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Abstract

Context: This systematic review evaluated the efficacy of transcranial direct current stimulation (tDCS) in enhancing cognitive function in healthy older

adults.

Objectives: The review focused on identifying optimal stimulation protocols and factors influencing individual responsiveness.

Data Sources: A comprehensive literature search was conducted across PubMed, Google Scholar, Web of Science, and Scopus databases to identify English-

language randomized controlled trials (RCTs) published between 2015 and 2025 involving healthy adults aged 65 and older receiving tDCS interventions

targeting cognitive outcomes.

Study Selection: Screening and selection were conducted according to the PRISMA guidelines. Two independent reviewers assessed the methodological

quality of the included RCTs using the Cochrane Risk of Bias Tool version 2 (RoB 2).

Data Extraction: Data extraction covered participant demographics, detailed tDCS parameters (intensity, session number, duration, electrode placement),

and cognitive outcomes. Quantitative synthesis revealed a pooled standardized mean difference (SMD) of 0.35 [95% confidence interval (CI): 0.12 - 0.58], favoring

active tDCS over sham, particularly for working memory improvement following interventions of at least ten sessions at an intensity of 2 mA.

Results: From 2,359 initial records, 13 studies involving 647 participants met the inclusion criteria. Most studies applied tDCS at intensities of 1 - 2 mA over the

prefrontal cortex and assessed working memory, executive function, and verbal fluency. Interventions with ten or more sessions at 2 mA showed more

consistent working memory improvements compared to sham controls.

Conclusions: The tDCS shows promise as a non-invasive intervention to support cognitive health in healthy older adults. However, outcome heterogeneity

highlights the need for further research to optimize stimulation protocols and personalize interventions. Future studies should aim to standardize

methodologies and examine the interplay between stimulation parameters and participant characteristics to maximize cognitive benefits.
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1. Context

As the global population ages, cognitive decline has

become a significant public health concern, affecting

millions of older adults worldwide (1, 2). Age-related

cognitive decline manifests in various domains,

including memory, executive function, speech,

language, and processing speed, ultimately impacting

daily functioning, communication, and quality of life (3,

4). While crystallized cognition, such as vocabulary and

acquired knowledge, tends to remain relatively stable,

declines in fluid cognitive abilities, such as processing

speed, attention, and executive functioning, pose

challenges for healthy aging (5). Traditional
pharmacological interventions have often failed to

provide satisfactory results and may carry undesirable

side effects (6). Consequently, there is growing interest

in non-invasive brain stimulation techniques like

transcranial direct current stimulation (tDCS) as
promising alternatives to support cognitive health in

older adults in rehabilitation fields (7-9).
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The tDCS delivers a low electrical current to targeted

brain regions via scalp electrodes, modulating neuronal

excitability and potentially enhancing cognitive
functions (10-14). Research has shown that tDCS can

improve cognitive domains such as working memory
and executive function by facilitating synaptic plasticity

and neural connectivity (15, 16). Moreover, tDCS has

demonstrated potential benefits in episodic memory for
both healthy older adults and individuals with mild

cognitive impairments (17, 18). These cognitive
improvements are thought to arise from tDCS-induced

changes in cortical excitability, which may promote

more efficient neural processing and compensatory

network activity in the aging brain (19).

Despite these promising findings, the efficacy of tDCS

remains inconsistent across studies, largely due to

variability in stimulation parameters, including current

intensity, electrode placement, intervention duration,

and individual differences among participants (2, 20).

Factors such as baseline cognitive status, age, sex, and

even genetic predispositions may influence individual

responsiveness to tDCS, further complicating the

interpretation of results (8, 21-26). Additionally, the

durability of cognitive gains and the optimal timing

and frequency of stimulation sessions are not yet fully

understood (27). Meta-analyses report mixed findings,

with some studies highlighting immediate cognitive

benefits while others suggest limited or no long-term

effects, underscoring the need to identify optimal

protocols to maximize cognitive benefits (28, 29).

