
Shiraz E-Med J. 2024 October; 25(10): e146016 https://doi.org/10.5812/semj-146016

Published Online: 2024 September 11 Research Article

Copyright © 2024, Panahi et al. This open-access article is available under the Creative Commons Attribution 4.0 (CC BY 4.0) International License

(https://creativecommons.org/licenses/by/4.0/), which allows for unrestricted use, distribution, and reproduction in any medium, provided that the original

work is properly cited.

The Correlation of Platelet-Monocyte Aggregate Formation and IFITM3

Gene Expression with COVID-19 Severity

Fatemeh Panahi 1 , Mohammad Jafar Sharifi 1 , 2 , Nahid Nasiri 1 , 2 , * , Gholamhossein Tamaddon 1 , 2 , **

1 Division of Laboratory Hematology and Blood Banking, Department of Medical Laboratory Sciences, School of Paramedical Sciences, Shiraz
University of Medical Sciences, Shiraz, Iran
2 Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz,
Iran

*Corresponding Author: Division of Laboratory Hematology and Blood Banking, Department of Medical Laboratory Sciences, School of Paramedical Sciences, Shiraz
University of Medical Sciences, Shiraz, Iran. Email: nahid.nasiri89@gmail.com
**Corresponding Author: Division of Laboratory Hematology and Blood Banking, Department of Medical Laboratory Sciences, School of Paramedical Sciences, Shiraz
University of Medical Sciences, Shiraz, Iran. Email: tamaddon.g@gmail.com

Received: 17 February, 2024; Revised: 2 July, 2024; Accepted: 7 July, 2024

Abstract

Background: Platelet-leukocyte aggregates have been implicated in various infectious and inflammatory diseases. The

Interferon-induced transmembrane protein 3 (IFITM3) protein plays a role in eliminating viral infections, but its role in the

severity of COVID-19 is not well understood.

Objectives: We aimed to investigate the correlation between IFITM3 mRNA expression and platelet-monocyte complex levels

with the severity of COVID-19, as well as various inflammatory and coagulation markers.

Methods: We conducted a cross-sectional study on 54 COVID-19 patients, classified into severe and mild/moderate subgroups.

Demographics and laboratory findings were extracted from patients' medical records. We measured IFITM3 mRNA expression in

patients' buffy coats using q-RT-PCR and used flow cytometry with CD61 and CD14 markers to measure platelet-monocyte

aggregates.

Results: No significant difference was found in IFITM3 mRNA expression levels or platelet-monocyte complexes between

severe and mild/moderate groups (P = 0.067 and P = 0.056). Lymphocyte counts were significantly higher in the mild/moderate

subgroup (21.7 ± 8.9 vs 16.3 ± 10.9, P = 0.02), while neutrophil counts were significantly higher in severe patients (78.3 ± 12.2 vs 72.3

± 9.9, P = 0.01). Additionally, levels of CRP and LDH were significantly higher in severe COVID-19 patients (P = 0.01 and P = 0.001,

respectively). A strong positive correlation was observed between the hospitalization period and CRP, CRP with neutrophils and

LDH, as well as between O2 saturation and lymphocytes (P < 0.001, P = 0.0003, P = 0.002, and P = 0.005, respectively).

Conclusions: Our findings suggest that IFITM3 gene expression and platelet-monocyte aggregate levels do not correlate with

disease outcomes in COVID-19. However, further investigations with larger sample sizes are needed to better understand the

mechanisms involved. Monitoring inflammatory and coagulation markers remains important for managing COVID-19 patients.
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1. Background

Coronavirus Disease 2019 (COVID-19), a viral

infectious disease, generally causes severe respiratory

syndrome and gastrointestinal and central nervous

system complications in patients infected by the severe

acute respiratory syndrome coronavirus 2 (SARS-CoV-2)

(1). The COVID-19 pandemic has posed a severe global

burden, claiming more than 0.8 million lives

throughout the world between December 2019 and

August 2020 (2, 3). Cytokine storms in COVID-19 patients

can cause intensive inflammatory events and a highly

pro-thrombotic environment, leading to thrombotic

complications (4). Thromboembolic complications are

considered life-threatening in COVID-19 patients (5).

The prothrombotic state observed in COVID-19

patients is multifactorial, and platelets play an
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indispensable role in initiating the thrombotic process.

