16. Manickam P, Mariappan SA, Murugesan SM, Hansda S, Kaushik A, Shinde R, et al. Artificial Intelligence (AI) and Internet of Medical Things (IoMT) Assisted Biomedical Systems for Intelligent Healthcare. *Biosensors.* 2022;12(8). [PubMed ID: 35892459]. [PubMed Central ID: PMC9330886]. <https://doi.org/10.3390/bios12080562>.
17. Hassan MK, El Desouky AI, Elghamrawy SM, Sarhan AM. Big Data Challenges and Opportunities in Healthcare Informatics and Smart Hospitals. In: Hassanien AE, Elhosny M, Ahmed SH, Singh AK, editors. *Security in Smart Cities: Models, Applications, and Challenges*. Cham, Switzerland: Springer; 2019. p. 3-26. https://doi.org/10.1007/978-3-030-01560-2_1.
18. Jiwani N, Gupta K, Whig P. Machine Learning Approaches for Analysis in Smart Healthcare Informatics. In: Gupta K, Sharma SK, Hassanien AE, editors. *Machine Learning and Artificial Intelligence in Healthcare Systems*. Boca Raton, USA: CRC Press; 2022. p. 129-54. <https://doi.org/10.1201/9781003265436-6>.
19. Ismail Y, Seriga Gancy E. A Review of Evolution and Applications of Telemedicine in Healthcare. *J Pharma Insights Res.* 2025;3(2):43-52. <https://doi.org/10.69613/nf7eh215>.
20. Blhaj KMS, Dhameria V, Muazeib AIM. The Role of Telemedicine in Digital Transformation Based on Patient Perceptions of Healthcare Accessibility and Efficiency. *Int J Nurs Info.* 2025;4(1):10-20. <https://doi.org/10.58418/ijjni.v4i1.131>.
21. Cut K, Al M, Nur F, Maulina D, Shabrina S. Telemedicine: Between Opportunities, Expectations, and Challenges in Health Development in Remote Areas of Indonesia. *Int J Law Soc Sci Human.* 2025;2(2):285-94. <https://doi.org/10.70193/ijllsh.v2i2.258>.
22. Alzahrani AA. A Comprehensive Review of Interoperability Challenges and Applications Beyond Cryptocurrencies. *Adv Artific Intell Machine Learn.* 2022;5(1):3356-72.
23. Pratap MS, Arulkumaran G. Machine Learning-Based Predictive Analytics for Health Diagnosis: A Case Study on Diabetes Prediction. *3rd International Conference on Inventive Computing and Informatics (ICICI 2025)*. Internet. IEEE; 2025. p. 500-5.
24. Soni N, Nigam N. Recent Advances in Artificial Intelligence and Machine Learning: Trends, Challenges, and Future Directions. *Int J Engineer Trends Appl.* 2025;12(1):9-12.