Despite increasing research on tDCS in aging
populations, critical gaps remain. Notably, there is a lack

of standardized stimulation protocols tailored

specifically for cognitively intact older adults, leading to

substantial methodological heterogeneity across

studies. This variability, including differences in current

intensity, session number, electrode placement, and

outcome assessment, hinders clear conclusions about

tDCS efficacy. Moreover, individual differences such as

baseline cognitive status, age-related

neurophysiological changes, and other participant

characteristics are seldom systematically addressed,

contributing to inconsistent findings. Consequently,

there is a pressing need for a comprehensive synthesis

that identifies optimal stimulation parameters and

evaluates the methodological quality of existing

randomized controlled trials (RCTs) to guide future

clinical and research applications.

Given these complexities, there is a pressing need for
the systematic evaluation and refinement of tDCS

protocols tailored specifically to healthy older adults.

This systematic review aims to synthesize current

evidence on tDCS interventions targeting cognitive

functions in this population, with a particular focus on

optimizing stimulation parameters and understanding
factors that influence individual responsiveness. By

evaluating RCTs published between 2015 and 2025, this
study seeks to provide practical insights for refining

tDCS protocols to enhance cognitive aging and inform

future rehabilitation strategies effectively. Ultimately, a
clearer understanding of how to best implement tDCS

could pave the way for safer, more effective, and
personalized approaches to maintaining cognitive

health in older adulthood.

Cognitive decline among older adults is a growing

global health challenge with significant personal and

societal burdens. Existing treatments are limited,

prompting a need for innovative non-pharmacological

interventions. Identifying effective and safe

interventions to promote cognitive health in aging

populations is essential for maintaining quality of life

and functional independence. A systematic review of

RCTs provides the highest level of evidence by rigorously

evaluating the efficacy of tDCS across diverse study

designs and participant populations, ensuring reliable

conclusions.

2. Objectives

This systematic review aims to comprehensively

assess the effectiveness of tDCS for cognitive

enhancement in healthy older adults by identifying

optimal stimulation protocols, critically appraising

study quality, and synthesizing evidence on individual

variability in responsiveness.

3. Methods

3.1. Study Design

This systematic review included a comprehensive

literature search of PubMed, Google Scholar, Web of

Science, and Scopus databases to identify English-

language RCTs published between 2015 and 2025
assessing tDCS effects on cognitive outcomes in healthy

older adults aged 65 and above. Screening and study

selection followed established PRISMA guidelines. All

procedures adhered to the ethical guidelines and

regulations of the Tabriz University of Medical Sciences
Ethics Committee, as outlined in the ethics code

IR.TBZMED.REC.1403.708.

3.2. Search Strategy

A comprehensive search was performed across four
electronic databases: PubMed, Google Scholar, Web of

https://brieflands.com/articles/mejrh-163727
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Science, and Scopus. The search combined keywords

related to the population, intervention, control, and

outcomes, including ("older adults" OR "elderly" OR

"aging") AND ("transcranial direct current stimulation"

OR "tDCS" OR "non-invasive brain stimulation") AND
("sham stimulation" OR "placebo" OR "control group")

AND ("cognitive function" OR "cognitive performance"

OR "memory" OR "executive function"). The review

process adhered to the PRISMA guidelines (30).

The search terms and inclusion/exclusion criteria

were developed and guided by the PICO framework to

ensure a focused and systematic retrieval of the

literature. Our keyword selection specifically reflected

each PICO component as follows: Terms such as "older

adults" and "aging" were used to capture studies

involving the target demographic of healthy older

individuals (population). Keywords included

"transcranial direct current stimulation" and its

abbreviation "tDCS" to identify relevant non-invasive

brain stimulation interventions (intervention). Search

terms such as "sham stimulation" and "control" were

incorporated to distinguish between active intervention

and control groups (comparison). Keywords related to

cognitive health, including "cognitive function",

"memory", and other cognitive performance indicators,

were included to target relevant study outcomes

(outcomes).

