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Abstract

Background: Artificial intelligence (AI) can play a significant role in the future of thyroidology. Thyroid nodules are common conditions that may benefit

from AI through more accurate and efficient diagnosis, risk stratification, and medical or surgical management.

Objective: This paper aims to review the latest developments in AI applications for diagnosing and managing thyroid nodules and cancers.

Methods: English full-text articles published in the PubMed and Google Scholar databases from January 2014 to March 2024 were collected and reviewed to

provide a comprehensive understanding of the topic. A total of 45 studies were selected based on relevance, robust methodology, statistical significance, and

broader topic coverage.

Results: Artificial intelligence has emerged as a powerful tool for managing thyroid nodules. First, several studies have demonstrated how AI-powered

ultrasound interpretation enhances the diagnosis and classification of nodules while reducing the need for invasive fine-needle aspiration (FNA) biopsies.

Second, AI significantly improves the cytopathological differentiation between benign and malignant thyroid nodules by minimizing reliance on pathologists'

expertise and implementing standardized diagnostic criteria. When cytopathology is inconclusive, AI also aids in identifying molecular markers from omics

data, distinguishing between normal and cancerous cells. Moreover, AI tools have been developed for prognosis assessment, predicting distant metastasis,

recurrence, and surveillance by integrating medical imaging features with molecular and clinical factors. Additionally, some AI tools are designed for

intraoperative evaluation, improving surgical techniques and reducing complications during thyroidectomy. In non-surgical treatments, several models have

been developed to optimize therapeutic doses of radioactive iodine (RAI) and predict the outcomes of new drug formulations.

Conclusions: Artificial intelligence has the potential to assist physicians in accurate thyroid nodule diagnosis, classification, decision-making, optimizing

treatment strategies, and improving patient outcomes. However, there are still limitations to this technology. Artificial intelligence-driven tools require further

advancements before they can be fully integrated into clinical practice and replace specialists.
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1. Context

1.1. Rationale

Artificial intelligence (AI) refers to the development
of sophisticated computer systems and programs that

emulate functions typically requiring human cognitive

abilities such as learning, reasoning, decision-making,

and problem-solving (1). Over the past few decades, AI

has gained significant traction in the medical field,
especially in addressing major global health issues, such

as diabetes mellitus and cancer (2, 3). Moreover, the

demand for efficient healthcare delivery, while

minimizing virus transmission during the COVID-19

pandemic, highlighted AI's potential in enabling digital
medicine (4, 5). Artificial intelligence is expected to

continue playing a pivotal role in the future of

medicine.

Artificial intelligence in thyroidology has been
explored from different perspectives, showing great

potential, particularly in the diagnosis and

management of thyroid nodules and cancers. Accurate
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detection and risk stratification of thyroid nodules can

significantly aid clinicians in making informed

decisions regarding further interventions (6). Thyroid
nodules are becoming more prevalent in clinical

practice, primarily due to the increased number of
incidental diagnoses from the extensive use of advanced

medical imaging techniques. While most thyroid

nodules are benign, some exhibit malignant features (7).
Over recent decades, thyroid malignancies have shown

considerable growth among endocrine system cancers.
Fortunately, most thyroid malignancies are less

aggressive and can be managed effectively with timely

surgical and medical interventions (8). However, delays

in management can occur because thyroid cancers are

often asymptomatic in their early stages, and there is a
shortage of trained personnel and diagnostic resources,

especially in underfunded healthcare settings (9).

This issue is exacerbated by the fact that conventional

diagnostic methods are often time-consuming and

prone to diagnostic errors. These errors can arise from

the complexity of the diagnostic process or human

cognitive biases and limitations. For example, the

analysis of a fine-needle aspiration (FNA) biopsy may not

always yield accurate or conclusive results due to

inadequate sample preparation, the complexity of

certain thyroid malignancies, and the subjective nature

of the interpretative process, which heavily relies on the

pathologist’s knowledge and expertise (10). Additionally,

variations in thyroid test serum levels among different

populations can add to this complexity (11).

Incorporating AI into healthcare workflows could

enhance diagnostic accuracy while reducing healthcare

providers' workloads.

This study aims to review current AI applications in

the diagnosis and management of thyroid nodules and

thyroid cancers. We also explore the challenges and

potential improvements needed for future AI

implementation. The studies reviewed in this paper

were selected based on their relevance, robust

methodology, statistical significance, and broader

coverage of related topics rather than focusing on a

specific area in-depth.

1.2. Introduction to Artificial Intelligence Technologies

Artificial intelligence encompasses various subsets

that drive innovation in medicine. Machine learning
(ML), a fundamental subset of AI, focuses on developing

systems that can recognize patterns in data without the
need for pre-programming, unlike statistical models,

and can make predictions or decisions based on new

data. Machine learning is powerful in medicine by

identifying logical relationships from large datasets

sourced from electronic medical records, imaging

results, clinical databases, and more (12). Deep learning

(DL), a specialized branch of ML, employs an algorithmic
architecture with multiple layers of artificial neurons,

inspired by the structure and function of the human
brain, to interpret vast amounts of unstructured data

such as medical images, automatically learning their

discriminative features (13). Natural language
processing (NLP) allows computers to understand and

respond to human language. Currently, NLP is gaining
popularity for analyzing large amounts of unstructured

medical textual data and using chatbot interfaces to

answer queries from healthcare professionals and

patients (14).