25. Schunke LC, Mello B, da Costa CA, Antunes RS, Rigo SJ, Ramos GO, et al. A rapid review of machine learning approaches for telemedicine in the scope of COVID-19. *Artif Intell Med.* 2022;129:102312. [PubMed ID: 35659388]. [PubMed Central ID: PMC9055383]. <https://doi.org/10.1016/j.artmed.2022.102312>.
26. Zobair KM, Sanzogni L, Houghton L, Islam MZ. Forecasting care seekers satisfaction with telemedicine using machine learning and structural equation modeling. *PLoS One.* 2021;16(9). e0257300. [PubMed ID: 34559840]. [PubMed Central ID: PMC8462681]. <https://doi.org/10.1371/journal.pone.0257300>.
27. Christopoulou SC. Machine Learning Models and Technologies for Evidence-Based Telehealth and Smart Care: A Review. *BioMedInformatics.* 2024;4(1):754-79. <https://doi.org/10.3390/biomedinformatics4010042>.
28. Yadav S, Bhole GP, Sharma A. Telemedicine using Machine Learning: A Boon. Emerging Computational Approaches in Telehealth and Telemedicine: A Look at The Post COVID-19 Landscape. *Landscape.* 2022;1:70.
29. Rahmaty M. Machine learning with big data to solve real-world problems. *J Data Analytics.* 2023;2(1):9-16. <https://doi.org/10.59615/jda.2.1.9>.
30. Ray S. A Quick Review of Machine Learning Algorithms. 2019 *International Conference on Machine Learning, Big Data, Cloud and Parallel Computing (COMITCon).* Piscataway, USA: IEEE; 2019. p. 35-9.
31. Sarker IH. Machine Learning: Algorithms, Real-World Applications and Research Directions. *SN Comput Sci.* 2021;2(3):160. [PubMed ID: 33778771]. [PubMed Central ID: PMC7983091]. <https://doi.org/10.1007/s42979-021-00592-x>.
32. Ferdous M, Debnath J, Chakraborty NR. Machine Learning Algorithms in Healthcare: A Literature Survey. 2020 *11th International Conference on Computing, Communication and Networking Technologies (ICCCNT).* Internet. IEEE; 2020. p. 1-6.
33. Awasthi R, Ramachandran SP, Mishra S, Mahapatra D, Arshad H, Atreja A, et al. Artificial Intelligence in Healthcare: 2024 Year in Review. *MedRxiv.* 2025;Preprint. <https://doi.org/10.1101/2025.02.26.25322978>.
34. Ahmed W. The Role of Machine Learning and Deep Learning in Revolutionizing Healthcare: A Review. *Prem J Artific Intell.* 2025;3:100010. <https://doi.org/10.70389/pjai.100010>.
35. Husain G, Mayer J, Bekbolatova M, Vathappallil P, Matalia M, Toma M. Machine learning for medical image classification. *Acad Med.* 2024;1(4). <https://doi.org/10.20935/AcadMed7444>.
36. Sadr H, Nazari M, Khodaverdian Z, Farzan R, Yousefzadeh-Chabok S, Ashoobi MT, et al. Unveiling the potential of artificial intelligence in revolutionizing disease diagnosis and prediction: a comprehensive review of machine learning and deep learning approaches. *Eur J Med Res.* 2025;30(1):418. [PubMed ID: 40414894]. [PubMed Central ID: PMC12105400]. <https://doi.org/10.1186/s40001-025-02680-7>.
37. Kadum SY, Salman OH, Taha ZK, Said AB, Ali MA, Qassim QS, et al. Machine learning-based telemedicine framework to prioritize remote patients with multi-chronic diseases for emergency healthcare services. *Network Model Analysis Health Info Bioinfo.* 2023;12(1). <https://doi.org/10.1007/s13721-022-00407-w>.
38. Rashid MM. A Machine Learning Approach to Predicting Users' Intention to Adopt Telemedicine in Healthcare. *J Sci Technol Res.* 2025;6(1):30-7. [https://doi.org/10.59738/jstr.v6i1.24\(30-37\).famf2507](https://doi.org/10.59738/jstr.v6i1.24(30-37).famf2507).
39. Jamal A. Effect of Telemedicine Use on Medical Spending and Health Care Utilization: A Machine Learning Approach. *AJPM Focus.* 2023;2(3):100127. [PubMed ID: 37790663]. [PubMed Central ID: PMC10546505]. <https://doi.org/10.1016/j.focus.2023.100127>.
40. Prabowo A. The Future of Digital Health: Integrating AI, Big Data, and Telemedicine in Global Healthcare. *Proceed Int Conference Innov Sci Technol Educ Children Health.* 2025;5(1):146-57.