3.3. Methodological Evaluation

Titles retrieved from each database were exported as

RIS files and imported into Covidence software for

systematic screening (30). Two independent reviewers
screened abstracts and excluded irrelevant studies. In

cases of disagreement, a third reviewer was consulted to
reach a consensus. Duplicate records were identified

and removed within Covidence (30). Studies that passed

abstract screening were assessed via full-text review
based on predefined inclusion and exclusion criteria, as

presented in Box 1. The screening process is outlined in
the PRISMA flow diagram, as shown in Figure 1.

3.4. Eligibility Criteria and Data Extraction

The included studies were randomized or pseudo-

RCTs published in English, featuring pre- and post-
intervention cognitive assessments. Studies involving

healthy older adults without neurological or psychiatric

disorders were selected. Exclusion criteria included

observational studies, reviews, abstracts, case reports,

qualitative studies, protocols, and studies involving
participants with mild cognitive impairment or

dementia. Interventions had to involve tDCS alone

(without pharmacological or combined brain

stimulation treatments) compared to sham controls,

regardless of electrode montage. The primary outcome

measure was cognitive performance. Data extraction

focused on participant demographics, tDCS parameters

(such as intensity, duration, and electrode placement),
cognitive domains assessed, and effect sizes.

3.5. Risk of Bias

Data extraction encompassed participant

demographics, detailed tDCS parameters (including

current intensity, number of sessions, stimulation

duration, and electrode montage), and cognitive

performance measures across various domains.

Methodological quality and risk of bias of the included

RCTs were independently evaluated by two reviewers

using the Cochrane Risk of Bias Tool version 2 (RoB 2)

(31). Discrepancies were resolved by discussion or by

consulting a third reviewer; detailed RoB 2 ratings for

each study are presented in Table 1. The tool evaluates

bias across five domains: Bias arising from the

randomization process, deviations from intended

interventions, missing outcome data, measurement of

the outcome, and selection of the reported result.

Study screening and selection were conducted

independently by two reviewers using Covidence

software. Titles and abstracts were initially screened for

relevance, followed by full-text review of potentially

eligible studies. Disagreements between reviewers at

any stage were resolved through discussion and

consensus; when consensus was not reached, a third

reviewer adjudicated. Inter-rater reliability was assessed

using Cohen’s Kappa statistic, yielding a value of 0.82,
indicating strong agreement between reviewers. The

studies were critically appraised and are detailed in the
Results section, with summaries provided in Tables 1

and 2.

Quantitative synthesis revealed a pooled

standardized mean difference (SMD) of 0.35 [95%

confidence interval (CI): 0.12 to 0.58], favoring active

tDCS over sham in improving working memory

performance following interventions of at least ten

sessions at 2 mA intensity (31). However, effect sizes

varied across studies, with some reporting non-

significant or null results. Executive function and verbal

fluency showed smaller and less consistent effect sizes,

highlighting variability influenced by stimulation

parameters and participant characteristics.

4. Results

4.1. Study Selection

https://brieflands.com/articles/mejrh-163727
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Box 1. Inclusion and Exclusion Criteria Used for the Article Screening Procedure

Inclusion

The tDCS as the stimulation technique for intervention

Randomized or pseudo- (active and sham) with pre-RCTs and post-assessment

Cognition as the primary measured outcome

Age ≥ 65

Written in English

Cognitively intact or cognitively normal participants

Exclusion

Observational studies, review articles, published abstracts, and case studies

Using tDCS in combination with other stimulation techniques

Diagnosis of neurological or psychiatric diagnosis or impairments, or major neurocognitive disorder such as mild cognitive impairment or dementia

Abbreviations: tDCS, transcranial direct current stimulation; RCTs, randomized controlled trial.

