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Abstract

Background: Artificial intelligence (AI) can play a significant role in the future of thyroidology. Thyroid nodules are common conditions that may benefit
from Al through more accurate and efficient diagnosis, risk stratification, and medical or surgical management.

Objective: This paper aims to review the latest developments in Al applications for diagnosing and managing thyroid nodules and cancers.

Methods: English full-text articles published in the PubMed and Google Scholar databases from January 2014 to March 2024 were collected and reviewed to
provide a comprehensive understanding of the topic. A total of 45 studies were selected based on relevance, robust methodology, statistical significance, and
broader topic coverage.

Results: Artificial intelligence has emerged as a powerful tool for managing thyroid nodules. First, several studies have demonstrated how Al-powered
ultrasound interpretation enhances the diagnosis and classification of nodules while reducing the need for invasive fine-needle aspiration (FNA) biopsies.
Second, Al significantly improves the cytopathological differentiation between benign and malignant thyroid nodules by minimizing reliance on pathologists'
expertise and implementing standardized diagnostic criteria. When cytopathology is inconclusive, Al also aids in identifying molecular markers from omics
data, distinguishing between normal and cancerous cells. Moreover, Al tools have been developed for prognosis assessment, predicting distant metastasis,
recurrence, and surveillance by integrating medical imaging features with molecular and clinical factors. Additionally, some Al tools are designed for
intraoperative evaluation, improving surgical techniques and reducing complications during thyroidectomy. In non-surgical treatments, several models have
been developed to optimize therapeutic doses of radioactive iodine (RAI) and predict the outcomes of new drug formulations.

Conclusions: Artificial intelligence has the potential to assist physicians in accurate thyroid nodule diagnosis, classification, decision-making, optimizing
treatment strategies, and improving patient outcomes. However, there are still limitations to this technology. Artificial intelligence-driven tools require further
advancements before they can be fully integrated into clinical practice and replace specialists.

Keywords: Thyroid Nodule, Artificial Intelligence, Machine Learning (ML), Deep Learning (DL), Diagnose, Prognosis,
Treatment, Ultrasound, Cytology, Tumor Staging
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1. Context as diabetes mellitus and cancer (2, 3). Moreover, the
demand for efficient healthcare delivery, while
minimizing virus transmission during the COVID-19

1.1. Rationale pandemic, highlighted Al's potential in enabling digital

Artificial intelligence (AI) refers to the development ~ Medicine (4, 5). Artificial intelligence is expected to
of sophisticated computer systems and programs that ~ continue playing a pivotal role in the future of
emulate functions typically requiring human cognitive ~ Medicine.
abilities such as learning, reasoning, decision-making, Artificial intelligence in thyroidology has been
and problem-solving (1). Over the past few decades, Al explored from different perspectives, showing great
has gained significant traction in the medical field,  potential, particularly in the diagnosis and
especially in addressing major global health issues,such ~ management of thyroid nodules and cancers. Accurate
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detection and risk stratification of thyroid nodules can
significantly aid clinicians in making informed
decisions regarding further interventions (6). Thyroid
nodules are becoming more prevalent in clinical
practice, primarily due to the increased number of
incidental diagnoses from the extensive use of advanced
medical imaging techniques. While most thyroid
nodules are benign, some exhibit malignant features (7).
Over recent decades, thyroid malignancies have shown
considerable growth among endocrine system cancers.
Fortunately, most thyroid malignancies are less
aggressive and can be managed effectively with timely
surgical and medical interventions (8). However, delays
in management can occur because thyroid cancers are
often asymptomatic in their early stages, and there is a
shortage of trained personnel and diagnostic resources,
especially in underfunded healthcare settings (9).

This issue is exacerbated by the fact that conventional
diagnostic methods are often time-consuming and
prone to diagnostic errors. These errors can arise from
the complexity of the diagnostic process or human
cognitive biases and limitations. For example, the
analysis of a fine-needle aspiration (FNA) biopsy may not
always yield accurate or conclusive results due to
inadequate sample preparation, the complexity of
certain thyroid malignancies, and the subjective nature
of the interpretative process, which heavily relies on the
pathologist’s knowledge and expertise (10). Additionally,
variations in thyroid test serum levels among different
populations can add to this complexity (11).
Incorporating Al into healthcare workflows could
enhance diagnostic accuracy while reducing healthcare
providers' workloads.

This study aims to review current Al applications in
the diagnosis and management of thyroid nodules and
thyroid cancers. We also explore the challenges and
potential improvements needed for future Al
implementation. The studies reviewed in this paper
were selected based on their relevance, robust
methodology, statistical significance, and broader
coverage of related topics rather than focusing on a
specific area in-depth.

1.2. Introduction to Artificial Intelligence Technologies

Artificial intelligence encompasses various subsets
that drive innovation in medicine. Machine learning
(ML), a fundamental subset of Al focuses on developing
systems that can recognize patterns in data without the
need for pre-programming, unlike statistical models,
and can make predictions or decisions based on new
data. Machine learning is powerful in medicine by
identifying logical relationships from large datasets

sourced from electronic medical records, imaging
results, clinical databases, and more (12). Deep learning
(DL), a specialized branch of ML, employs an algorithmic
architecture with multiple layers of artificial neurons,
inspired by the structure and function of the human
brain, to interpret vast amounts of unstructured data
such as medical images, automatically learning their
discriminative  features (13). Natural language
processing (NLP) allows computers to understand and
respond to human language. Currently, NLP is gaining
popularity for analyzing large amounts of unstructured
medical textual data and using chatbot interfaces to
answer queries from healthcare professionals and
patients (14).