Therefore, platelet activities and functions serve as

potential hematologic parameters for monitoring

thrombotic complications in COVID-19 patients (6, 7).

Studies have shown that platelets in COVID-19 patients

secrete elevated levels of IL-1beta, soluble CD40L (8),

serum circulating serotonin, and PF4 compared to

healthy controls. Moreover, platelet activation cell

markers, including P-selectin and CD63, are increased in

critically ill COVID-19 patients, indicating a hyperactive

phenotype of platelets (5).

Platelets play a crucial role in inflammation and

immunity by modulating various leukocyte functions

through the release of inflammatory mediators as well

as direct cell-cell interaction. Previous studies have

found that levels of circulating platelet-leukocyte

aggregates increase in patients with inflammatory or

thrombotic conditions (9).

Platelet-leukocyte interactions lead to leukocyte

mobilization to the inflammation zone, the release of

pro-inflammatory mediators, and neutrophil

extracellular traps (NET) by leukocytes, oxidative burst,

and phagocytosis (10-14). The platelet-leukocyte

aggregates are associated with various thrombotic and

inflammatory conditions, including severe lung

injuries, rheumatoid arthritis, inflammatory bowel

disease, and cerebrovascular and cardiovascular disease

(15-19). The most important receptors involved in

platelet-leukocyte aggregates include P-selectin (CD-

62p), CD41/CD61 complex (Glycoprotein IIb/IIIa), and

C40L on the platelets, and PSGL-1, Mac-1, and CD40 on the

leukocytes (20-22). Monocytes have been shown to have

a higher affinity for platelet complexes than other

leukocytes, and these complexes serve as a more

sensitive marker for platelet activation than P-selectin

(23). The interaction between monocytes and platelets

among leukocytes represents the most significant

binding affinity between P-selectin and PSGL-1 (24-26).

Platelet activation and platelet-leukocyte interaction

have been established in the pathophysiology of various

viral infections, such as the dengue virus, human

immunodeficiency virus (HIV), and influenza virus (27-

34). Recent studies have also reported that COVID-19

patients have a higher level of activated platelets and

increased interaction of platelets with neutrophils,

monocytes, and T cells (35). Moreover, platelet-monocyte

aggregate formation results in the expression of tissue

factor in monocytes via P-selectin/αIIb/β3 integrin-

mediated signaling. The binding of tissue factor with

FVII proceeds coagulation cascade activation (5).

Interferon-induced transmembrane protein 3

(IFITM3) is a small protein that plays crucial roles

against viral infection in both acquired and innate

immune responses (36-45). Interferon-induced

transmembrane protein 3 protein is commonly

expressed on endosomes and lysosomes and eliminates

the fusion of the viral membrane with the host cell

membrane in a wide range of capsid viruses like

influenza, Ebola, and Marburg (46). Moreover, IFITM3 is

active against vesicular stomatitis virus, HIV, respiratory

syncytial virus, and Zika virus (47, 48). In addition,

IFITM3 is involved in several cellular processes like

differentiation, apoptosis, cell adhesion, and

modulation of immune cells which can boost immunity

against influenza A, West Nile, and dengue viruses, and

SARS-CoV (36, 39, 49, 50).

Given the significant social and economic burden of

COVID-19, along with the important roles of platelet-

monocyte aggregates in initiating inflammation and

thrombosis, as well as the pivotal role of IFITM3 in virus

elimination, this study sought to explore the association

of platelet-monocyte aggregates and IFITM3 mRNA

levels with coagulation tests and disease progression in

patients with severe and mild/moderate COVID-19.

2. Objectives

By investigating the relationship between these

biomarkers and COVID-19 severity, we hope to gain a

better understanding of the underlying mechanisms of

the disease and identify potential targets for future

treatments. This study may also help to identify patients

who are at higher risk for thrombotic complications and

guide clinical decision-making.