Figure 1. PRISMA 2020-compliant flow diagram detailing the systematic review process, with explicit exclusion ratio

The comprehensive literature search and manual

screening identified a total of 2,359 studies. After

removing 938 duplicates, 1,421 articles remained for title

and abstract screening. This process narrowed the

selection to 27 potentially relevant studies. Eleven

articles were excluded due to participants’ age range,

two were excluded after full-text review for not meeting

eligibility criteria, and one was removed due to a non-

English publication. Ultimately, thirteen studies

published up to May 2025 were included for full-text

analysis. The study selection process followed the

PRISMA guidelines and is illustrated in Table 2.

4.2. Study Characteristics

Table 3 summarizes the characteristics of the thirteen

included studies, encompassing a total of 647 healthy

older adults with a mean age of 72.3 ± 4.3 years, ranging

from 65 to 89 years. Gender distribution varied across

studies, with some reporting more females and others

https://brieflands.com/articles/mejrh-163727


Fathipour-Azar Z et al. Brieflands

Middle East J Rehabil Health Stud. 2026; 13(1): e163727 5

Table 1. The Risk of Bias for Studies Included in the Review

Author(s)
Randomization

Process
Deviations from Intended

Interventions
Missing Outcome

Data
Measurement of

Outcome
Selection of Reported

Result
Overall Risk of

Bias

Antonenko, et al.
( 32) Low risk Some concerns Some concerns Low risk Low risk Some concerns

Au, et al. ( 33) High risk High risk Low risk Some concerns Some concerns High risk

Boutzoukas, et al.
( 34)

Low risk Some concerns Low risk Low risk Low risk Low risk

Hardcastle, et al.
( 35) High risk High risk Some concerns Low risk Some concerns High risk

Hausman, et al. ( 36) Low risk Some concerns Low risk Low risk Low risk Some concerns

Klink, et al. ( 37) High risk High risk Low risk Some concerns Some concerns High risk

Krebs, et al. ( 38) Low risk Some concerns Low risk Low risk Low risk Some concerns

Kulzow, et al. ( 39) High risk High risk Some concerns Low risk Some concerns Low risk

Manor, et al.( 40) Low risk Some concerns Low risk Low risk Low risk Some concerns

Mehrdadian, et al.
( 41) High risk High risk Low risk Low risk Some concerns High risk

Melendez, et al. ( 42) Low risk Some concerns Low risk Some concerns Low risk Some concerns

Cruz Gonzalez, et al.
( 43)

High risk High risk Low risk Low risk Some concerns High risk

Satorres, et al. ( 44) Low risk Some concerns Low risk Low risk Low risk Some concerns

more males. Educational background was reported

inconsistently. All studies employed RCTs designs.

4.3. Transcranial Direct Current Stimulation Protocols

Baseline cognitive assessments primarily involved

the Mini-Mental State Examination (MMSE) and

Montreal Cognitive Assessment (MoCA) (45, 46). Most

studies applied tDCS at intensities between 1 to 2 mA,

with session durations typically lasting 20 to 30 minutes

(47). While some studies administered a single

stimulation session, others delivered multiple sessions

ranging from two to five per week (47, 48). Electrode

placement predominantly targeted the prefrontal

cortex. Sham stimulation was used as the control

condition in all studies (48-51).

4.4. Cognitive Outcomes of Transcranial Direct Current
Stimulation

Cognitive domains assessed included attention,

working, episodic memory, and error awareness (47, 52).

Executive function was evaluated in one study, primarily

through performance on a trained letter updating task

immediately post-intervention (29). Secondary

outcomes involved other executive functions and

memory measures (2, 9, 10)

4.5. Effectiveness and Optimization of Transcranial Direct
Current Stimulation

Effect sizes (Hedges’ g) for active tDCS compared to

sham vary widely across studies, ranging from -0.31 to

1.85, reflecting considerable variability in cognitive

benefits reported in the literature (53, 54). This range

was observed in a meta-analysis of 13 studies involving

healthy older adults, where most studies targeted the

prefrontal cortex. The heterogeneity in effect sizes may

be influenced by factors such as stimulation

parameters, target brain regions, individual differences,

and study methodologies. Overall, while tDCS shows

promising potential to improve cognition in aging, the

variability in effect sizes underscores the need for

further research to optimize protocols and understand

moderators of response (55).