1.3. A Summary of the Approach to Thyroid Nodules

When a thyroid nodule is detected through palpation

or as an incidental finding in head and neck imaging, a

series of investigations are conducted to establish a

definitive diagnosis and guide appropriate therapy.

First, serum thyroid-stimulating hormone (TSH) levels

are measured to assess the functional status of the

nodules. Low serum TSH concentrations are indicative

of hyperfunctional nodules, for which radioactive

iodine (RAI) ablation therapy can be a relatively

successful treatment option. Additionally, an ultrasound

(US) examination is performed to evaluate the

characteristics of the thyroid nodules and assess the risk

of malignancy based on a standardized, evidence-based

approach called thyroid imaging reporting and data

systems (TI-RADS). The TI-RADS score determines

whether a thyroid nodule requires a biopsy by
identifying higher-risk features such as

hypoechogenicity, microlobulation, irregular margins,

microcalcification, and a taller-than-wide shape.

Subsequently, an FNA biopsy is performed, which is

the gold standard for pre-operative definitive diagnosis

and helps determine whether surgery or continued

surveillance is necessary. The treatment depends largely

on the FNA cytopathology and US findings. When the

FNA biopsy result is indeterminate for malignancy,

molecular testing can be utilized for diagnosis and to

create individualized therapeutic plans (Figure 1) (15).

2. Methods

To review the most recent literature on AI

applications in the assessment of thyroid nodules, we

conducted a comprehensive search of articles published

from January 2014 to March 2024 in the PubMed and

Google Scholar databases. Our search was restricted to

English, full-text articles focused on human subjects and

classified as original studies, systematic reviews, and

https://brieflands.com/articles/semj-148493
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Figure 1. Diagnostic approach to thyroid nodule based on Harrison's principles of internal medicine. Green areas represent diagnosis topics, and yellow areas relate to
treatment. This review focuses on the advancements of artificial intelligence (AI) in the highlighted topics (15).

meta-analyses. We used various combinations of the

following MESH terms: "Artificial intelligence", "machine
learning", "deep learning", "thyroid nodule", "thyroid

cancer", "diagnosis", "ultrasonography", "radiomics",

"fine needle aspiration", "nuclear medicine", "molecular
diagnostic techniques", "prognosis", "neoplasm

staging", "therapeutics", and "thyroidectomy". Figure 2
illustrates the distribution of our search results across

different aspects of AI applications in thyroid nodule

evaluation over the past five years. The details of our
search strategy are provided in Appendix in

Supplementary File.

Titles and abstracts of the search results were

screened to select relevant articles and gain a broad

understanding of the topic and study designs. After full-

text screening of the relevant articles, 45 studies were

selected based on their robust methodology, statistical

significance, and broader topic coverage, rather than an

in-depth exploration of a specific area. Additionally, two

authors manually reviewed the references to ensure

inclusion of any further pertinent sources.

3. Results

We divided our investigations into three main
sections to cover all aspects of AI applications in thyroid

nodules: Diagnosis, prognosis, and treatment. We also

summarized the selected studies used for writing this

review in Table 1.

3.1. Diagnosis

3.1.1. Artificial Intelligence Application in Medical Imaging

Like innovative US methods such as 3-dimensional US

and contrast-enhanced ultrasonography (CEUS),

systems based on a combination of AI with both

conventional and novel US methods have shown

considerable promise in augmenting medical imaging

tasks (16, 17).

https://brieflands.com/articles/semj-148493
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Figure 2. Trends of topics regarding artificial intelligence (AI) application in thyroid nodules in recent five years

Image segmentation is an imaging preprocessing

task that facilitates the localization of the region of

interest (ROI) and delineation of its perimeters.

Numerous studies have highlighted the superiority of

AI-driven techniques for this purpose by incorporating

detailed, multi-scale contextual features extracted from

two-dimensional US images—features previously not

visible to the radiologist's naked eye. Most of these

studies have used convolutional neural networks (CNN),

such as U-Net as the backbone, a visual transformer, and

various modules like attention or feature fusion

modules to improve the accuracy of thyroid nodule

segmentation tasks. The performance of these models is

typically assessed across public datasets and reported

using the Dice similarity coefficient metrics (16, 18, 19).

Several studies have researched AI performance in

detecting and classifying thyroid nodules in US images.

Some ML algorithms, like random forest classifiers and

artificial neural networks, have shown comparable

performance to radiologists, with an area under the

receiver operating characteristic (AUROC) curve ranging

from 0.60 to 0.95 (20-22). Additionally, various CNN-

based models have been developed to classify thyroid

nodules, demonstrating diagnostic outcomes similar to

those of clinicians (17, 23, 24). A meta-analysis validated

the classification effectiveness of ML, DL, and computer-

aided diagnosis (CAD) systems-assisted thyroid

ultrasonography, reporting high performance indices:

0.92 (0.89 - 0.94) for the summarized receiver operating

characteristic (SROC) curve, 0.88 (0.85 - 0.90) for pooled

sensitivity, and 0.81 (0.74 - 0.86) for pooled specificity

(25).

