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Abstract

Background: Platelet-leukocyte aggregates have been implicated in various infectious and inflammatory diseases. The
Interferon-induced transmembrane protein 3 (IFITM3) protein plays a role in eliminating viral infections, but its role in the
severity of COVID-19 is not well understood.

Objectives: We aimed to investigate the correlation between IFITM3 mRNA expression and platelet-monocyte complex levels
with the severity of COVID-19, as well as various inflammatory and coagulation markers.

Methods: We conducted a cross-sectional study on 54 COVID-19 patients, classified into severe and mild/moderate subgroups.
Demographics and laboratory findings were extracted from patients' medical records. We measured IFITM3 mRNA expression in
patients' buffy coats using q-RT-PCR and used flow cytometry with CD61 and CD14 markers to measure platelet-monocyte
aggregates.

Results: No significant difference was found in IFITM3 mRNA expression levels or platelet-monocyte complexes between
severe and mild/moderate groups (P = 0.067 and P = 0.056). Lymphocyte counts were significantly higher in the mild/moderate
subgroup (21.7+ 8.9 vs 16.3 £10.9, P = 0.02), while neutrophil counts were significantly higher in severe patients (78.3 £12.2 vs 72.3
+9.9, P=0.01). Additionally, levels of CRP and LDH were significantly higher in severe COVID-19 patients (P = 0.01and P = 0.001,
respectively). A strong positive correlation was observed between the hospitalization period and CRP, CRP with neutrophils and
LDH, as well as between 02 saturation and lymphocytes (P < 0.001, P=0.0003,P = 0.002, and P = 0.005, respectively).

Conclusions: Our findings suggest that IFITM3 gene expression and platelet-monocyte aggregate levels do not correlate with
disease outcomes in COVID-19. However, further investigations with larger sample sizes are needed to better understand the
mechanisms involved. Monitoring inflammatory and coagulation markers remains important for managing COVID-19 patients.
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(IFITM3), Thrombotic Complications
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1. Background

Coronavirus Disease 2019 (COVID-19), a viral
infectious disease, generally causes severe respiratory
syndrome and gastrointestinal and central nervous
system complications in patients infected by the severe
acute respiratory syndrome coronavirus 2 (SARS-CoV-2)
(1). The COVID-19 pandemic has posed a severe global

burden, claiming more than 0.8 million lives

throughout the world between December 2019 and
August 2020 (2, 3). Cytokine storms in COVID-19 patients
can cause intensive inflammatory events and a highly
pro-thrombotic environment, leading to thrombotic
complications (4). Thromboembolic complications are
considered life-threatening in COVID-19 patients (5).

The prothrombotic state observed in COVID-19
patients is multifactorial, and platelets play an
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indispensable role in initiating the thrombotic process.
Therefore, platelet activities and functions serve as
potential hematologic parameters for monitoring
thrombotic complications in COVID-19 patients (6, 7).
Studies have shown that platelets in COVID-19 patients
secrete elevated levels of IL-1beta, soluble CD40L (8),
serum circulating serotonin, and PF4 compared to
healthy controls. Moreover, platelet activation cell
markers, including P-selectin and CD63, are increased in
critically ill COVID-19 patients, indicating a hyperactive
phenotype of platelets (5).

Platelets play a crucial role in inflammation and
immunity by modulating various leukocyte functions
through the release of inflammatory mediators as well
as direct cell-cell interaction. Previous studies have
found that levels of circulating platelet-leukocyte
aggregates increase in patients with inflammatory or
thrombotic conditions (9).