3. Methods

3.1. Study Setting and Subjects

This cross-sectional study was conducted on 54

COVID-19 patients admitted to Ali-Asghar Hospital,

Shiraz, Iran, from 2020 to 2021. The sample size was

calculated according to the formula n = (Z1-α/2+Z1-

β)2/cr2+3. The inclusion criteria were a positive PCR test

for SARS-CoV-2, age over 18, and hospitalization time of
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less than 72 hours before sampling. Patients with a

history of comorbidities, including cardiovascular

disease, previous respiratory disease, cancer, infection

with other acute or chronic viral infections like HIV, HCV,

and influenza, were excluded from our study. Moreover,

patients who were pregnant or under previous

treatment with anticoagulants and antiplatelet

regimens were excluded. The included patients were

divided into two subgroups: Severe and mild/moderate,

according to the WHO classification of COVID-19 severity

based on SpO2 (mild/moderate > 94%, severe < 94%).

Written informed consent was obtained from all eligible

patients before their inclusion in the study.

3.2. Assessment of Medical Records of the Patients

Due to incomplete clinical files, some patients had to

be excluded, leaving a final count of 54 patients. The

general characteristics of the patients, including age,

gender, and hospitalization period, were extracted from

their medical records. Moreover, clinical tests including

PT, PTT, INR, CBC indices (WBC, RBC, Hg, Lymphocyte,

Neutrophil, and platelet count), O2 saturation, LDH, and

C-reactive protein (CRP) were obtained from the medical

records of the patients.

3.3. Sample Preparation

Four milliliters of venous blood samples were

collected in two tubes, 2 ml each, with K2EDTA for each

patient according to standard protocol. One series of

tubes was assigned for flow cytometry. Another series

was centrifuged at 3000 rpm for 7 minutes, and buffy

coats were obtained in 1.5 mL micro-tubes and stored at

-20°C until subsequent use.

3.4. Quantitative Real-time RT-PCR (q-RT-PCR)

To evaluate the mRNA expression level of the IFITM3

gene in the patients, q-RT-PCR was performed. First, RBCs

in buffy coat samples were removed by adding RBC

lysing solution and then washed with PBS three times.

Then, the total RNA of buffy coat samples was isolated

using Trizol (Invitrogen) according to the

manufacturer’s protocol. The quality and quantity of

extracted RNA were evaluated using Nanodrop (Thermo

ScientificTM) and agarose gel electrophoresis. Next,

single-strand cDNA synthesis was conducted using Easy

cDNA Synthesis Kit (ParstousTM, Iran) according to the

manufacturer’s instructions. To check the accuracy of

the cDNA synthesis reaction, qPCR with a housekeeping

gene primer, GAPDH, was carried out for all synthesized

cDNA samples (the sequence and product size of the

primers are shown in Table 1). After that, q-PCR was

performed using the Cycler Rotor Gene Q instrument

(Qiagen, Germany) with SYBR Green Master Mix

(ParstousTM, Iran). The reaction contained SYBR Green

(10 µL), cDNA (1 µL), forward and reverse primer (20

pmol), and nuclease-free water to a final volume of 20

µL. The thermocycling program included an initial heat

activation and denaturation at 94°C for 10 minutes,

followed by 40 cycles of 95°C for 15 seconds, an

annealing step for 30 seconds at 60°C, and an extension

step for 30 seconds at 72°C. The mRNA expression level

of IFITM3 was normalized with the GAPDH mRNA

expression level. Melting curve and amplification plot

analysis were performed to check qPCR reaction

specificity. Moreover, the PCR products were

electrophoresed on 2% agarose gel to evaluate the

primers’ specificity. The relative expression level was

calculated using the 2-∆Ct method as explained

elsewhere. The reactions were conducted with at least

two replicates and in the presence of no template

control and reference gene in each experiment. All qPCR

experiments were conducted according to standard

protocol.

3.5. Evaluation of Platelet-Monocyte Aggregates by Flow
Cytometry

First, 50 μL of whole blood of COVID-19 patients were

incubated with FITC-labeled anti-CD14 (Clone: HCD14,

BioLegend) along with a PE-labeled anti-CD61 antibody

(Clone: VIPL2, BD Biosciences, CA, USA) for 20 minutes in

the dark at room temperature. Then, red blood cells

were lysed with 1x ammonium chloride. Finally, samples

were analyzed on BD FACSCalibur™ flow cytometer (BD

Biosciences, CA, USA). The detection results were plotted

on a CD14 vs. SSC dot plot for mononuclear cells (MNCs).

Then, the CD14+ cells were plotted on a CD14 vs. CD61 dot

plot. The CD14+CD61+ complexes were considered

platelet-monocyte aggregates. Finally, data were

processed using FlowJo TM v10 software.