Due to this promising performance, commercially

available, FDA-approved DL-based CAD systems, such as

S-Detect (Samsung RS80A US system, Seoul, Korea), have

emerged to assist in thyroid ultrasonography. S-Detect

has demonstrated encouraging sensitivity compared to

radiologists, although some studies have highlighted

limitations in specificity and accuracy (61). For example,

Chung et al. showed that S-Detect had superior

sensitivity and negative predictive value (NPV)

compared to junior radiologists, indicating that the

system can effectively identify actual positive cases and

provide reassurance when a negative result is predicted.

This can reduce unnecessary FNA biopsies and false-

negative cases for less experienced radiologists (26).

However, the utility of such systems may be less

pronounced for experienced radiologists with

established diagnostic strategies (27). In settings

without specialized professionals, S-Detect may be

beneficial, but there is a risk of over-reliance on the

system output, particularly by less experienced

radiologists or healthcare professionals without senior

oversight. These CAD systems are designed to work

under radiologists' supervision, with manual input and

settings adjustments required to optimize performance,

https://brieflands.com/articles/semj-148493
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and their output still requires interpretation by

specialists (62).

With the emergence of NLP chatbots showing

promising results in various healthcare fields (63-66),

NLP-powered tools are now being used to generate

radiology reports. Commercially available clinical

decision support programs like RecoMD streamline
recommendations based on radiological reports and

patients' data (61).

Artificial intelligence has also been utilized to

explore the relationship between ultrasonic

characteristics and lymph node (LN) status. The

integration of ML and DL with features derived from US

and other modalities, such as ultrasound elastography

(USE) and computed tomography (CT), has shown

promise in classifying thyroid nodules and evaluating

LNs (28, 29, 67). Radiomics, a powerful tool for extracting

high-throughput quantitative features from medical

images, has garnered significant attention in thyroid

nodule risk stratification (68). Zhang et al.'s meta-

analysis indicated that US-based radiomics AI models

had a sensitivity, specificity, and SROC of 0.82, 0.84, and

0.76, respectively, for predicting LN metastasis in

thyroid cancer patients (29). The potential of AI to create

novel thyroid nodule risk stratification systems using

radiomics and parameters beyond conventional US

characteristics will be further explored in the prognosis

section—AI application in staging system design.

The use of radiomics and AI in nuclear medicine is

also expanding, with the potential to assess thyroid

incidentalomas and cytopathologically inconclusive

thyroid nodules by evaluating their secretory status and

malignancy possibility. Studies have shown that ML and

DL algorithms applied to various nuclear medicine

imaging techniques can effectively differentiate benign

and malignant nodules (30). However, methodological

variations, differences in extracted features, limited

training datasets, and a lack of external validations

highlight the need for further research to facilitate the

clinical implementation of AI in nuclear medicine.

3.1.2. Artificial Intelligence Application in Cytopathologic
Diagnosis

An FNA biopsy is the most accurate method for

diagnosing thyroid nodules, with the primary goal of

distinguishing benign from malignant nodules and

avoiding unnecessary thyroidectomy, given that only

about 25% of thyroid cancer diagnoses are truly

malignant (69). However, the accuracy of FNA diagnosis

depends on sample quality, the pathologist's expertise,

and standardized diagnostic criteria. These challenges

can be addressed by implementing AI technologies to

improve the precision and efficiency of thyroid

malignancy discrimination (10).

One of the main challenges in FNA diagnosis is that

approximately 10% of samples are non-diagnostic due to

inadequate or poor-quality specimens, necessitating

repeat biopsies. Jang et al. developed a hybrid DL model

called FNA-Net to count follicular clusters in unstained
samples and classify samples as non-diagnostic if the

count falls below a specific threshold. This model

achieved an AUC of 0.84 (31). Another study evaluated an

ML algorithm designed to reduce pathologists'

workload by detecting regions of interest (ROI) in whole
slide images distorted by blood or dead space (32).

Several studies have shown AI-driven tools to be

highly accurate in differentiating between benign and

malignant nodules, with accuracy rates ranging from

64% to 100% (33-35). For instance, an ML algorithm

trained on whole slide images achieved a sensitivity of

92%, specificity of 90.5%, and an AUC of 0.932,

comparable to an expert pathologist (AUC: 0.931) (36).

Another group developed a digital image analysis

method using ImageJ software and Python's sklearn

library to annotate indeterminate thyroid FNA biopsies

(Bethesda III). This model, which outperformed

pathologists (AUC of 0.75 vs. 0.62), demonstrated that AI

and ThinPrep material could improve classification

performance (37). However, some AI tools still face

limitations in classifying poorly differentiated thyroid

carcinoma (PDTC) from differentiated thyroid

carcinoma (DTC) and in misclassifying medullary

thyroid carcinoma (MTC) as benign, challenges even for

professional pathologists (38).

3.1.3. Artificial Intelligence Application in Molecular Markers
Testing

Although FNA biopsy is the most accurate pre-

operative method for classifying thyroid nodules,

around 30% of FNA biopsies are indeterminate,

necessitating diagnostic thyroidectomy for final

diagnosis. Molecular markers can help distinguish

between benign and malignant nodules in these cases

(70). AI has contributed to identifying molecular

markers by analyzing large omics datasets to predict

thyroid nodule malignancy risk. For instance, a neural

network trained on proteomic analysis of 19 proteins

extracted from tissue samples demonstrated accuracies

of 85%, 89%, and 91% in retrospective and prospective

multicenter cohort validations (39).