Platelet-leukocyte interactions lead to leukocyte
mobilization to the inflammation zone, the release of
pro-inflammatory =~ mediators, and  neutrophil
extracellular traps (NET) by leukocytes, oxidative burst,
and phagocytosis (10-14). The platelet-leukocyte
aggregates are associated with various thrombotic and
inflammatory conditions, including severe lung
injuries, rheumatoid arthritis, inflammatory bowel
disease, and cerebrovascular and cardiovascular disease
(15-19). The most important receptors involved in
platelet-leukocyte aggregates include P-selectin (CD-
62p), CD41/CD61 complex (Glycoprotein IIb/llla), and
C40L on the platelets, and PSGL-1, Mac-1,and CD40 on the
leukocytes (20-22). Monocytes have been shown to have
a higher affinity for platelet complexes than other
leukocytes, and these complexes serve as a more
sensitive marker for platelet activation than P-selectin
(23). The interaction between monocytes and platelets
among leukocytes represents the most significant
binding affinity between P-selectin and PSGL-1(24-26).

Platelet activation and platelet-leukocyte interaction
have been established in the pathophysiology of various
viral infections, such as the dengue virus, human
immunodeficiency virus (HIV), and influenza virus (27
34). Recent studies have also reported that COVID-19
patients have a higher level of activated platelets and
increased interaction of platelets with neutrophils,
monocytes, and T cells (35). Moreover, platelet-monocyte
aggregate formation results in the expression of tissue

factor in monocytes via P-selectin/allb/B3 integrin-
mediated signaling. The binding of tissue factor with
FVII proceeds coagulation cascade activation (5).

Interferon-induced transmembrane protein 3
(IFITM3) is a small protein that plays crucial roles
against viral infection in both acquired and innate
immune responses  (36-45). Interferon-induced
transmembrane protein 3 protein is commonly
expressed on endosomes and lysosomes and eliminates
the fusion of the viral membrane with the host cell
membrane in a wide range of capsid viruses like
influenza, Ebola, and Marburg (46). Moreover, IFITM3 is
active against vesicular stomatitis virus, HIV, respiratory
syncytial virus, and Zika virus (47, 48). In addition,
IFITM3 is involved in several cellular processes like
differentiation, apoptosis, cell adhesion, and
modulation of immune cells which can boost immunity
against influenza A, West Nile, and dengue viruses, and
SARS-CoV (36, 39, 49, 50).

Given the significant social and economic burden of
COVID-19, along with the important roles of platelet-
monocyte aggregates in initiating inflammation and
thrombosis, as well as the pivotal role of IFITM3 in virus
elimination, this study sought to explore the association
of platelet-monocyte aggregates and IFITM3 mRNA
levels with coagulation tests and disease progression in
patients with severe and mild/moderate COVID-19.

2. Objectives

By investigating the relationship between these
biomarkers and COVID-19 severity, we hope to gain a
better understanding of the underlying mechanisms of
the disease and identify potential targets for future
treatments. This study may also help to identify patients
who are at higher risk for thrombotic complications and
guide clinical decision-making.

3.Methods

3.1. Study Setting and Subjects

This cross-sectional study was conducted on 54
COVID-19 patients admitted to Ali-Asghar Hospital,
Shiraz, Iran, from 2020 to 2021. The sample size was
calculated according to the formula n = (Zy,+Z,.
B)zlcr2+3. The inclusion criteria were a positive PCR test

for SARS-CoV-2, age over 18, and hospitalization time of
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less than 72 hours before sampling. Patients with a
history of comorbidities, including cardiovascular
disease, previous respiratory disease, cancer, infection
with other acute or chronic viral infections like HIV, HCV,
and influenza, were excluded from our study. Moreover,
patients who were pregnant or under previous
treatment with anticoagulants and antiplatelet
regimens were excluded. The included patients were
divided into two subgroups: Severe and mild/moderate,
according to the WHO classification of COVID-19 severity
based on SpO, (mild/moderate > 94%, severe < 94%).

Written informed consent was obtained from all eligible
patients before their inclusion in the study.

3.2. Assessment of Medical Records of the Patients

Due to incomplete clinical files, some patients had to
be excluded, leaving a final count of 54 patients. The
general characteristics of the patients, including age,
gender, and hospitalization period, were extracted from
their medical records. Moreover, clinical tests including
PT, PTT, INR, CBC indices (WBC, RBC, Hg, Lymphocyte,
Neutrophil, and platelet count), O, saturation, LDH, and

C-reactive protein (CRP) were obtained from the medical
records of the patients.