3.6. Statistical Analysis

The data were analyzed using GraphPad Prism 9. The

Shapiro test was used to check the normal distribution
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Table 1. The Sequence and Product Size of the Primers

Genes Sequences (5’ to 3’) PCR Product Size (bp)

IFITM3 173

Forward ATAGCATTCGCCTACTCCGTG

Reverse CCATAGGCCTGGAAGATCAGCA

GAPDH 110

Forward CACCAGGGCTGCTTTTAACTCTGGA

Reverse CCTTGACGGTGCCATGGAATTTGC

of the data. To determine the difference in the mean of

the data, t-tests or Mann-Whitney tests were used for

parametric and non-parametric data, respectively. The

data were considered significant when the P-value was

below 0.05. The correlation of variables was evaluated

using the Spearman test. The r-value of 1 and -1 was

considered a strong positive and reverse correlation,

respectively.

4. Results

4.1. Patient Characteristics

This cross-sectional study included 54 hospitalized

COVID-19 patients. According to the WHO classification

for COVID-19 severity, 38.9% (n = 21) of the patients were

classified as severe, and 61.1% (n = 33) as mild/moderate.

Among those with severe COVID-19, 11 patients were male

and 10 were female, while those with mild/moderate

form comprised 15 males and 18 females. Furthermore,

the majority (88.9%, n = 48) of the patients were in non-

ICU wards, but six patients were in the ICU. Two subjects

with severe COVID-19 expired during the study period.

The overall average age of the patients was 49 ± 16.3

years, with a higher mean age observed in those with

severe form compared to mild/moderate (52 ± 14.5 vs. 41

± 17.38, respectively).

As expected, the lymphocyte count was significantly

higher in the mild/moderate group (21.7 ± 8.9 vs. 16.3 ±

10.9, P = 0.02), while the neutrophil count was

significantly higher in severe patients (78.3 ± 12.2 vs. 72.3

± 9.9, P = 0.01). Furthermore, the levels of CRP and LDH

were significantly higher in severe COVID-19 patients (P

= 0.01 and P = 0.001, respectively). O2 saturation level

was significantly higher in the mild/moderate group

compared to severe patients (94.8 ± 0.9 vs. 85.4 ± 11.6, P <

0.001) (Table 2).

4.2. Interferon-Induced Transmembrane Protein 3 (mRNA
Expression)

To evaluate the mRNA expression level of the IFITM3

gene, qRT-PCR was carried out. As shown in Figure 1, no

significant difference was observed in the expression of

the IFITM3 gene between severe and mild/moderate

COVID-19 patients (P = 0.067).

Figure 1. The relative mRNA expression of interferon-induced transmembrane
protein 3 (IFITM3) gene in severe and mild/moderate COVID-19 patients. No
significant difference was found

4.3. Platelet-Monocyte Aggregate Formation Level

A flow cytometry assay was carried out to detect CD61

and CD14 cell surface markers to measure the level of

platelet-monocyte complex formation. Although the

percentage of MNCs was significantly higher in

mild/moderate COVID-19 patients compared to severe

patients (P = 0.032), there was no significant difference

in platelet-monocyte complex formation between the
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Table 2. Patients’ Characteristics and Their General Laboratory Findings

Parameter
Severe (n = 21) Mild/Moderate (n = 33) Total (n = 54)

P-Value
Mean (± SD) Min-Max Mean (± SD) Min-Max Mean (± SD) Min-Max

Age 52 ± 14.5 32-86 47 ± 17.38 21 - 84 49 ± 16.3 23 – 86 0.28

HP (days) 10.48 ± 10.1 4-36 4.9 ± 1.0 3 - 7 7 ± 6.8 3 - 36 0.17

O 2 saturation 85.4 ± 11.6 51-93 94.8 ± 0.9 93 - 97 91.1 ± 8.5 51 - 97 < 0.001

WBC (count × 10 3) 6.6 ± 3.0 3.1-15.4 5.3 ± 1.7 2.5 - 9 5.8 ± 2.3 15.4 - 2.50 0.16

Lymphocyte 16.3 ± 10.9 5.6 - 38.6 21.7 ± 8.9 7.5 - 39.9 19.6 ± 10.0 5.6 - 39.9 0.02