1.3. A Summary of the Approach to Thyroid Nodules

When a thyroid nodule is detected through palpation
or as an incidental finding in head and neck imaging, a
series of investigations are conducted to establish a
definitive diagnosis and guide appropriate therapy.
First, serum thyroid-stimulating hormone (TSH) levels
are measured to assess the functional status of the
nodules. Low serum TSH concentrations are indicative
of hyperfunctional nodules, for which radioactive
iodine (RAI) ablation therapy can be a relatively
successful treatment option. Additionally, an ultrasound
(US) examination is performed to evaluate the
characteristics of the thyroid nodules and assess the risk
of malignancy based on a standardized, evidence-based
approach called thyroid imaging reporting and data
systems (TI-RADS). The TI-RADS score determines
whether a thyroid nodule requires a biopsy by
identifying higher-risk features such as
hypoechogenicity, microlobulation, irregular margins,
microcalcification, and a taller-than-wide shape.

Subsequently, an FNA biopsy is performed, which is
the gold standard for pre-operative definitive diagnosis
and helps determine whether surgery or continued
surveillance is necessary. The treatment depends largely
on the FNA cytopathology and US findings. When the
FNA biopsy result is indeterminate for malignancy,
molecular testing can be utilized for diagnosis and to
create individualized therapeutic plans (Figure 1) (15).

2. Methods

To review the most recent literature on Al
applications in the assessment of thyroid nodules, we
conducted a comprehensive search of articles published
from January 2014 to March 2024 in the PubMed and
Google Scholar databases. Our search was restricted to
English, full-text articles focused on human subjects and
classified as original studies, systematic reviews, and
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Figure 1. Diagnostic approach to thyroid nodule based on Harrison's principles of internal medicine. Green areas represent diagnosis topics, and yellow areas relate to
treatment. This review focuses on the advancements of artificial intelligence (AI) in the highlighted topics (15).

meta-analyses. We used various combinations of the
following MESH terms: "Artificial intelligence", "machine
learning", "deep learning", "thyroid nodule", "thyroid
cancer", "diagnosis", "ultrasonography", 'radiomics",
"fine needle aspiration", "nuclear medicine", "molecular
diagnostic  techniques", "prognosis", "neoplasm
staging", "therapeutics", and "thyroidectomy". Figure 2
illustrates the distribution of our search results across
different aspects of Al applications in thyroid nodule
evaluation over the past five years. The details of our
search strategy are provided in Appendix in
Supplementary File.

Titles and abstracts of the search results were
screened to select relevant articles and gain a broad
understanding of the topic and study designs. After full-
text screening of the relevant articles, 45 studies were
selected based on their robust methodology, statistical
significance, and broader topic coverage, rather than an

in-depth exploration of a specific area. Additionally, two
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authors manually reviewed the references to ensure
inclusion of any further pertinent sources.

3. Results

We divided our investigations into three main
sections to cover all aspects of Al applications in thyroid
nodules: Diagnosis, prognosis, and treatment. We also
summarized the selected studies used for writing this
review in Table 1.

3.1. Diagnosis

3.1.1. Artificial Intelligence Application in Medical Imaging

Like innovative US methods such as 3-dimensional US
and contrast-enhanced ultrasonography (CEUS),
systems based on a combination of Al with both
conventional and novel US methods have shown
considerable promise in augmenting medical imaging
tasks (16, 17).
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Figure 2. Trends of topics regarding artificial intelligence (Al) application in thyroid nodules in recent five years

Image segmentation is an imaging preprocessing
task that facilitates the localization of the region of
interest (ROI) and delineation of its perimeters.
Numerous studies have highlighted the superiority of
Al-driven techniques for this purpose by incorporating
detailed, multi-scale contextual features extracted from
two-dimensional US images—features previously not
visible to the radiologist's naked eye. Most of these
studies have used convolutional neural networks (CNN),
such as U-Net as the backbone, a visual transformer, and
various modules like attention or feature fusion
modules to improve the accuracy of thyroid nodule
segmentation tasks. The performance of these models is
typically assessed across public datasets and reported
using the Dice similarity coefficient metrics (16, 18, 19).

Several studies have researched Al performance in
detecting and classifying thyroid nodules in US images.
Some ML algorithms, like random forest classifiers and
artificial neural networks, have shown comparable
performance to radiologists, with an area under the
receiver operating characteristic (AUROC) curve ranging
from 0.60 to 0.95 (20-22). Additionally, various CNN-
based models have been developed to classify thyroid
nodules, demonstrating diagnostic outcomes similar to
those of clinicians (17, 23, 24). A meta-analysis validated
the classification effectiveness of ML, DL, and computer-
aided diagnosis (CAD) systems-assisted thyroid
ultrasonography, reporting high performance indices:

0.92 (0.89 - 0.94) for the summarized receiver operating
characteristic (SROC) curve, 0.88 (0.85 - 0.90) for pooled
sensitivity, and 0.81 (0.74 - 0.86) for pooled specificity
(25).