3.3.Sample Preparation

Four milliliters of venous blood samples were
collected in two tubes, 2 ml each, with K2EDTA for each
patient according to standard protocol. One series of
tubes was assigned for flow cytometry. Another series
was centrifuged at 3000 rpm for 7 minutes, and buffy
coats were obtained in 1.5 mL micro-tubes and stored at
-20°C until subsequent use.

3.4. Quantitative Real-time RT-PCR (q-RT-PCR)

To evaluate the mRNA expression level of the IFITM3
gene in the patients, g-RT-PCR was performed. First, RBCs
in buffy coat samples were removed by adding RBC
lysing solution and then washed with PBS three times.
Then, the total RNA of buffy coat samples was isolated
using Trizol (Invitrogen) according to the
manufacturer’s protocol. The quality and quantity of
extracted RNA were evaluated using Nanodrop (Thermo
ScientificTM) and agarose gel electrophoresis. Next,
single-strand cDNA synthesis was conducted using Easy
cDNA Synthesis Kit (ParstousTM, Iran) according to the
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manufacturer’s instructions. To check the accuracy of
the cDNA synthesis reaction, qPCR with a housekeeping
gene primer, GAPDH, was carried out for all synthesized
cDNA samples (the sequence and product size of the
primers are shown in Table 1). After that, g-PCR was
performed using the Cycler Rotor Gene Q instrument
(Qiagen, Germany) with SYBR Green Master Mix
(ParstousTM, Iran). The reaction contained SYBR Green
(10 pL), cDNA (1 pL), forward and reverse primer (20
pmol), and nuclease-free water to a final volume of 20
uL. The thermocycling program included an initial heat
activation and denaturation at 94°C for 10 minutes,
followed by 40 cycles of 95°C for 15 seconds, an
annealing step for 30 seconds at 60°C, and an extension
step for 30 seconds at 72°C. The mRNA expression level
of IFITM3 was normalized with the GAPDH mRNA
expression level. Melting curve and amplification plot
analysis were performed to check gPCR reaction
specificity. Moreover, the PCR products were
electrophoresed on 2% agarose gel to evaluate the
primers’ specificity. The relative expression level was

calculated using the 22" method as explained
elsewhere. The reactions were conducted with at least
two replicates and in the presence of no template
control and reference gene in each experiment. All qPCR
experiments were conducted according to standard
protocol.

3.5. Evaluation of Platelet-Monocyte Aggregates by Flow
Cytometry

First, 50 uL of whole blood of COVID-19 patients were
incubated with FITC-labeled anti-CD14 (Clone: HCD14,
BioLegend) along with a PE-labeled anti-CD61 antibody
(Clone: VIPL2, BD Biosciences, CA, USA) for 20 minutes in
the dark at room temperature. Then, red blood cells
were lysed with 1x ammonium chloride. Finally, samples
were analyzed on BD FACSCalibur™ flow cytometer (BD
Biosciences, CA, USA). The detection results were plotted
on a CD14 vs. SSC dot plot for mononuclear cells (MNCs).
Then, the CD14+ cells were plotted on a CD14 vs. CD61 dot
plot. The CD14+CD61+ complexes were considered
platelet-monocyte aggregates. Finally, data were
processed using FlowJo TM v10 software.

3.6. Statistical Analysis

The data were analyzed using GraphPad Prism 9. The
Shapiro test was used to check the normal distribution
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Table 1. The Sequence and Product Size of the Primers

Genes Sequences (5’ to 3’)

PCR Product Size (bp)

IFITM3

Forward ATAGCATTCGCCTACTCCGTG

Reverse CCATAGGCCTGGAAGATCAGCA
GAPDH

Forward CACCAGGGCTGCTTTTAACTCTGGA

Reverse CCTTGACGGTGCCATGGAATTTGC

of the data. To determine the difference in the mean of
the data, t-tests or Mann-Whitney tests were used for
parametric and non-parametric data, respectively. The
data were considered significant when the P-value was
below 0.05. The correlation of variables was evaluated
using the Spearman test. The r-value of 1 and -1 was
considered a strong positive and reverse correlation,
respectively.