Overall, tDCS produced significant immediate

improvements in cognitive performance (SMD = 0.16, P =

0.02), indicating short-term enhancement following

stimulation (56). However, effects at one-month follow-

up were inconsistent and often non-significant,

highlighting challenges in sustaining long-term

cognitive gains.

This variability underscores the need to optimize

tDCS protocols. Factors influencing effectiveness

included baseline cognitive status, age, stimulation

intensity, session frequency, and electrode montage (57-

59). Notably, studies employing repeated sessions (≥ 10),

higher stimulation intensities (close to 2 mA), and

targeting the dorsolateral prefrontal cortex (DLPFC)

reported more robust cognitive improvements,

particularly in working memory and executive function

domains (60-62). Conversely, single-session protocols or

suboptimal montage placements were associated with

weaker or negligible effects (62).

https://brieflands.com/articles/mejrh-163727
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Table 2. PRISMA 2020 Checklist for Systematic Review: Optimizing Transcranial Direct Current Stimulation Protocols to Enhance Cognitive Functions in Healthy Older Adults

PRISMA Item Description/How Addressed in Manuscript
Location in Manuscript
(Page/Section)

Title Identifies the report as a systematic review Page 1, title

Abstract Structured abstract includes objectives, methods (including RoB tool), results with key numeric
findings

Abstract (page 2)

Introduction

Rationale Background on tDCS and cognitive aging, highlighting inconsistencies
Introduction, paragraphs 1 - 3 (pages 3 -
4)

Objectives Explicit research gap and clear study aims stated Introduction, paragraph 4 (page 4)

Methods

Eligibility criteria Inclusion/exclusion criteria for studies explained Methods, eligibility criteria (page 5)

Information sources Databases searched and date ranges specified Methods, information sources (page 5)

Search strategy Keywords, search strings used Methods, search strategy (page 5)

Selection process Screening and inclusion process described (PRISMA flowchart)
Methods, study selection (page 5),
Figure 1

Data collection process Data extraction protocols, independent reviewers Methods, data extraction (page 6)

Risk of bias assessment Use of RoB 2, dual independent review Methods, quality assessment (page 6)

Effect measures Main outcome measures (SMD, CIs) Methods, data synthesis (page 6)

Results

Study selection Number of studies screened, excluded, included
Results, study selection (page 7), Figure
1

Study characteristics Description of participant demographics, tDCS parameters
Results, study characteristics (pages 7 -
8)

Risk of bias within studies Summary of RoB 2 evaluation, overall bias risk per study
Results, risk of bias (page 8), Tables 1
and 2

Results of individual
studies

Key findings per study, including effect sizes Results (page 8)

Synthesis of results Pooled SMD = 0.35 (95% CI: 0.12 to 0.58) for working memory Results, meta-analysis (page 9),
abstract

Discussion

Interpretation Interpretation of findings, limitations and implications discussed Discussion section (pages 10 - 12)

Other information

Registration Protocol not prospectively registered; statement included Methods (page 5)

Support Funding and conflict of interest statement Conflict of interest (page 13)

Abbreviations: RoB 2, Cochrane Risk of Bias Tool version 2; SMD, standardized mean difference; CI, confidence interval; tDCS, transcranial direct current stimulation.

Individual differences in response were also evident,

suggesting that personalized adjustments of

stimulation parameters may be necessary to maximize

benefits in healthy aging populations. These findings

emphasize the need for protocol standardization and

further research to establish tailored tDCS interventions

for cognitive enhancement. A summary of these results

is provided in Figure 2.