Due to this promising performance, commercially
available, FDA-approved DL-based CAD systems, such as
S-Detect (Samsung RS80A US system, Seoul, Korea), have
emerged to assist in thyroid ultrasonography. S-Detect
has demonstrated encouraging sensitivity compared to
radiologists, although some studies have highlighted
limitations in specificity and accuracy (61). For example,
Chung et al. showed that S-Detect had superior
sensitivity and negative predictive value (NPV)
compared to junior radiologists, indicating that the
system can effectively identify actual positive cases and
provide reassurance when a negative result is predicted.
This can reduce unnecessary FNA biopsies and false-
negative cases for less experienced radiologists (26).
However, the utility of such systems may be less
pronounced for experienced radiologists with
established diagnostic strategies (27). In settings
without specialized professionals, S-Detect may be
beneficial, but there is a risk of over-reliance on the
system output, particularly by less experienced
radiologists or healthcare professionals without senior
oversight. These CAD systems are designed to work
under radiologists' supervision, with manual input and
settings adjustments required to optimize performance,
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and their output still requires interpretation by
specialists (62).

With the emergence of NLP chatbots showing
promising results in various healthcare fields (63-66),
NLP-powered tools are now being used to generate
radiology reports. Commercially available clinical
decision support programs like RecoMD streamline
recommendations based on radiological reports and
patients' data (61).

Artificial intelligence has also been utilized to
explore the relationship between  ultrasonic
characteristics and lymph node (LN) status. The
integration of ML and DL with features derived from US
and other modalities, such as ultrasound elastography
(USE) and computed tomography (CT), has shown
promise in classifying thyroid nodules and evaluating
LNs (28, 29, 67). Radiomics, a powerful tool for extracting
high-throughput quantitative features from medical
images, has garnered significant attention in thyroid
nodule risk stratification (68). Zhang et al's meta-
analysis indicated that US-based radiomics Al models
had a sensitivity, specificity, and SROC of 0.82, 0.84, and
0.76, respectively, for predicting LN metastasis in
thyroid cancer patients (29). The potential of Al to create
novel thyroid nodule risk stratification systems using
radiomics and parameters beyond conventional US
characteristics will be further explored in the prognosis
section—Al application in staging system design.

The use of radiomics and Al in nuclear medicine is
also expanding, with the potential to assess thyroid
incidentalomas and cytopathologically inconclusive
thyroid nodules by evaluating their secretory status and
malignancy possibility. Studies have shown that ML and
DL algorithms applied to various nuclear medicine
imaging techniques can effectively differentiate benign
and malignant nodules (30). However, methodological
variations, differences in extracted features, limited
training datasets, and a lack of external validations
highlight the need for further research to facilitate the
clinical implementation of Al in nuclear medicine.

3.1.2. Artificial Intelligence Application in Cytopathologic
Diagnosis

An FNA biopsy is the most accurate method for
diagnosing thyroid nodules, with the primary goal of
distinguishing benign from malignant nodules and
avoiding unnecessary thyroidectomy, given that only
about 25% of thyroid cancer diagnoses are truly
malignant (69). However, the accuracy of FNA diagnosis
depends on sample quality, the pathologist's expertise,
and standardized diagnostic criteria. These challenges
can be addressed by implementing Al technologies to
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improve the precision and efficiency of thyroid
malignancy discrimination (10).

One of the main challenges in FNA diagnosis is that
approximately 10% of samples are non-diagnostic due to
inadequate or poor-quality specimens, necessitating
repeat biopsies. Jang et al. developed a hybrid DL model
called FNA-Net to count follicular clusters in unstained
samples and classify samples as non-diagnostic if the
count falls below a specific threshold. This model
achieved an AUC of 0.84 (31). Another study evaluated an
ML algorithm designed to reduce pathologists'
workload by detecting regions of interest (ROI) in whole
slide images distorted by blood or dead space (32).

Several studies have shown Al-driven tools to be
highly accurate in differentiating between benign and
malignant nodules, with accuracy rates ranging from
64% to 100% (33-35). For instance, an ML algorithm
trained on whole slide images achieved a sensitivity of
92%, specificity of 90.5%, and an AUC of 0.932,
comparable to an expert pathologist (AUC: 0.931) (36).
Another group developed a digital image analysis
method using Image] software and Python's sklearn
library to annotate indeterminate thyroid FNA biopsies
(Bethesda III). This model, which outperformed
pathologists (AUC of 0.75 vs. 0.62), demonstrated that Al
and ThinPrep material could improve classification
performance (37). However, some Al tools still face
limitations in classifying poorly differentiated thyroid
carcinoma (PDTC) from differentiated thyroid
carcinoma (DTC) and in misclassifying medullary
thyroid carcinoma (MTC) as benign, challenges even for
professional pathologists (38).

3.1.3. Artificial Intelligence Application in Molecular Markers
Testing

Although FNA biopsy is the most accurate pre-
operative method for classifying thyroid nodules,
around 30% of FNA biopsies are indeterminate,
necessitating diagnostic thyroidectomy for final
diagnosis. Molecular markers can help distinguish
between benign and malignant nodules in these cases
(70). Al has contributed to identifying molecular
markers by analyzing large omics datasets to predict
thyroid nodule malignancy risk. For instance, a neural
network trained on proteomic analysis of 19 proteins
extracted from tissue samples demonstrated accuracies
of 85%, 89%, and 91% in retrospective and prospective
multicenter cohort validations (39).