Neutrophil 78.3 ± 12.2 53.6 - 92.2 72.3 ± 9.9 52.2-84.3 74.7 ± 11.1 52.2 - 92.2 0.01

RBC (count × 10 6) 4.8 ± 0.7 2.8 - 6.3 4.7 ± 0.5 3.7-5.9 4.8 ± 0.6 2.8 - 6.31 0.93

Hg (mg/dL) 13.7 ± 2.1 8.5 - 17.3 14.0 ± 1.6 10.9-19.7 13.9 ± 1.8 8.5 - 19.7 0.82

PLT count (count × 10 3) 182 ± 70 51 - 360 184 ± 60 75-329 183 ± 63 51 - 360 0.91

PT (second) 15.2 ± 2.8 11.5 - 22.9 15 ± 1.5 13-18 15.1 ± 2 11.5 - 22.9 0.76

INR (IU) 1.3 ± 0.3 0.8 - 2.3 1.2 ± 0.2 1-1.6 1.2 ± 0.2 0.8 - 2.3 0.82

PTT (second) 35 ± 8.9 22 - 65 37.3 ± 17.1 25-120 36.4 ± 14.5 22 - 120 0.9

CRP 58.8 ± 32.9 3 - 90 36 ± 28.2 3-88 44.9 ± 31.9 3 - 90 0.01

LDH 633 ± 157 279 - 859 498 ± 158 228-987 549 ± 169 228 - 987 0.001

two study groups (P = 0.056) (Figures 2 and 3). The key

receptors contributing to platelet-leukocyte aggregates

encompass P-selectin (CD-62p), CD41/CD61 complex

(Glycoprotein IIb/IIIa), and CD40L on platelets, as well as

PSGL-1, Mac-1, and CD40 on leukocytes (20-22).

Monocytes exhibit a greater affinity for platelet

complexes compared to other leukocytes, making these

complexes a more sensitive marker for platelet

activation than P-selectin (23).

Figure 2. The comparison of platelet-monocyte aggregate formation level in severe
and mild/moderate COVID-19 patients. No significant difference was found.

Figure 3. The comparison of monocyte cells level in severe and mild/moderate
COVID-19 patients

4.4. Correlation of Variables

The Spearman statistical test showed that

lymphocyte and MNC counts were positively correlated

with platelet-monocyte aggregate formation (P = 0.04,

and P < 0.001, respectively), while the neutrophil count

was inversely correlated with platelet-monocyte

aggregate formation (P = 0.01, r = -0.32) (Figure 4).

However, the IFITM3 mRNA level was not correlated with

any parameter. A strong positive correlation was

observed between the hospitalization period and CRP (P
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< 0.001), CRP with neutrophils and LDH (P = 0.0003 and

P = 0.002, respectively), as well as between O2 saturation

and lymphocytes (P = 0.005). The correlation values of

other variables are shown in Figure 4 as well.

Figure 4. The correlation of the clinical and laboratory findings in COVID-19 patients

5. Discussion

In this study, we sought to investigate the potential

correlation between IFITM3 mRNA expression levels and

platelet-monocyte complex formation with COVID-19

severity, as well as various inflammatory and

coagulation markers, in a cohort of 54 hospitalized

COVID-19 patients. We aimed to gain insight into the

underlying mechanisms of COVID-19 pathogenesis and

identify potential targets for therapeutic interventions.

We determined the mRNA expression level of IFITM3

in the buffy coat of COVID-19 patients using qRT-PCR and

found no significant difference between our two study

groups. Previous studies have reported that IFITMs (1, 2,

and 3) can eliminate viral pathogens (36-50). However,

the pro- and anti-viral activities of IFITMs have been

reported for coronaviruses. A toxicogenomic analysis

reported that IFITM3 is upregulated in SARS-CoV-2-

infected human bronchial epithelium (51).

Interferon-induced transmembrane proteins have

been found to hinder the entry of human coronaviruses,

including SARS-CoV-1, SARS-CoV-2, and MERS-CoV, in

artificial experimental conditions where viral particles

were pseudotyped with Spike (S) proteins and cell lines

overexpressed IFITMs (39, 52-56). However, a recent study

found that endogenous IFITM expression assists SARS-

CoV-2 membrane fusion with host human primary lung

cells. The study showed that genuine SARS-CoV-2 Spike

proteins hijack IFITMs to promote efficient viral

infection and suggested that targeting IFITMs could

inhibit SARS-CoV-2 infection of human lung cells (55).