Artificial intelligence has also been applied to single-

cell RNA-sequencing (scRNA-seq) technology to perform

molecular-based classification of normal and cancerous

cells. A model called Ikarus, developed using scRNA-seq

https://brieflands.com/articles/semj-148493


Yazdanpanahi P et al. Brieflands

6 Shiraz E-Med J. 2024; 25(11): e148493

technology, demonstrated high sensitivity and

specificity when tested on several single-cell datasets of

different cancers (71). Another study used scRNA-seq

analysis of PPARGi coding genes by an ML algorithm,

revealing that these genes are upregulated in papillary

thyroid carcinoma (PTC) cells and can be used to

identify this cancer type (40). Artificial intelligence

applications in scRNA-seq are also valuable for

predicting clinical prognosis and drug sensitivity,

especially for PTC patients (72). Chen et al. developed an

ML-based predictive algorithm for cancer drug response

based on scDNA-seq data, identifying signature genes

related to drug resistance mechanisms and assisting in

targeted drug discovery (41).

3.2. Prognosis

3.2.1. Artificial Intelligence Application in Staging Systems
Design

The management of potentially malignant thyroid

nodules should be guided by various factors, including

tumor type and size (T), lymph node involvement (N),

distant metastasis (M), US characteristics, FNA biopsy

results, and clinical and demographic data. AI and

radiomics can enhance thyroid tumor staging in several

ways. First, some studies have developed AI-powered

systems to distinguish different types of thyroid tumors.

For example, a random forest classifier demonstrated

AUROC values of 0.88 and 0.90 for differentiating

between poorly and well-differentiated thyroid

carcinoma using radiomics features from contrast-

enhanced CT alone and in combination with

clinicopathological characteristics (42).

Second, substantial research focuses on developing

models to detect invasive thyroid malignancies. Most of

these models perform well in predicting extrathyroidal

extension (ETE) and thyroid capsule invasion (TCI) in

PTC by combining medical imaging radiomics features

with clinical factors (68). For instance, a ML algorithm

utilizing multiparametric magnetic resonance imaging

(MRI) radiomics and clinical characteristics predicted

PTC aggressiveness with an AUC of 0.92, whereas relying

solely on clinical factors resulted in poor predictive

performance (AUC: 0.56) (43).

Additionally, several studies have assessed ML-based

tools for identifying key risk factors from demographic,

clinical, biochemical, pathological, and imaging data

that significantly contribute to central or lateral LN

metastasis. Factors such as age, tumor size,

multifocality, ETE, and suspicious US features have been

identified as impactful in designing validated predictive

models and scoring systems (44, 45). Numerous

investigations have also focused on the predictive

accuracy of ML models for forecasting distant

metastasis in thyroid cancers, particularly bone or lung

metastasis. These models, trained on large datasets

containing demographic and clinicopathological

information from cancer registries like surveillance,

epidemiology, and end results (SEER) and the National

Institutes of Health (NIH), have shown encouraging

outcomes (AUC > 0.91) (46, 47).

Several systems for predicting prognosis, recurrence,

and surveillance of thyroid cancers based on T, N, and M

have demonstrated significantly better accuracy than

the 8th edition of the American Joint Committee on

Cancer (AJCC) staging system. Most are trained on

extensive demographic and clinicopathological

information from public cancer registries (48, 49).

Furthermore, the inclusion of molecular marker data

may enhance the accuracy of these tools. For example, a

study using network analysis and an ML model

evaluated the association of 12 genes with the risk of LN

metastasis in thyroid cancer, identifying the ERBB3 gene

as both a diagnostic marker (AUC = 0.89) and a predictor

of LN involvement (AUC = 0.75) (50). Another ML

algorithm discovered three molecular subtypes by

examining 82 genes associated with higher recurrence

rates, with one subtype linked to a higher rate of RAS

mutations and a lower rate of BRAFV600E mutations

(51).

3.3. Treatment

3.3.1. Artificial Intelligence Application in Improving Surgical
Procedures

The management of thyroid nodules involves both

surgical and conservative approaches (7). Artificial

intelligence can help enhance surgical procedures and

outcomes. Several studies have evaluated intraoperative

AI applications to improve surgical techniques and

prevent common thyroidectomy complications, such as

postoperative hypocalcemia within the first 30 days,

damage to the recurrent laryngeal nerve, and cosmetic

and functional difficulties from surgical scars. Shen et

al. demonstrated that AI-guided ultrasonography based

on the minimum variance algorithm during

thoracoscopic PTC tumor resection led to better

outcomes, including shorter hospitalization length,

reduced blood loss, and decreased postoperative

drainage volume and pain (52). DL-based models

developed to identify the recurrent laryngeal nerve and

parathyroid glands by analyzing endoscopic films

during surgery have shown promising results in real-

world settings, assisting both junior and senior

https://brieflands.com/articles/semj-148493
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surgeons (53, 54). Neural networks to forecast

postoperative scar severity have also been developed,

helping physicians choose more suitable strategies and

aiding patients in dealing with the psychological

burden of surgical scars. Kim et al. developed a CNN

framework that could assess postoperative scar severity

comparable to dermatologists (AUC = 0.912), though the

model was trained on relatively small datasets of

photographs and clinical information (55).