Artificial intelligence has also been applied to single-
cell RNA-sequencing (scRNA-seq) technology to perform
molecular-based classification of normal and cancerous
cells. Amodel called Ikarus, developed using scRNA-seq
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technology, demonstrated high sensitivity and
specificity when tested on several single-cell datasets of
different cancers (71). Another study used scRNA-seq
analysis of PPARGi coding genes by an ML algorithm,
revealing that these genes are upregulated in papillary
thyroid carcinoma (PTC) cells and can be used to
identify this cancer type (40). Artificial intelligence
applications in scRNA-seq are also valuable for
predicting clinical prognosis and drug sensitivity,
especially for PTC patients (72). Chen et al. developed an
ML-based predictive algorithm for cancer drug response
based on scDNA-seq data, identifying signature genes
related to drug resistance mechanisms and assisting in
targeted drug discovery (41).

3.2. Prognosis

3.2.1. Artificial Intelligence Application in Staging Systems
Design

The management of potentially malignant thyroid
nodules should be guided by various factors, including
tumor type and size (T), lymph node involvement (N),
distant metastasis (M), US characteristics, FNA biopsy
results, and clinical and demographic data. Al and
radiomics can enhance thyroid tumor staging in several
ways. First, some studies have developed Al-powered
systems to distinguish different types of thyroid tumors.
For example, a random forest classifier demonstrated
AUROC values of 0.88 and 0.90 for differentiating
between poorly and well-differentiated thyroid
carcinoma using radiomics features from contrast-
enhanced CT alone and in combination with
clinicopathological characteristics (42).

Second, substantial research focuses on developing
models to detect invasive thyroid malignancies. Most of
these models perform well in predicting extrathyroidal
extension (ETE) and thyroid capsule invasion (TCI) in
PTC by combining medical imaging radiomics features
with clinical factors (68). For instance, a ML algorithm
utilizing multiparametric magnetic resonance imaging
(MRI) radiomics and clinical characteristics predicted
PTC aggressiveness with an AUC of 0.92, whereas relying
solely on clinical factors resulted in poor predictive
performance (AUC: 0.56) (43).

Additionally, several studies have assessed ML-based
tools for identifying key risk factors from demographic,
clinical, biochemical, pathological, and imaging data
that significantly contribute to central or lateral LN
metastasis. Factors such as age, tumor size,
multifocality, ETE, and suspicious US features have been
identified as impactful in designing validated predictive
models and scoring systems (44, 45). Numerous

investigations have also focused on the predictive
accuracy of ML models for forecasting distant
metastasis in thyroid cancers, particularly bone or lung
metastasis. These models, trained on large datasets
containing demographic and clinicopathological
information from cancer registries like surveillance,
epidemiology, and end results (SEER) and the National
Institutes of Health (NIH), have shown encouraging
outcomes (AUC > 0.91) (46, 47).

Several systems for predicting prognosis, recurrence,
and surveillance of thyroid cancers based on T, N, and M
have demonstrated significantly better accuracy than
the 8th edition of the American Joint Committee on
Cancer (AJCC) staging system. Most are trained on
extensive  demographic and clinicopathological
information from public cancer registries (48, 49).
Furthermore, the inclusion of molecular marker data
may enhance the accuracy of these tools. For example, a
study using network analysis and an ML model
evaluated the association of 12 genes with the risk of LN
metastasis in thyroid cancer, identifying the ERBB3 gene
as both a diagnostic marker (AUC = 0.89) and a predictor
of LN involvement (AUC = 0.75) (50). Another ML
algorithm discovered three molecular subtypes by
examining 82 genes associated with higher recurrence
rates, with one subtype linked to a higher rate of RAS
mutations and a lower rate of BRAFV600E mutations
(51).

3.3. Treatment

3.3.1. Artificial Intelligence Application in Improving Surgical
Procedures

The management of thyroid nodules involves both
surgical and conservative approaches (7). Artificial
intelligence can help enhance surgical procedures and
outcomes. Several studies have evaluated intraoperative
Al applications to improve surgical techniques and
prevent common thyroidectomy complications, such as
postoperative hypocalcemia within the first 30 days,
damage to the recurrent laryngeal nerve, and cosmetic
and functional difficulties from surgical scars. Shen et
al. demonstrated that Al-guided ultrasonography based
on the minimum variance algorithm during
thoracoscopic PTC tumor resection led to better
outcomes, including shorter hospitalization length,
reduced blood loss, and decreased postoperative
drainage volume and pain (52). DIL-based models
developed to identify the recurrent laryngeal nerve and
parathyroid glands by analyzing endoscopic films
during surgery have shown promising results in real-
world settings, assisting both junior and senior
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surgeons (53, 54). Neural networks to forecast
postoperative scar severity have also been developed,
helping physicians choose more suitable strategies and
aiding patients in dealing with the psychological
burden of surgical scars. Kim et al. developed a CNN
framework that could assess postoperative scar severity
comparable to dermatologists (AUC = 0.912), though the
model was trained on relatively small datasets of
photographs and clinical information (55).