4. Results

4.1. Patient Characteristics

This cross-sectional study included 54 hospitalized
COVID-19 patients. According to the WHO classification
for COVID-19 severity, 38.9% (n = 21) of the patients were
classified as severe, and 61.1% (n = 33) as mild/moderate.
Among those with severe COVID-19, 11 patients were male
and 10 were female, while those with mild/moderate
form comprised 15 males and 18 females. Furthermore,
the majority (88.9%, n = 48) of the patients were in non-
ICU wards, but six patients were in the ICU. Two subjects
with severe COVID-19 expired during the study period.
The overall average age of the patients was 49 + 16.3
years, with a higher mean age observed in those with
severe form compared to mild/moderate (52 + 14.5 vs. 41
+17.38, respectively).

As expected, the lymphocyte count was significantly
higher in the mild/moderate group (21.7 + 8.9 vs. 163 +
10.9, P = 0.02), while the neutrophil count was
significantly higher in severe patients (78.3 £ 12.2 vs. 72.3
+ 9.9, P = 0.01). Furthermore, the levels of CRP and LDH
were significantly higher in severe COVID-19 patients (P
= 0.01 and P = 0.001, respectively). O, saturation level

was significantly higher in the mild/moderate group
compared to severe patients (94.8 £ 0.9 vs. 85.4 £11.6, P <
0.001) (Table 2).

173

10

4.2. Interferon-Induced Transmembrane Protein 3 (mRNA
Expression)

To evaluate the mRNA expression level of the IFITM3
gene, qRT-PCR was carried out. As shown in Figure 1, no
significant difference was observed in the expression of

the IFITM3 gene between severe and mild/moderate
COVID-19 patients (P = 0.067).

P=0.067

1.0 - I |

Relative expression level (2/-dCt)

T
Severe Mild/Moderate

Figure 1. The relative mRNA expression of interferon-induced transmembrane
protein 3 (IFITM3) gene in severe and mild/moderate COVID-19 patients. No
significant difference was found

4.3. Platelet-Monocyte Aggregate Formation Level

A flow cytometry assay was carried out to detect CD61
and CD14 cell surface markers to measure the level of
platelet-monocyte complex formation. Although the
percentage of MNCs was significantly higher in
mild/moderate COVID-19 patients compared to severe
patients (P = 0.032), there was no significant difference
in platelet-monocyte complex formation between the
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Table 2. Patients’ Characteristics and Their General Laboratory Findings

Severe (n=21)

Mild/Moderate (n =33) Total (n=54)