3.3.2. Artificial Intelligence Application in Non-surgical
Treatment

Recent research has focused on using AI to improve

radioactive iodine therapy (RAIT) for thyroid cancers.

For example, an AI tool analyzed data from 83 adult

patients with differentiated thyroid cancer and

accurately prescribed RAI doses using imaging and

blood testing data from fewer time points than

conventional methods (56). Another study investigated

the effectiveness of a logistic regression model for

predicting RAIT success after thyroidectomy in low-risk

PTC patients. This model, which combined post-RAIT

clinical features and total body scan radiomics, showed

better predictive performance than using clinical

features or radiomics alone (AUC = 0.78 in the validation

set compared to 0.65 and 0.69) (57). Furthermore,

neural networks have been used to predict radiation

exposure doses to the family members of thyroid cancer

patients, helping identify high-risk individuals and

improving treatment strategies (58).

Artificial intelligence also holds significant potential

for identifying therapeutic targets for novel drug

discovery and predicting therapeutic responses by
analyzing and integrating large omics datasets. For

example, AI tools designed a drug targeting Akt1 for
peptide-based treatment of anaplastic thyroid cancer

(59). In another investigation, AI-enabled virtual

screening techniques identified promising therapeutic
targets, such as Kir5.1, to improve treatment outcomes

for patients with recurrent and metastatic thyroid
cancer (60).

4. Conclusions

The development of AI marks the beginning of a new

era in medicine. Artificial intelligence assists physicians
in diagnosing, classifying, and treating thyroid nodules

more accurately and efficiently, while also reducing

specialists' workload. However, several limitations have
hindered the widespread adoption of AI in real-world

practice.

First, many studies rely on small, retrospective,

single-center datasets, which often fail to represent the

general population. This leads to selection bias, which

can result in spectrum bias—where the performance of

AI tools may not be replicable across diverse clinical

settings. If AI models are trained on datasets that do not

encompass the full spectrum of thyroid conditions,

their generalizability becomes questionable (73). To

address this, future studies should focus on collecting

diverse datasets that include a wide range of thyroid

disorders, including rare and atypical presentations (6).

Additionally, multicenter studies with robust designs

and external validation using different datasets are

needed to enhance AI's reliability. Second, the inherent

complexity of DL models can obscure the reasoning

behind their outputs, leading to mistrust among

healthcare providers and patients. To address this, the

development of explainable AI (XAI) is essential, as it can

provide insights into the decision-making processes of

AI systems and enhance transparency (2). Third, the

effective use of AI tools in medicine requires more than

just technological advancements. Usability is a critical

factor, and AI tools must be seamlessly integrated into

current workflows. A lack of usability can cause

clinicians to resist these innovations, limiting their

potential advantages. Comprehensive training

programs for healthcare professionals are essential,

focusing on the proper use of AI tools while

emphasizing the importance of critical thinking and

clinical judgment in interpreting AI results. Inadequate

training can lead to the incorrect utilization of these

technologies, potentially increasing diagnostic errors.

Finally, ensuring equal access to AI technologies and

addressing the ethical implications of AI in healthcare is

crucial (74). With sufficient financial support and

careful planning, the substantial capabilities of AI can

be harnessed reliably across the globe.
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Table 1. Artificial Intelligence Performance in Approaching Thyroid Nodules

Year Aim Technique Dataset Sample Size Performance Metrics (Testing Cohort) Reference

2024 Using AI for US multi-
tissue segmentation

DL (UNet) + attention
gating and pyramid
pooling modules

US images
4600 US images
with ≥ 23000
annotated regions

DSC 81.88 (16)

2021
Using AI for dynamic
CEUS TNOD diagnosis

DL (hierarchical temporal
attention network)

CEUS images from 1 center

336 lesions’ CEUS
images (77
Nodular Goiter, 84
Adenoma, 101 PTC,
and 74 PTMC)

ACC 80.18 and F1 score 79.90 (17)

2023
Using AI for US TNOD
segmentation

DL (UNet) + boundary-
preserving assembly
transformer

A US images public dataset
(TN3k) and a private one from
1 center

Public 3493 and
private 328 US
images

TN3k: ACC 97.22, F1 score 84.23, DSC 83.64,
and AUC 92.03/private: ACC 97.80, F1 score
85.81, DSC 85.63, and AUC 92.19

(18)

2023 Using AI for US TNOD
segmentation

DL (BTNet: Boundary
attention transformer net)

A US images public dataset
(DDTI) and a private one from
6 centers

DDTI 626 and
private 532 US
images

DDTI: DSC 0.757/private: DSC 0.892 (19)

2019
Comparing Linear and
nonlinear ML models for
TNOD classification

Ridge-penalty, Lasso-
penalty, Elastic net, RF, k-
SVM, ANN, k-NN, and NB

Pathological diagnosis
confirmed TNODs US features:
Size, margins, shape, aspect
ratio, capsule, hypoechoic
halo, vascularity, echo, cervical
LN status calcification, and
composition

501 benign and
678 malignant

Overall AUC 0.928-0.954 (RF: AUC 0.989
training/0.954 testing) (20)

2019
Using an ML model for
US and USE malignant
TNOD identification

LR, LDA, RF, k‐SVM,

AdaBoost, k‐NN, ANN, NB,
and CNN

US and USE features of 2064

TNOD underwent hemi‐ or
total thyroidectomy from 1
center: USE grade, etc.