3.3.2. Artificial Intelligence Application in Non-surgical
Treatment

Recent research has focused on using Al to improve
radioactive iodine therapy (RAIT) for thyroid cancers.
For example, an Al tool analyzed data from 83 adult
patients with differentiated thyroid cancer and
accurately prescribed RAI doses using imaging and
blood testing data from fewer time points than
conventional methods (56). Another study investigated
the effectiveness of a logistic regression model for
predicting RAIT success after thyroidectomy in low-risk
PTC patients. This model, which combined post-RAIT
clinical features and total body scan radiomics, showed
better predictive performance than using clinical
features or radiomics alone (AUC = 0.78 in the validation
set compared to 0.65 and 0.69) (57). Furthermore,
neural networks have been used to predict radiation
exposure doses to the family members of thyroid cancer
patients, helping identify high-risk individuals and
improving treatment strategies (58).

Artificial intelligence also holds significant potential
for identifying therapeutic targets for novel drug
discovery and predicting therapeutic responses by
analyzing and integrating large omics datasets. For
example, Al tools designed a drug targeting Akt1 for
peptide-based treatment of anaplastic thyroid cancer
(59). In another investigation, Al-enabled virtual
screening techniques identified promising therapeutic
targets, such as Kir5.1, to improve treatment outcomes
for patients with recurrent and metastatic thyroid
cancer (60).

4. Conclusions

The development of Al marks the beginning of a new
era in medicine. Artificial intelligence assists physicians
in diagnosing, classifying, and treating thyroid nodules
more accurately and efficiently, while also reducing
specialists' workload. However, several limitations have
hindered the widespread adoption of Al in real-world
practice.