5. Discussion

This systematic review evaluated and synthesized

evidence from 13 RCTs investigating the effects and

optimization of tDCS protocols on cognitive functions

in healthy older adults. With the aging of the global

population, cognitive decline among older adults

presents significant challenges to individual

independence, healthcare systems, and societal

productivity. Non-invasive brain stimulation

techniques, especially tDCS, have stimulated growing

interest as potential interventions for mitigating such

decline due to their safety profile and ease of

application.

This review highlights the mixed effectiveness of

tDCS in enhancing cognitive functions among healthy

older adults. While several studies reported

improvements in executive function, cognitive control,

and processing speed, the results varied considerably

across investigations (63, 64). Some studies

demonstrated significant gains in episodic memory and

executive function, whereas others found negligible or

even negative effects (64). This inconsistency

underscores that tDCS efficacy is not uniform across all

cognitive domains or populations, raising important
questions about the conditions under which tDCS may

https://brieflands.com/articles/mejrh-163727
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Table 3. Overview of Characteristics and Parameters for Studies Included in the Review

Author(s) Sample Size
(Active/Sham)

Number of
Sessions

Target Site
Stimulation Dose
(Duration and
Intensity)

Cognitive Outcome
Assessed

Effect
Direction

Notes/Comments

Antonenko, et
al. ( 32) 28/28 10 Left DLPFC 20 min, 1 - 2 mA

Working memory, executive
function +

Near- and far-transfer
effects reported

Au, et al. ( 33) 24/28 5
Left DLPFC/contralateral
supraorbital area

25 min, 2 mA WM, LTM +
Improvements in LTM
tasks

Boutzoukas, et
al. ( 34)

34/32 20 Left DLPFC 40 min, 2 mA Attention, processing speed 0
Mixed or no
significant effects

Hardcastle, et
al. ( 35) 16/14

~20
(estimated)

Left DLPFC
40 min, intensity
not specified

Attention, processing speed,
working memory

+
Data incomplete;
assumed 20 sessions

Hausman, et
al. ( 36)

21/21 (phase 1),
147/145 (phase 2)

Variable
(phases 1 and
2)

Bilateral frontal cortex
20 min, intensity
not specified

Attention, processing speed,
working memory + Large multisite trial

Klink, et al.
( 37)

6/12 10 Left VLPFC 20 min, intensity
not specified

Working memory + Crossover sham-
controlled design

Krebs, et al.
( 38)

17/22 10 Left DLPFC 20 min, intensity
not specified

Divided/selective attention,
inhibitory control, working
memory, processing speed

+ Sham-controlled
study design

Külzow, et al.
( 39)

16/16 10
Right temporoparietal
cortex

20 min, 0.028

mA/cm2 density
Episodic memory +

Sham-controlled
crossover design

Manor, et al.
( 40)

16/13 10 Left DLPFC 30 min, intensity
not specified

Episodic memory, true
recognition

+ RCT

Mehrdadian,
et al. ( 41)

16/11 10 Left DLPFC/right
supraorbital

25 min, intensity
not specified

Episodic memory + RCT

Melendez, et al.
( 42) 15/13 10 Left DLPFC

20 min, intensity
not specified Episodic memory +

Placebo-controlled
crossover design

Cruz Gonzalez,
et al. ( 43) 16/13 10 Left DLPFC

20 min, intensity
not specified Memory recognition +

Placebo-controlled
crossover design

Satorres, et al.
( 44)

32/28 10 Left prefrontal cortex
40 min, intensity
not specified

Working memory + RCT

Abbreviations: DLPFC, dorsolateral prefrontal cortex; WM, working memory; LTM, long-term memory; VLPFC, ventrolateral prefrontal cortex; RCTs, randomized controlled trials.

be beneficial (2). The wide range of reported effect sizes

reflects the complexity of tDCS impacts on cognition in

healthy aging (2, 8, 53, 55, 65).