1314 benign and
750 malignant

AUC 0.859-0.924 (RF: AUC 0.986
training/0.924 validation)

(21)

2020

Using ML for US
follicular adenoma and
carcinoma
differentiation

ANN and SVM
10 features out of 96 radiomics
features extracted from 348 US
from 2 centers

252 adenoma and
96 carcinoma

ANN: Sensitivity 32.3, specificity 74.1, and
ACC 79.4/SVM: Sensitivity 90.1, specificity
41.7, and ACC 69.0

(22)

2022
Using AI for US TNOD
diagnosis based on ACR
TI-RADS

CNN (InceptionResNetV2)

10 features covering TI-RADS
categorization extracted from
1588 US TNODs who

underwent hemi‐ or total
thyroidectomy from 2 centers

PTC 484, FTC 14,
MTC 1, nodular
hyperplasia 987,
follicular
adenoma 70, and
thyroiditis 32

AUC 0.91 (23)

2021
Using DL for US benign
and malignant TNOD
differentiation

DL (ThyNet)
Training: 18049 US images
from 2 centers/Testing: 4305
images from 7 centers

22354 US images AUROC 0.922 (24)

2022
Using AI for US benign
and malignant TNOD
differentiation

Meta-analysis

PubMed, Cochrane Library,
Embase, Web of Science, China
Biology Medicine, and China
National Knowledge
Infrastructure

25 studies with
17429 US TNOD
images

Sensitivity 0.88 (0.85 - 0.90), Specificity
0.81 (0.74 -0.86), and AUC 0.92 (0.89 -
0.94)

(25)

2020

Comparing a CAD
system performance
and 3 levels of
experienced radiologists
in TNOD US evaluation

DL (S-Detect)
Patients evaluated with US and
cytology for TNOD from 1
center

197 patients

S-Detect: ACC 88.48, sensitivity 92,
specificity 87.9, NPV 98.40 / 1-month and
4-year experienced radiologists: ACC
83.03, Sensitivity 64 and 72, Specificity
86.4 and 85, NPV 93.08 and 94.44/9-year
radiologists: ACC 95.76, Sensitivity 84,
Specificity 97.9, NPV 97.16

(26)

2020

Comparing a CAD
system performance
and 4 levels (1, 4, 9, and
20 years) of experienced
radiologists in TNOD US
evaluation

DL (S-Detect)
Patients evaluated with US and
cytology for TNOD from 1
center

204 TNODs in 181
patients

S-Detect: ACC 77.0, sensitivity 91.3,
specificity 65.2, NPV 90.1, AUC 0.782 / 1-
year experienced radiologist: ACC 63.7
(with S-Detect: 75.0), sensitivity 95.7
(94.6), specificity 37.5 (58.9), NPV 91.3
(93.0), AUC 0.666 (0.767) / 20-year: ACC
84.8 (85.3), sensitivity 96.7 (97.8),
specificity 75.0 (75.0), NPV 96.6 (97.7), AUC
0.859 (0.864)

(27)

2020 Using DL for CT cervical
LNM diagnosis

CNNs: VGG16, VGG19,
InceptionV3,
InceptionResNetV2,
DenseNet121, ResNet,
DenseNet169, and Xception

3838 axial CT images from 698
thyroid cancer patients (PTC
689, FTC 5, MTC 3, and PDTC 1)

3606 benign and
232 malignant LNs

AUROC 0.846 (0.784-0.884) (Xception:
AUROC 0.884 external/0.942 internal
validations)

(28)

2024
Using ML for US
radiomics LNM
diagnosis

Meta-analysis
PubMed, Embase, Cochrane,
and Web of Science

27 studies (16410
thyroid cancer
patients, 6356
with LNM)

SROC for clinical features 0.76, for
radiomics features 0.84, and for both 0.81 (29)
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Year Aim Technique Dataset Sample Size
Performance Metrics
(Testing Cohort) Reference

2024
Using AI for nuclear medicine
radiomics in thyroid diseases
assessment

Meta-analysis
PubMed, Scopus, and Web of
Science

17 studies with 9627 patients Not reported (30)

2023
Using DL for in situ adequacy
screening of unstained FNAB
samples

DL (FNA-Net): MTL classifier +
Faster R-CNN, Inception-ResNet
v2, U-Net, and TensorFlow
Object Detection API

FNABs 6 patients with 21 slides and
287 cytopathologic images

AUC 0.84 and F1 score
0.81

(31)

2022
Using ML for ROI identification
on FNA WSI

TL: CNN (VGG11) + supervised
learning + ML classifier +
Ordinal regression

Thyroidectomy specimens
with a previous FNAB

908 FNABs: 799 training/109
testing (84 benign and 25
malignant)

AUC 0.931 for WSI-TBS
and 0.896 for ROI-TBS

(32)