First, many studies rely on small, retrospective,
single-center datasets, which often fail to represent the
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general population. This leads to selection bias, which
can result in spectrum bias—where the performance of
Al tools may not be replicable across diverse clinical
settings. If Al models are trained on datasets that do not
encompass the full spectrum of thyroid conditions,
their generalizability becomes questionable (73). To
address this, future studies should focus on collecting
diverse datasets that include a wide range of thyroid
disorders, including rare and atypical presentations (6).
Additionally, multicenter studies with robust designs
and external validation using different datasets are
needed to enhance Al's reliability. Second, the inherent
complexity of DL models can obscure the reasoning
behind their outputs, leading to mistrust among
healthcare providers and patients. To address this, the
development of explainable Al (XAI) is essential, as it can
provide insights into the decision-making processes of
Al systems and enhance transparency (2). Third, the
effective use of Al tools in medicine requires more than
just technological advancements. Usability is a critical
factor, and Al tools must be seamlessly integrated into
current workflows. A lack of usability can cause
clinicians to resist these innovations, limiting their
potential  advantages. Comprehensive training
programs for healthcare professionals are essential,
focusing on the proper use of Al tools while
emphasizing the importance of critical thinking and
clinical judgment in interpreting Al results. Inadequate
training can lead to the incorrect utilization of these
technologies, potentially increasing diagnostic errors.
Finally, ensuring equal access to Al technologies and
addressing the ethical implications of Al in healthcare is
crucial (74). With sufficient financial support and
careful planning, the substantial capabilities of Al can
be harnessed reliably across the globe.
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Table 1. Artificial Intelligence Performance in Approaching Thyroid Nodules
Year Aim Technique Dataset Sample Size Performance Metrics (Testing Cohort) Reference
. . DL (UNet) +attention 4600 US images
2024 gsmg Alfor US multn;' gating and pyramid us images with>23000 DSC 81.88 (16)
1ssue segmentation pooling modules annotated regions
336 lesions’ CEUS
q q q q i 77
Using Al for dynamic DL (hierarchical temporal . el .
2021 r5” TNOD diagnosis attention network) CEUS images from 1 center NodularGoiter,84 ACC 8018 and Fl score 79.90 (17)
Adenoma, 101 PTC,
and 74 PIMC)
Using Al for US TNOD DL (UNet) + boundary- AUS images public dataset Public 3493 and TN3k: ACC 97.22, F1 score 84.23, DSC 83.64,
2023 (oo ation preserving assembly (TN3k) and a private one from  private 328 US and AUC 92.03private: ACC 97.80, F1score  (18)
& transformer 1 center images 85.81, DSC 85.63, and AUC 9219
. . AUS images public dataset DDTI 626 and
2023 Using Altfi.r USINeID Dt]E(BI.Net' foun?ary Q (DDTI)and a private one from  private 532 US DDTI: DSC 0.757[private: DSC 0.892 (19)
segmentation attention transformer net) ¢ centers images
Pathological diagnosis
confirmed TNODs US features:
Comparing Linear and Ridge-penalty, Lasso- Size, margins, shape, aspect . y .
2019 nonlinear ML models for penalty, Elastic net, RF, k- ratio, capsule, hypoechoic 2(7); bemﬁ?a??iam g‘;?;?:]l /73(;50"1928 0.954 (RF: AUC ()tgst;tign ) (20)
TNOD classification SVM, ANN, k-NN, and NB halo, vascularity, echo, cervical 8 8/0- g
LN status calcification, and
composition
. US and USE features of 2064
2019 8?:5;8%&;2?12%?: i‘;’ LBDA' ]:FI' l;?\lwl/\[I’\IN NB TNOD underwent hemi- or 1314 benign and AUC 0.859-0.924 (RF: AUC 0.986 1)
TNOD - ang (@RI, LRI, ) C'NN total thyroidectomy from 1 750 malignant training/0.924 validation)
center: USE grade, etc.
Using ML for US S s e
. 10 features out of 96 radiomics ANN: Sensitivity 32.3, specificity 74.1, and
2020 £21rléf§$;§denoma and ANN and SVM features extracted from 348 US ;éz adenc?:é?:éfw ACC 79.4/SVM: Sensitivity 90.1, specificity ~ (22)
differentiation from 2 centers 417, and ACC 69.0
10 features covering TI-RADS PTC 484, FIC14,
Using Al for US TNOD categorization extracted from rTc 1, I}odplar
2022 diagnosisbasedonACR CNN (InceptionResNetV2) 1588 USTNODs who fo%llaii:ﬁ::la eh AUC 0.91 (23)
TI-RADS underwent hemi- or total d 70, and
thyroidectomy from 2 centers agenoma 70, an
thyroiditis 32
Using DL for US benign Training: 18049 US images
2021 and malignant TNOD DL (ThyNet) from 2 centers/Testing: 4305 22354 US images AUROC 0.922 (24)
differentiation images from 7 centers
PubMed, Cochrane Library,
Using Al for US benign Embase, Web of Science, China 25 studies with Sensitivity 0.88 (0.85 - 0.90), Specificity
2022 and malignant TNOD Meta-analysis Biology Medicine, and China 17429 USTNOD 0.81(0.74-0.86),and AUC 0.92(0.89 - (25)
differentiation National Knowledge images 0.94)
Infrastructure
S-Detect: ACC 88.48, sensitivity 92,
Comparing a CAD specificity 87.9, NPV 98.40 [ -month and
system performance Patients evaluated with US and 4-year experienced radiologists: ACC
2020 and3levels of DL (S-Detect) cytology for TNOD from 1 197 patients 83.03, Sensitivity 64 and 72, Specificity (26)
experienced radiologists center 86.4 and 85, NPV 93.08 and 94.44/9-year
in TNOD US evaluation radiologists: ACC 95.76, Sensitivity 84,
Specificity 97.9, NPV 97.16
S-Detect: ACC 77.0, sensitivity 91.3,
. specificity 65.2, NPV 90.1, AUC 0.782 [ 1-
Eiﬁﬁg:ﬁ;ﬁ?ﬁl @ year experienced radiologist: ACC 63.7
a}rlld 4levels (1, 4,9, and Patients evaluated with US and 204 TNODs in 181 (with S-Detect: 75.0), sensitivity 95.7
2020 s DL (S-Detect) cytology for TNOD from 1 q (94.6), specificity 37.5 (58.9), NPV 91.3 (27)
20 years) of experienced patients .
4 Ay center (93.0), AUC 0.666 (0.767) | 20-year: ACC
radiologists in TNOD US A~
. 84.8(85.3), sensitivity 96.7(97.8),
specificity 75.0 (75.0), NPV 96.6 (97.7), AUC
0.859 (0.864)
CNNs: VGG16, VGG19,
. . InceptionV3, 3838 axial CT images from 698 . AUROC 0.846 (0.784-0.884) (Xception:
2020 ILJsmg DL for CTdc'ervlcaI' InceptionResNetV2, thyroid cancer patients (PTC ;256 belglgn atnLdN AUROC 0.884 external/0.942 internal (28)
1agnosis DenseNet121, ResNet, 689, FTC 5, MTC 3, and PDTC 1) malignan s validations)
DenseNet169, and Xception
S L S 27 studies (16410
o di e LNM Met Ivsi PubMed, Embase, Cochrane, thyroid cancer SROC for clinical features 0.76, for o
;a_ LOToICS €la-analysis and Web of Science patients, 6356 radiomics features 0.84, and for both 0.81 (29)
iagnosis With LNM)
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N . . Performance Metrics
Year Aim Technique Dataset Sample Size (Testing Cohort) Reference
Using Al for nuclear medicine
2024 radiomics in thyroid diseases Meta-analysis Pu,bMEd' Scopus, and Web of 17 studies with 9627 patients Not reported (30)
Science
assessment
. L DL (FNA-Net): MTL classifier +
UsiingIDlL riin situ ity Faster R-CNN, Inception-ResNet 6 patients with 21 slidesand ~ AUC 0.84 and F1 score
2023 screening of unstained FNAB FNABs Fpa (31)
samples v2, U-Net, and TensorFlow 287 cytopathologic images 0.81
Object Detection API
. . P TL: CNN (VGG11) + supervised . ; 908 FNABs: 799 training/109
Using ML for ROI identification X .3 Thyroidectomy specimens X . AUC 0.931 for WSI-TBS
2022 o FNA wsi learning+Miclassifier+ i T pravions pNap  testing (84 benignand25 o4 (506 for RoLTBS (32)
Ordinal regression malignant)
FNABs and surgical
Using ML for INOD malignancy ~ ANN + resilient back specimens of patients who .