The reason behind the contradictory effects of

overexpressed and endogenous IFITMs is not yet

completely understood. However, it has been reported

that specific mutations in IFITM3 affecting its topology

may change its inhibitory role to an enhancer of

coronavirus infection (52, 57). Moreover, two SNPs of

IFITM3 have been associated with the risk of acquiring

SARS-CoV-2 infection (56).

The small population of the present study may

prevent the finding of the possible relationship between

IFITM3 gene expression level and the prognosis of

COVID-19 patients. Another point to consider is that

most of the mentioned studies have examined the role

of IFITM3 protein in the resistance to virus entry in lung

epithelial cells, but our study examined the expression

of this gene in blood monocytes. It is important to

consider, however, that our study had the advantage of

involving human subjects rather than an in-vitro

experiment. Further studies with larger pre-genotyped

study subjects may shed light on the mechanisms

behind IFITM3.

We used flow cytometry to detect CD14, a well-known

monocyte marker, and CD61 (GPIIIa), a

platelet/megakaryocyte marker, to evaluate the level of

platelet-monocyte complex formation. Our findings

showed that the level of PLT-Monocyte aggregates was

not statistically different between our study groups.

Activated platelets are connected with monocytes in

PLT-Monocyte aggregates via P-selectin (58). We know

that monocytes have fundamental roles in

thromboinflammatory disease progression by their pro-

inflammatory and coagulation roles. Increased levels of

PLT-Monocyte aggregates are documented in many

inflammatory and infectious diseases (58). There are

well-established studies reporting increased levels of

PLT-Monocyte aggregates in COVID-19 with positive

correlations with more severe outcomes and

thrombotic events (59-62). Inconsistent results, which

show no or negative correlation of PLT-Monocyte

aggregates with disease severity, have also been

documented (63, 64). One obstacle of our study is the
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absence of a normal control group. Normal subjects

were included in most of the mentioned studies that

report increased levels of PLT-Monocyte aggregates.

These controversial results may be attributed to

differences in the virus species of SARS-CoV infecting the

patients, the time of blood sampling, and the

consumption of platelet inhibitors like aspirin.

Additionally, platelet count may be a confounding factor

for the level of platelet-monocyte aggregates.

As expected, lymphocytopenia was significantly

higher in severe COVID-19 patients compared to

mild/moderate patients. Furthermore, significantly

higher levels of LDH and CRP in severe patients indicate

a more intense inflammatory environment. These

results are consistent with previous studies on COVID-19

patients (65) and support the findings of Xiang et al.,

who reported severe lymphocytopenia, inflammatory

cytokine escalation, and elevated CRP and LDH in fatal

COVID-19 patients (66). Xiang et al. also observed severe

tissue damage, lymphocyte apoptosis, and SARS-CoV-2

RNA accumulation in the spleen and hilar lymph node.

However, our findings for coagulation tests, including

PT and PTT, were not statistically different between our

two study populations, which is consistent with a

previous investigation (67).

We also observed a relatively strong positive

correlation between the hospitalization period and CRP,

a well-known inflammation biomarker, as well as

between CRP and neutrophil count and LDH. In contrast,

we observed a strong reverse correlation between the

hospitalization period and O2 saturation, O2 saturation

and neutrophil count, and CRP and LDH. Furthermore,

we found a negative correlation between lymphocyte

count and CRP and LDH. These findings are consistent

with previous studies (68, 69) and suggest that a more

inflammatory environment is associated with more

severe clinical outcomes in COVID-19 patients.

5.1. Conclusions

Overall, the present study did not find any significant

correlations between IFITM3 gene expression and

platelet-monocyte aggregate levels with disease

outcomes in COVID-19 patients. The research aimed to

investigate the relationship between these biomarkers

and COVID-19 severity to gain a better understanding of

the disease mechanisms and potential treatment

targets. While previous studies have shown the role of

IFITM3 in eliminating viral infections, the results of this

study did not show a clear association with COVID-19

severity. Monitoring inflammatory and coagulation

markers remains crucial for managing COVID-19

patients. Further investigations with larger sample sizes

as well as the investigation of aggregates with other

sensitive methods may provide more insights into the

mechanisms involved.
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