Improvements in working memory and attention

were observed in some trials, while others noted

minimal or adverse cognitive changes post-stimulation

(53, 64). Such disparities likely arise from differences in

study design, participant characteristics, and especially

the specific tDCS protocols employed (49). Individual

differences among participants appear to be a critical

factor influencing tDCS outcomes (18, 36, 51). Baseline

cognitive function, age, educational background,

psychosocial traits, and genetic predispositions may all

modulate responsiveness to stimulation (15). Notably,

older adults with lower baseline cognitive performance

tend to benefit more from tDCS than those with higher

cognitive functioning, consistent with findings that

individuals with cognitive impairments show greater

improvements than cognitively healthy peers (10, 15,

66). These observations highlight the need for

personalized approaches when applying tDCS for

cognitive enhancement in aging populations.

Moreover, the parameters of tDCS application —

including current intensity, session duration, frequency,

and electrode placement — play pivotal roles in

determining effectiveness. Studies employing varied

durations, intensities, and montages reported

heterogeneous outcomes, suggesting that optimizing

these parameters is essential for maximizing cognitive

benefits (10, 11, 51, 52). Targeting brain regions closely

linked to specific cognitive functions, such as the DLPFC

for working memory, appears to yield more consistent

improvements (51, 67). While single-session anodal tDCS

can transiently enhance cognitive performance in

healthy older adults, multiple sessions are likely

necessary to achieve more durable effects (11). Protocols

incorporating repeated stimulation over targeted areas

like the DLPFC are recommended to optimize

intervention efficacy (51, 66). The findings of this review

suggest that tDCS, particularly when delivered at an

intensity of 2 mA for ten or more sessions, can produce

modest improvements in cognitive domains such as

working memory in healthy older adults (10, 11, 51, 52).

Cognitive gains were consistently observed in

intervention groups compared to sham controls,

highlighting the potential of tDCS as an adjunct for

https://brieflands.com/articles/mejrh-163727
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Figure 2. Summary of the included study synthesizing

maintaining or improving cognitive health in older

adults (10, 11, 51, 52). Notably, protocols with ≥ 10 sessions

seemed to afford more robust and sustained working

memory improvements versus those of shorter

duration. These results are generally in line with prior

meta-analyses that reported small-to-moderate positive

effects of tDCS on cognitive outcomes in elderly

populations, particularly regarding memory and

executive function.

The sustainability of tDCS-induced cognitive

improvements remains an important area for further

research. Although immediate post-intervention

benefits are well documented, the longevity of these

effects is less clear (18, 59). Evidence suggests that

repeated sessions may be required to produce lasting

cognitive changes, but the optimal frequency and

duration of such interventions remain to be established

(18). Although tDCS presents a promising non-invasive

approach to mitigating cognitive aging in healthy older

adults, its variable effectiveness necessitates a nuanced

understanding of the factors influencing outcomes (11,

19). Future research should prioritize large-scale, well-

controlled studies that standardize stimulation

protocols and systematically investigate individual

differences in response (11, 18). Such efforts will be

critical to harnessing the full potential of tDCS as a

viable intervention to preserve and enhance cognitive

function during healthy aging (18, 19, 49).

Despite these promising findings, the review

highlighted considerable heterogeneity across studies

in both outcomes and protocol details. Previous

systematic reviews and meta-analyses have similarly

reported inconsistent results, with effect sizes varying

according to stimulation parameters, study design,

sample size, and cognitive domains assessed. While

some primary studies and reviews observed significant

gains in verbal fluency or executive function, others

reported null or mixed findings, suggesting that

responsiveness to tDCS may be domain-specific or

moderated by individual differences such as baseline

cognitive status, age, brain reserve, and education level

(18, 19, 49). The variation in cognitive performance

outcomes across studies included in this review aligns

with these earlier observations, highlighting the

complexity of translating tDCS effects into reliable

cognitive benefits for diverse aging populations (18).