2016 ok evaluation propagation training algorithm underwent thyroid 5 R  ACCEAS el AVC 052 ()
resection
41324 nuclear measurement Sensitivity 81.4
Using ML for TNOD FNA RBEN +image analysis Thyroidectomy specimens by image analysis from 288 P o
2020 - . . g ; X specificity 90.0, and (34)
evaluation algorithms with a previous FNAB benignand 159 malignant ACC 86.9
patients :
Using ML for FNA follicular
2018 adenoma and follicular ANN FNABs 48 FNABs AUC 1 and ACC 100 (35)
carcinoma differentiation
. . TL: CNN (VGG11) + multiple . . . . AUC 0.932, Sensitivity
2020 Usn(;g 1;/_11‘ for FNA malignancy instance learning + ML classifier T}}%/krlmdectomy s_pec1meFrll\IsAB 908 WEIS _frt_)m ?(5)9 pa?ertl_ts. 92.0, and Specificity (36)
prediction . ordinal regression V! a  previous 799 training/109 testing 905
. . . 20 FNABs of AUS/FLUS cases 400 low-power (100x) and
Using Al for image analysis of ; . AUC 0.75 for low-and
2022 Thinbrep-prepared FNABs GBM, ETC and 20 FNABs of benign 400 high-power (400x) 074 for high-power (37)
TNODs images
CNN (EfficientNetV2) + data
augmentation + Gradient- AUC 0.4
> A . - .49 for PDTC and
2023 Using DL for FNA diagnosis welgh_ted Class Activation 393 FNABs 148395 microscopicimages g g, for MTC, others (38)
Mapping (Grad-CAM) + of ENAB  4i5c N 0.95
stochastic neighbor embedding :
(t-SNE)
1161 TNODs from 1133 -
Using Al f e ANN + feature selection and 19 protein biomarkers from  patients compromising 288 ‘?CC Qtl for tratl_mng, 8;19
2022 Tlfllcr)lg orpro em»l as_ef' i feature importance evaluation 1724 thyroid tissue samples ~ TNOD:s for retrospective and Sorfre Tospec lt\fe‘ an (39)
CasSiication algorithms proteomes 294 for prospective external 51431- grospec ve
validations validations
e Datasets selected from
Using ML for predictive and gz‘;%i;ﬁigg‘;?:;id Index public functional genomics Th irs of G
2021 diagnostic power of PPARy < & data repository: TCGATHCA, ree pairs o ’?‘;ﬁ"OZngP‘TCC AUC 0.828 - 0.998 (40)
targets for PIC evaluation COMPrising10 PPARY targets, MMD-THCA (PTC),and MMD- WS Wi
RF, SVM, k-NN, ANN, and LR ppca (ATC)
1280 cancer cell lines, 1557
Using DL for drug response q ’ . drugs/chemical
2022 prediction by integratingbulk DL, TL FIUDLICECRN gt compounds, and their plscorglcleozad (41)
GDSC, CCLE, etc. . 4 AUROC 0.898
and scRNA-seq data expression profiles on 15962
genes
AUROC radiomics
Using Al for CT radiomics Thyroid cancer patients features 0.883,
2023 ATC[PDTC from DTC RF underwent CECT from 1 ATC[PDTC32and PTCS8, FIC 1 iomics and clinical (42)
differentiation center 40 0.908, ACC 84.6% and
86.5%
. . . 120 TNOD patients LASSO feature
P00 Usél.lg WL nflulggcarametrlc MRE 5y ML algorithms including LR,  underwent MRI and hemi- EEBLY feagures féo‘lm [ selection + GBC: AUC A
radiomics tor . SVM, GBC, etc. ortotal thyroidectomy from MOT-a8gressivean ® 0.874 training and (43)
aggressiveness prediction B center 288Tessive 0.915 testing
Using ML for PTC central LNM
prediction based on . .
preoperative and LR, GBM, XGBoost, RF, DT, and TE-T2, cNo PTC pat'lents 619 central LNM- and 652 AUROC 0.695-0.750
2021 ! N underwent thyroidectomy (44)
intraoperative ANN from 1 center central LNM+ (XGBoost 0.750)
clinicopathological
characteristics
Using ML for PTC central LNM 22 variables from 1103 .
2020 prediction based on clinical []:]’;‘ ‘;NN'PT' GBDI, XGBoost,and patients who underwent ol tcerlltral INM and GII_ZNM+ :gg DR (%BD}-' (45)
characteristics and US features 22008 thyroidectomy from 1 center e 731)
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. . . Performance Metrics
Year Aim Technique Dataset Sample Size (Testing Cohort) Reference
. . Demographical and clinicopathological
Using ML for lung metastasis - -
prediction based on SVM, LR, XGBoost, DT, (f:lata fr}?rlégga(()jthy];md.c;ﬁcer patients lungM+and 9738 RF: ACC 0.99, Fi-score 0.72, 6
2022 Jinicopathological RF, and kNN rom the atabase: TNstage,age, o\ and AUC 0.99 (46)
h tp isti 8 ! sex, race, laterality, year of diagnosis, 8 -
characteristics histological type, and LM
Using ML for bone metastasis Demographical and clinicopathological
S prediction based on LR, RF, AdaBoost, DT, charactentgtlcts f;om 1313 sst]gl-;g};{(éldt base: 166 boneM+and 16972  RF: AUC 0.917 and ACC a
clinicopathological NB, SVM cancer patients trom the atabase: -, heM- 0.904 (47)
S Marital status, insurance status, grade,
etc.
Information extracted from EMRs of 783
2021 UsingML for recurrence Inductive logic patients with >= 5 years F/U after total 54 recurrences and 729 ACC 714 (48)
prediction based on EMRs programming thyroidectomy, central LN dissection, recurrence-free :
and RIAT from 1 center
XGBoost, LightGBM, . . 5
. q 2 ’ 11 variables from the SEER database: 6891 patients with FTC
2022 g:;g%clz% ;or WIRE PIReIRes g&ii:ﬁ;g?ﬁ;fq Region, surgical methods, with a median F/U of XGBoost: AUROC 0.886 (49)
SVM. and MIP lymphadenectomy, TNM stage, etc. 64 months
Using Al and bioinformatics . o ERBB3 as a diagnostic
for LNM prediction by key Different R packages 2;;?#&?5&?'322232 Ldfe‘;]rt:‘ﬁer 12 hub genes: ERBB3 marker for thyroid cancer
2023  genetic variations and with LASSO, SVM, and nutetia’, 8 g genes: " (AUC=0.89), high LNM (50)
! . : sensitivity in cancer (GDSC), and Human etc. .
endocrine-disrupting RF Protein Atlas (HPA) databases potential (AUC = 0.75), and
chemicals LNM+ (AUC =0.86)
q q 82 genes: BRAFV600E
Using ML for PTC prognosis 4
2023 prediction based on molecular ML (HighLifeR) 502 cases annotated by the Cancer LA, LEZASPHE QAL Not reported (51)
identifiers Genome Atlas Project pathway mutations,
etc.
Using Al for guided US Experimental: 94
therapeutic effect evaluation Patients diagnosed with PTC by imaging - e
2022 ¢ thoracoscopic MVA, DAS or ENAB p;g:gg, control: 119 P <0.05, not reported (52)
thyroidectomy on PTC p
Using DL for recurrent e ;
7 . . CNN (ResNeXt50-32x  Various images of recurrent laryngeal 277 images of 130
2021 1;3’ irrllggeta}l];reori\:ieelctigr;;ﬁcanon 4d)+Mask R-CNN nerve and surrounding tissues patients DECEHT7 (53)
Using DL for parathyroid gland 32482 images
2024 identification during DL: YOLOX 838 endoscopic thyroidectomy videos extracted g‘om videos P <0-001, not reported (54)
endoscopic thyroidectomy
CNN (ResNet-50) + . o
55 Using Al for the severity of convolutional block Images of thyroidectomy scars and RS Gt Roé:gglcz ?‘89.6 for'lmagl(rjlg 55
postoperative scars prediction ~ attention module +t-  clinical data patients and 0.912 lor imaging an (55)
SNE + Grad-CAM clinical features
DTC underwent RAIT dosimetry, using
Using DL for RAIT dosimetry ANN +adam images and blood sampling gathered . _
2023 optimization optimizer from the initial 4, 24, and 48 hr post 83 patients P=0.351, not reported (56)
administration
Using ML for RAIT success Characteristics of low-risk PTC patients
2024 prediction in low-risk PTC by IR s vl Lol en ot lonpeartot) 130 patients AUC0.78 (57)
el km ] ettt ridge thyroidectomy and RAIT: Age, sex, and
pre-ablative serum Tg
Using ML for thyroid cancer Characteristics of RAI-treated TC
patients' family members' patients: Age, gender, home area, 99 family members of
2018 radiation exposure dose ANN education, BMI, release dose rate, 52 patients ROC-AUC 0.957 (58)
estimation administrated residual activity, etc.
Using Al for targeting AKT1 .
2022 peptide design for ATC Not reported Peptide synthesis datasets 96 plates L T2 ] i GEITEIC aod (59)
i — 12.4 mM in 8505C cells
68 pairs of primary
. . . . . tumors and para-
2023 Using Al for new therapeutic Deep docking Gene Expression Omnibus, Cancer tumor tissues (6 Not reported (60)