Parameter P-Value
Mean (+ SD) Min-Max Mean (+SD) Min-Max Mean (+ SD) Min-Max
Age 52+14.5 32-86 47+1738 21-84 491163 23-86 0.28
HP (days) 10.48+£10.1 436 4.9£1.0 3-7 7+6.8 3-36 0.17
0, saturation 85.4£11.6 5193 94.8+0.9 93-97 9L1£85 51-97 <0.001
WBC (count x10 3) 6.6+3.0 31154 53%17 25-9 5.8%23 15.4-2.50 0.16
I_ymphocyte 16.3+£10.9 5.6-38.6 21.7+8.9 7.5-39.9 19.6 £10.0 5.6-39.9 0.02
Neutrophil 783%12.2 53.6-92.2 72319.9 52.2-84.3 74.7t111 52.2-92.2 0.01
RBC (count x10 &) 48+0.7 2.8-63 47405 3.7-5.9 48%0.6 2.8-631 0.93
Hg (mg/dL) 13.7+21 8.5-17.3 14.0£1.6 10.9-19.7 13.9+1.8 8.5-19.7 0.82
PLT count (count x 10 3) 18270 51-360 184160 75-329 18363 51-360 0.91
PT (second) 15.2+2.8 11.5-22.9 15£15 13-18 151+2 11.5-22.9 0.76
INR (IU) 13+03 0.8-23 12£0.2 11.6 12+0.2 0.8-23 0.82
PTT (second) 35+8.9 22-65 37.3%171 25-120 36.4+14.5 22-120 0.9
CRP 58.8+32.9 3-90 361282 3-88 44.9+31.9 3-90 0.01
LDH 633 +157 279 -859 498 +158 228-987 549 +169 228-987 0.001
two study groups (P = 0.056) (Figures 2 and 3). The key
receptors contributing to platelet-leukocyte aggregates P=0.032
encompass P-selectin (CD-62p), CD41/CD61 complex 14 — 1
(Glycoprotein IIb/Illa), and CD40L on platelets, as well as "
PSGL1, Mac1, and CD40 on leukocytes (20-22).
Monocytes exhibit a greater affinity for platelet ® 10
)
complexes compared to other leukocytes, making these R
complexes a more sensitive marker for platelet - :
. . _ . a . L]
activation than P-selectin (23). S 6 : LT
+
44 v
.0
o..
2 - )
P=0.056 oo
1
12 o o T I
. Severe Mild/moderate
_. 10 MNC
k) e
= 084
8
1 Figure 3. The comparison of monocyte cells level in severe and mild/moderate
& 06 COVID-19 patients
a —=
o iy
5 04
by 4.4. Correlation of Variables
O 024 -
The Spearman statistical test showed that
0.0 T T lymphocyte and MNC counts were positively correlated
Severe Mild | moderate . .
I with platelet-monocyte aggregate formation (P = 0.04,
PLT-monocyte aggeregate

Figure 2. The comparison of platelet-monocyte aggregate formation level in severe
and mild/moderate COVID-19 patients. No significant difference was found.
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and P < 0.001, respectively), while the neutrophil count
was inversely correlated with platelet-monocyte
aggregate formation (P = 0.01, r = -0.32) (Figure 4).
However, the IFITM3 mRNA level was not correlated with
any parameter. A strong positive correlation was
observed between the hospitalization period and CRP (P
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< 0.001), CRP with neutrophils and LDH (P = 0.0003 and
P =0.002, respectively), as well as between O, saturation
and lymphocytes (P = 0.005). The correlation values of
other variables are shown in Figure 4 as well.
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Figure 4. The correlation of the clinical and laboratory findings in COVID-19 patients

5. Discussion

In this study, we sought to investigate the potential
correlation between IFITM3 mRNA expression levels and
platelet-monocyte complex formation with COVID-19
severity, as well as various inflammatory and
coagulation markers, in a cohort of 54 hospitalized
COVID-19 patients. We aimed to gain insight into the
underlying mechanisms of COVID-19 pathogenesis and
identify potential targets for therapeutic interventions.

We determined the mRNA expression level of IFITM3
in the buffy coat of COVID-19 patients using qRT-PCR and
found no significant difference between our two study
groups. Previous studies have reported that IFITMs (1, 2,
and 3) can eliminate viral pathogens (36-50). However,
the pro- and anti-viral activities of IFITMs have been
reported for coronaviruses. A toxicogenomic analysis
reported that IFITM3 is upregulated in SARS-CoV-2-
infected human bronchial epithelium (51).

Interferon-induced transmembrane proteins have
been found to hinder the entry of human coronaviruses,
including SARS-CoV-1, SARS-CoV-2, and MERS-CoV, in
artificial experimental conditions where viral particles
were pseudotyped with Spike (S) proteins and cell lines
overexpressed IFITMs (39, 52-56). However, a recent study

found that endogenous IFITM expression assists SARS-
CoV-2 membrane fusion with host human primary lung
cells. The study showed that genuine SARS-CoV-2 Spike
proteins hijack IFITMs to promote efficient viral
infection and suggested that targeting IFITMs could
inhibit SARS-CoV-2 infection of human lung cells (55).
The reason behind the contradictory effects of
overexpressed and endogenous IFITMs is not yet
completely understood. However, it has been reported
that specific mutations in IFITM3 affecting its topology
may change its inhibitory role to an enhancer of
coronavirus infection (52, 57). Moreover, two SNPs of
IFITM3 have been associated with the risk of acquiring
SARS-CoV-2 infection (56).