2016
Using ML for TNOD malignancy
risk evaluation

ANN + resilient back
propagation training algorithm

FNABs and surgical
specimens of patients who
underwent thyroid
resection

345 patients ACC 64.5 and AUC 0.72 (33)

2020 Using ML for TNOD FNA
evaluation

RBFN + image analysis
algorithms

Thyroidectomy specimens
with a previous FNAB

41324 nuclear measurement
by image analysis from 288
benign and 159 malignant
patients

Sensitivity 81.4,
specificity 90.0, and
ACC 86.9

(34)

2018
Using ML for FNA follicular
adenoma and follicular
carcinoma differentiation

ANN FNABs 48 FNABs AUC 1 and ACC 100 (35)

2020 Using ML for FNA malignancy
prediction

TL: CNN (VGG11) + multiple
instance learning + ML classifier
+ ordinal regression

Thyroidectomy specimens
with a previous FNAB

908 WSIs from 659 patients:
799 training/109 testing

AUC 0.932, Sensitivity
92.0, and Specificity
90.5

(36)

2022
Using AI for image analysis of
ThinPrep-prepared FNABs

GBM, ETC
20 FNABs of AUS/FLUS cases
and 20 FNABs of benign
TNODs

400 low-power (100x) and
400 high-power (400x)
images

AUC 0.75 for low- and
0.74 for high-power

(37)

2023 Using DL for FNA diagnosis

CNN (EfficientNetV2) + data
augmentation + Gradient-
weighted Class Activation
Mapping (Grad-CAM) +
stochastic neighbor embedding
(t-SNE)

393 FNABs 148395 microscopic images
of FNAB

AUC 0.49 for PDTC and
0.91 for MTC, others
AUC > 0.95

(38)

2022 Using AI for protein-based
TNOD classification

ANN + feature selection and
feature importance evaluation
algorithms

19 protein biomarkers from
1724 thyroid tissue samples
proteomes

1161 TNODs from 1133
patients compromising 288
TNODs for retrospective and
294 for prospective external
validations

ACC 91 for training, 89
for retrospective, and
85 for prospective
validations

(39)

2021
Using ML for predictive and

diagnostic power of PPARγ
targets for PTC evaluation

PPARGi: ML-Powered
Personalized Scoring Index

comprising 10 PPARγ targets,
RF, SVM, k-NN, ANN, and LR

Datasets selected from
public functional genomics
data repository: TCGA-THCA,
MMD-THCA (PTC), and MMD-
THCA (ATC)

Three pairs of monozygotic
twins with PTC

AUC 0.828 - 0.998 (40)

2022
Using DL for drug response
prediction by integrating bulk
and scRNA-seq data

DL, TL
6 public scRNA-seq datasets:
GDSC, CCLE, etc.

1280 cancer cell lines, 1557
drugs/chemical
compounds, and their
expression profiles on 15962
genes

F1 score 0.892 and
AUROC 0.898

(41)

2023
Using AI for CT radiomics
ATC/PDTC from DTC
differentiation

RF
Thyroid cancer patients
underwent CECT from 1
center

ATC/PDTC 32 and PTC 58, FTC
40

AUROC radiomics
features 0.883,
radiomics and clinical
0.908, ACC 84.6% and
86.5%

(42)

2020
Using ML multiparametric MRI
radiomics for PTC
aggressiveness prediction

22 ML algorithms including LR,
SVM, GBC, etc.

120 TNOD patients
underwent MRI and hemi-
or total thyroidectomy from
1 center

1393 MRI features from 71
non-aggressive and 49
aggressive

LASSO feature
selection + GBC: AUC
0.874 training and
0.915 testing

(43)

2021

Using ML for PTC central LNM
prediction based on
preoperative and
intraoperative
clinicopathological
characteristics

LR, GBM, XGBoost, RF, DT, and
ANN

T1-T2, cN0 PTC patients
underwent thyroidectomy

from 1 center

619 central LNM- and 652
central LNM+

AUROC 0.695 - 0.750
(XGBoost 0.750)

(44)

2020
Using ML for PTC central LNM
prediction based on clinical
characteristics and US features

RF, ANN, DT, GBDT, XGBoost, and
AdaBoost

22 variables from 1103
patients who underwent
thyroidectomy from 1 center

491 central LNM- and 612
central LNM+

AUC 0.680-0.731 (GBDT:
AUC 0.731)

(45)
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Year Aim Technique Dataset Sample Size
Performance Metrics
(Testing Cohort) Reference

2022

Using ML for lung metastasis
prediction based on
clinicopathological
characteristics

SVM, LR, XGBoost, DT,
RF, and k-NN

Demographical and clinicopathological
data from 9950 thyroid cancer patients
from the SEER database: TN stage, age,
sex, race, laterality, year of diagnosis,
histological type, and LM

212 lungM+ and 9738
lungM-

RF: ACC 0.99, F1-score 0.72,
and AUC 0.99

(46)

2021

Using ML for bone metastasis
prediction based on
clinicopathological
characteristics

LR, RF, AdaBoost, DT,
NB, SVM

Demographical and clinicopathological
characteristics from 17138 thyroid
cancer patients from the SEER database:
Marital status, insurance status, grade,
etc.