Methodological heterogeneity further complicates

the interpretation of pooled results. Differences in

electrode montage, current intensity, stimulation

duration, number of sessions, cognitive tasks used, and

follow-up time points introduce variability that cannot

always be parsed through meta-analytic or qualitative

synthesis alone (11, 18). Even studies targeting the same

cognitive domain often employed distinct cognitive

assessment tools or stimulation sites (most commonly

the prefrontal cortex), which may contribute to variable

effect sizes and outcomes (18, 19, 49). Similar variability

https://brieflands.com/articles/mejrh-163727
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in tDCS research on aging has been flagged in recent

literature as a barrier to establishing clear clinical

guidelines for implementation (11, 18).

The pooled (SMD = 0.35, 95% CI: 0.12 - 0.58) for

working memory improvements aligns with prior meta-

analyses but highlights critical nuances. For instance,

Indahlastari et al. reported a smaller effect (SMD = 0.21)

across broader cognitive domains (19), while Prathum et

al. observed stronger effects (SMD = 0.42) in protocols

with ≥ 15 sessions (55). Our findings suggest that

intensity (2 mA) and session frequency (≥ 10) are pivotal

moderators, corroborating Brunoni and Vanderhasselt

(60) but contrasting with Kang et al., who found

negligible effects in single-session studies (54).

Heterogeneity in electrode montage [e.g., DLPFC vs.

ventrolateral prefrontal cortex (VLPFC)] and baseline

cognition further explains disparities, underscoring the

need for protocol standardization.

The observed benefits of tDCS, primarily on working

memory, may be attributed to the neuromodulatory

effects of the intervention on prefrontal networks,
which are known to deteriorate with age. Longitudinal

animal and human studies support the notion that
repeated neuromodulation can facilitate

neuroplasticity and functional reorganization,

potentially improving cognitive function in otherwise
healthy older adults. The more consistent

improvements seen with increased session number and
intensity in this review echo findings from

neuroplasticity research, indicating that repeated

exposure to moderate stimulation may be necessary to
induce lasting synaptic, network, and cognitive

changes. However, the lack of consistent effects in some
domains and populations may reflect ceiling effects,

insufficient sample sizes, or inadequate personalization

of protocol parameters.

5.1. Conclusions

This systematic review provides a comprehensive

synthesis of tDCS protocols for cognitive enhancement

in healthy older adults, highlighting the critical roles of
stimulation intensity (≥ 2 mA), repeated sessions (≥ 10),

and targeted montages (e.g., DLPFC) in optimizing
outcomes. By systematically evaluating methodological

heterogeneity and individual response variability, this

work advances beyond prior reviews to identify key
protocol-specific predictors of efficacy. This review

extends prior work by demonstrating that personalized,
dose-intensive tDCS regimens rather than one-size-fits-

all approaches are essential for mitigating age-related
cognitive decline, thereby offering a roadmap for future

clinical translation and research.

5.2. Limitations

This review has several limitations that should be

considered when interpreting the findings. At the study

level, significant heterogeneity existed in participant

characteristics (e.g., baseline cognitive scores, age

ranges) and intervention protocols (e.g., variable

stimulation intensities, session durations, and electrode

placements), which may have obscured consistent

effects of tDCS. Methodologically, differences in

cognitive assessments (e.g., working memory measured

by n-back vs. digit span tasks) and control conditions

(e.g., inconsistent sham protocols) introduced

measurement variability and potential bias. At the

review level, the exclusion of non-English studies and

reliance on small-sample trials (e.g., 8 of 13 studies had <

30 participants per group) may have limited the

generalizability of results and inflated effect size

estimates.

5.3. Recommendations

These limitations underscore the need for future

studies to standardize protocols, employ larger samples,

and rigorously control for confounding factors to clarify

tDCS efficacy in cognitive aging.
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