41. Wang B, Shi X, Han X, Xiao G. The digital transformation of nursing practice: an analysis of advanced IoT technologies and smart nursing systems. *Front Med.* 2024;11:1471527. [PubMed ID: 39678028]. [PubMed Central ID: PMC1638746]. <https://doi.org/10.3389/fmed.2024.1471527>.
42. Bairagi VK. Big Data Analytics in Telemedicine: A Role of Medical Image Compression. In: García Márquez FPLB, editor. *Big Data Management.* Cham, Switzerland: Springer International Publishing; 2017. p. 123-60. https://doi.org/10.1007/978-3-319-45498-6_7.
43. Pasipoularides A. COVID-19, Big Data: how it will change the way we practice Medicine. *QJM.* 2021;114(5):293-5. [PubMed ID: 33151333]. [PubMed Central ID: PMC7665728]. <https://doi.org/10.1093/qjmed/hcaa299>.
44. Gezimati M, Singh G. Forecasting Healthcare 5.0 Driven IoMT for a Seamless Continuum of Care. *IEEE Access.* 2025;13:118163-84. <https://doi.org/10.1109/access.2025.3583884>.
45. Jalali MS, Landman A, Gordon WJ. Telemedicine, privacy, and information security in the age of COVID-19. *J Am Med Inform Assoc.* 2021;28(3):671-2. [PubMed ID: 33325533]. [PubMed Central ID: PMC7798938]. <https://doi.org/10.1093/jamia/ocaa310>.
46. Pramesha Chandrasiri GA, Halgamuge MN, Subhash Jayasekara C. A Comparative Study in the Application of IoT in Health Care: Data Security in Telemedicine. In: Mahmood Z, editor. *Security, Privacy and Trust in the IoT Environment.* Cham, Switzerland: Springer International Publishing; 2019. p. 181-202. https://doi.org/10.1007/978-3-030-18075-1_9.
47. Kanse R, Rathod V, Motekar H, Kamble P, Chavan V, Bankar J. Big data analysis for remote diagnostics in telemedicine. *Artificial Intelligence and Information Technologies.* Boca Raton, USA: CRC Press; 2024. p. 194-8. <https://doi.org/10.1201/9781003510833-32>.
48. Chern CC, Chen YJ, Hsiao B. Decision tree-based classifier in providing telehealth service. *BMC Med Inform Decis Mak.* 2019;19(1):104. [PubMed ID: 31146749]. [PubMed Central ID: PMC6543775]. <https://doi.org/10.1186/s12911-019-0825-9>.
49. R KD, P S. Optimizing Telemedicine Services for Rural Women: A Decision Tree-Based Heap Optimizer Approach for Predictive Healthcare Delivery. 2025 *International Conference on Automation and Computation (AUTOCOM).* Piscataway, USA: IEEE; 2025. p. 1173-8.
50. Subramanian SP, Wang Y. Application of Computational Technology in Telehealth and Telesurgery. In: Wang Y, Yu T, Wang K, editors. *Advanced Manufacturing and Automation XIV.* Singapore, Singapore: Springer Nature; 2025. p. 416-20. https://doi.org/10.1007/978-981-96-2625-0_54.
51. Shaharia F, Kanis F, Md Rakib M, Md Refadul H, Md Musa A. Transforming telehealth with Artificial Intelligence: Predictive and diagnostic advances in remote patient care. *World J Adv Engin Technol Sci.* 2025;16(1):355-65. <https://doi.org/10.30574/wjaets.2025.16.1.1216>.
52. Kokulavani K, Manthena KV, Sakthiavaravanan B, Sreelatha T, Visumathi J, Guruprakash KS, et al. Optimizing Telemedicine Patient Care with Machine Learning for Disease Progression and Treatment Planning. *Engin Technol Appl Sci Res.* 2025;15(4):25783-8. <https://doi.org/10.48084/etasr.11060>.
53. Samaddar S, Maiti AB, Mondal B, Bar N, Das SK. A Study Using Support Vector Machine as a Tool for Patient's Satisfaction for SARS-CoV-2 Cases Using Telemedicine. *AI to Improve e-Governance and Eminence of Life.* Singapore, Singapore: Springer Nature; 2023. p. 25-36. https://doi.org/10.1007/978-981-99-4677-8_2.
54. Uzochukwu CV, Adetilooye OA, Adedayo AO, Iwendi C. Comparative Analysis on the Use of Teleconsultation Using Support. In: Iwendi C, Boulouard Z, Kryvinska N, editors. *Proceedings of ICACTCE'23 – The International Conference on Advances in Communication Technology and Computer Engineering.* Cham, Switzerland: Springer Nature; 2023. p. 507-18. https://doi.org/10.1007/978-3-031-37164-6_37.