166 boneM+ and 16972
boneM-

RF: AUC 0.917 and ACC
0.904

(47)

2021 Using ML for recurrence
prediction based on EMRs

Inductive logic
programming

Information extracted from EMRs of 783
patients with >= 5 years F/U after total
thyroidectomy, central LN dissection,
and RIAT from 1 center

54 recurrences and 729
recurrence-free

ACC 71.4 (48)

2022
Using ML for FTC prognosis
prediction

XGBoost, LightGBM,
RF, LR, AdaBoost,
GaussianNB, KNN,
SVM, and MLP

11 variables from the SEER database:
Region, surgical methods,
lymphadenectomy, TNM stage, etc.

6891 patients with FTC
with a median F/U of
64 months

XGBoost: AUROC 0.886 (49)

2023

Using AI and bioinformatics
for LNM prediction by key
genetic variations and
endocrine-disrupting
chemicals

Different R packages
with LASSO, SVM, and
RF

Immune cell abundance identifier
(ImmuCellAI), genomics of drug
sensitivity in cancer (GDSC), and Human
Protein Atlas (HPA) databases

12 hub genes: ERBB3,
etc.

ERBB3 as a diagnostic
marker for thyroid cancer
(AUC = 0.89), high LNM
potential (AUC = 0.75), and
LNM+ (AUC = 0.86)

(50)

2023
Using ML for PTC prognosis
prediction based on molecular
identifiers

ML (HighLifeR) 502 cases annotated by the Cancer
Genome Atlas Project

82 genes: BRAFV600E,
RAS, EZH2-HOTAIR
pathway mutations,
etc.

Not reported (51)

2022

Using AI for guided US
therapeutic effect evaluation
of thoracoscopic
thyroidectomy on PTC

MVA, DAS
Patients diagnosed with PTC by imaging
or FNAB

Experimental: 94
patients, control: 119
patients

P < 0.05, not reported (52)

2021
Using DL for recurrent
laryngeal nerve identification
during thyroidectomy

CNN (ResNeXt50-32 × 
4d) + Mask R-CNN

Various images of recurrent laryngeal
nerve and surrounding tissues

277 images of 130
patients DSC 0.707 (53)

2024
Using DL for parathyroid gland
identification during
endoscopic thyroidectomy

DL: YOLOX 838 endoscopic thyroidectomy videos
32482 images
extracted from videos

P < 0.001, not reported (54)

2023
Using AI for the severity of
postoperative scars prediction

CNN (ResNet-50) +
convolutional block
attention module + t-
SNE + Grad-CAM

Images of thyroidectomy scars and
clinical data 1283 patients

ROC-AUC 0.896 for imaging
and 0.912 for imaging and
clinical features

(55)

2023
Using DL for RAIT dosimetry
optimization

ANN + adam
optimizer

DTC underwent RAIT dosimetry, using
images and blood sampling gathered
from the initial 4, 24, and 48 hr post
administration

83 patients P = 0.351, not reported (56)

2024
Using ML for RAIT success
prediction in low-risk PTC by
clinical data and radiomics

LR with lasso and
ridge

Characteristics of low-risk PTC patients
who underwent total or near total
thyroidectomy and RAIT: Age, sex, and
pre-ablative serum Tg

130 patients AUC 0.78 (57)

2018

Using ML for thyroid cancer
patients' family members'
radiation exposure dose
estimation

ANN

Characteristics of RAI-treated TC
patients: Age, gender, home area,
education, BMI, release dose rate,
administrated residual activity, etc.

99 family members of
52 patients ROC-AUC 0.957 (58)

2022
Using AI for targeting AKT1
peptide design for ATC
treatment

Not reported Peptide synthesis datasets 96 plates IC50 18.2 mM in 8303C and
12.4 mM in 8505C cells

(59)

2023
Using AI for new therapeutic
target identification (Kir5.1)

Deep docking
(VirtualFlow)

Gene Expression Omnibus, Cancer
Genome Atlas, and TCGA databases, etc.

68 pairs of primary
tumors and para-
tumor tissues (6
benign, 36 PTC, and 26
PTMC)

Not reported (60)

Abbreviations: RF, random forest; SVM, support vector machine; ANN, artificial neural network; k-NN, k-nearest neighbor; NB, naive bayes; LR, logistic regression; LDA, linear

discriminant analysis; CNN, convolutional neural network; GBM, gradient boosting machine; DT, decision tree; GBDT, gradient boosting decision tree; MLP, multilayer

perceptron; MTL, multi-task learning; TL, transfer learning; RBFN, radial basis function network; ETC, extra tree classifier; MVA, minimum variance algorithm; DAS, delay-and-

sum algorithm; TNOD, thyroid nodule; LNM, lymph node metastasis; PTMC, papillary thyroid microcarcinoma; PDTC, poorly differentiated thyroid carcinoma; DTC,

differentiated thyroid carcinoma; TC, thyroid cancer; anaplastic thyroid cancer (ATC), anaplastic thyroid carcinoma; TBS, thyroid cytopathology Bethesda system; AUS, atypia of

undetermined significance; FLUS, follicular lesion of undetermined significance; FNAB, fine needle-aspiration biopsy; DSC, dice similarity coefficient; ACC, accuracy; AUC, area
under the curve; SROC, summary receiver operating characteristics ; ROC-AUC, area under the receiver operating characteristic curve.
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