The small population of the present study may
prevent the finding of the possible relationship between
IFITM3 gene expression level and the prognosis of
COVID-19 patients. Another point to consider is that
most of the mentioned studies have examined the role
of IFITM3 protein in the resistance to virus entry in lung
epithelial cells, but our study examined the expression
of this gene in blood monocytes. It is important to
consider, however, that our study had the advantage of
involving human subjects rather than an in-vitro
experiment. Further studies with larger pre-genotyped
study subjects may shed light on the mechanisms
behind IFITM3.

We used flow cytometry to detect CD14, a well-known
monocyte  marker, and CD61 (GPllla), a
platelet/megakaryocyte marker, to evaluate the level of
platelet-monocyte complex formation. Our findings
showed that the level of PLT-Monocyte aggregates was
not statistically different between our study groups.

Activated platelets are connected with monocytes in
PLT-Monocyte aggregates via P-selectin (58). We know
that monocytes have fundamental roles in
thromboinflammatory disease progression by their pro-
inflammatory and coagulation roles. Increased levels of
PLT-Monocyte aggregates are documented in many
inflammatory and infectious diseases (58). There are
well-established studies reporting increased levels of
PLT-Monocyte aggregates in COVID-19 with positive
with more severe outcomes and
thrombotic events (59-62). Inconsistent results, which
show no or negative correlation of PLT-Monocyte
aggregates with disease severity, have also been
documented (63, 64). One obstacle of our study is the

correlations
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absence of a normal control group. Normal subjects
were included in most of the mentioned studies that
report increased levels of PLT-Monocyte aggregates.

These controversial results may be attributed to
differences in the virus species of SARS-CoV infecting the
patients, the time of blood sampling, and the
consumption of platelet inhibitors like aspirin.
Additionally, platelet count may be a confounding factor
for the level of platelet-monocyte aggregates.

As expected, lymphocytopenia was significantly
higher in severe COVID-19 patients compared to
mild/moderate patients. Furthermore, significantly
higher levels of LDH and CRP in severe patients indicate
a more intense inflammatory environment. These
results are consistent with previous studies on COVID-19
patients (65) and support the findings of Xiang et al,,
who reported severe lymphocytopenia, inflammatory
cytokine escalation, and elevated CRP and LDH in fatal
COVID-19 patients (66). Xiang et al. also observed severe
tissue damage, lymphocyte apoptosis, and SARS-CoV-2
RNA accumulation in the spleen and hilar lymph node.
However, our findings for coagulation tests, including
PT and PTT, were not statistically different between our
two study populations, which is consistent with a
previous investigation (67).

We also observed a relatively strong positive
correlation between the hospitalization period and CRP,
a well-known inflammation biomarker, as well as
between CRP and neutrophil count and LDH. In contrast,
we observed a strong reverse correlation between the
hospitalization period and O2 saturation, O2 saturation
and neutrophil count, and CRP and LDH. Furthermore,
we found a negative correlation between lymphocyte
count and CRP and LDH. These findings are consistent
with previous studies (68, 69) and suggest that a more
inflammatory environment is associated with more
severe clinical outcomes in COVID-19 patients.

5.1. Conclusions

Overall, the present study did not find any significant
correlations between IFITM3 gene expression and
platelet-monocyte aggregate levels with disease
outcomes in COVID-19 patients. The research aimed to
investigate the relationship between these biomarkers
and COVID-19 severity to gain a better understanding of
the disease mechanisms and potential treatment
targets. While previous studies have shown the role of

Shiraz E-Med ]. 2024; 25(10): 146016

IFITM3 in eliminating viral infections, the results of this
study did not show a clear association with COVID-19
severity. Monitoring inflammatory and coagulation
markers remains crucial for managing COVID-19
patients. Further investigations with larger sample sizes
as well as the investigation of aggregates with other
sensitive methods may provide more insights into the
mechanisms involved.
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