55. Ponnusamy V, Manickam N, Zdravković N, Simjanovic D. Advancements of Telemedicine Using Blockchain and Deep Learning for Smart Healthcare. In: Chatterjee JM, Sujatha R, Shailendra K, editors. *Role of Artificial Intelligence, Telehealth, and Telemedicine in Medical Virology*. Singapore, Singapore: Springer; 2024. p. 129-47. https://doi.org/10.1007/978-981-97-2938-8_6.

56. Tasmurzayev N, Amangeldy B, Imanbek B, Baigarayeva Z, Imankulov T, Dikhanbayeva G, et al. Digital Cardiovascular Twins, AI Agents, and Sensor Data: A Narrative Review from System Architecture to Proactive Heart Health. *Sensors*. 2025;25(17). [PubMed ID: 40942702]. [PubMed Central ID: PMC12431230]. <https://doi.org/10.3390/s25175272>.

57. Rabeifar F. WSN Technologies in Designing a Telemedicine Network. *J Biomed Phys Eng*. 2025;15(2). <https://doi.org/10.31661/jbpe.v0i0.2411-1852>.

58. Ahmad MK, Abir MA, Akter F, Hasan T, Shaha P, Hossain MM, et al. A Secure Telemedicine Scheme Based on Distributed Database, Machine Learning and IoT for Diagnosis of Diabetes Disease. *Machine Learn IoT Diagnos Diabetes Dis*. 2025.

59. Elaziz B, Zaouiat CEA, Eddabbah M, Laaziz Y. Enhancing SVM and KNN Performance Through Preprocessing Pipelines for Interactive mHealth Applications. *Int J Adv Comput Sci Appl*. 2025;16(6). <https://doi.org/10.14569/ijacsa.2025.0160665>.

60. Borkakoty S, Islam AU, Bora KC. Improving Remote Patient Monitoring and Care Using Machine Learning. In: Singh P, Kumar CJ, editors. *Revolutionizing Healthcare: Impact of Artificial Intelligence on Diagnosis, Treatment, and Patient Care*. Cham, Switzerland: Springer Nature; 2025. p. 179-93. https://doi.org/10.1007/978-3-031-80813-5_11.

61. Muhsen DK, Khmas BF, Ahmed AA, Sadiq AT. Comparative Analysis of Machine Learning Models for Predictive Healthcare in Chronic Disease Management. *J Intell Syst Internet Things*. 2025;17(2). <https://doi.org/10.54216/jjIsIoT.i70204>.

62. Ambati SS. Cloud-Based Environment for Healthcare Data Management: Implementation, Benefits, and Challenges. *Int J Sci Technol*. 2025;16(1). <https://doi.org/10.7109/IJSAT.v16.ii.2802>.

63. Venkat MS. The Evolution of Electronic Health Records in India: Progress, Challenges, and Future Prospects (2020-2025). *Int J Health Technol Innov*. 2025;4(2):24-30. <https://doi.org/10.60142/ijhti.v4i02.06>.

64. Bacha A, Khan Sherani AM. AI in Predictive Healthcare Analytics: Forecasting Disease Outbreaks and Patient Outcomes. *Global Trends Sci Technol*. 2025;1(1):1-14. <https://doi.org/10.70445/gtst.1.1.2025.1-14>.

65. Mishkin AD, Zabinski JS, Holt G, Appelbaum PS. Ensuring privacy in telemedicine: Ethical and clinical challenges. *J Telemed Telecare*. 2023;29(3):217-21. [PubMed ID: 36349356]. <https://doi.org/10.1177/1357633X221134952>.