target identification (Kir5.1)

(VirtualFlow)

Genome Atlas, and TCGA databases, etc.

benign, 36 PTC, and 26
PIMC)

Abbreviations: RF, random forest; SVM, support vector machine; ANN, artificial neural network; k-NN, k-nearest neighbor; NB, naive bayes; LR, logistic regression; LDA, linear
discriminant analysis; CNN, convolutional neural network; GBM, gradient boosting machine; DT, decision tree; GBDT, gradient boosting decision tree; MLP, multilayer
perceptron; MTL, multi-task learning; TL, transfer learning; RBFN, radial basis function network; ETC, extra tree classifier; MVA, minimum variance algorithm; DAS, delay-and-
sum algorithm; TNOD, thyroid nodule; LNM, lymph node metastasis; PTMC, papillary thyroid microcarcinoma; PDTC, poorly differentiated thyroid carcinoma; DTC,
differentiated thyroid carcinoma; TC, thyroid cancer; anaplastic thyroid cancer (ATC), anaplastic thyroid carcinoma; TBS, thyroid cytopathology Bethesda system; AUS, atypia of
undetermined significance; FLUS, follicular lesion of undetermined significance; FNAB, fine needle-aspiration biopsy; DSC, dice similarity coefficient; ACC, accuracy; AUC, area

under the curve; SROC, summary receiver operating characteristics ; ROC-AUC, area under the receiver operating characteristic curve.
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