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Abstract

Background: As a global health issue, the need for sophisticated prediction models to support early diabetes mellitus

diagnosis and treatment is growing. Deep learning (DL) models lack interpretability despite their accuracy; traditional machine

learning (ML) models occasionally overlook the complex interaction among genetic, lifestyle, and biological components.

Objectives: This work presents a hybrid DL framework combining deep neural networks (DNNs) and Extreme Gradient

Boosting (XGBoost) to enhance explainability and predictive performance in early diabetes detection.

Methods: This study retrospectively examined 1,284 anonymized patient records collected from two hospitals in Sirjan (March

2023 - 2025), comprising both diabetic and non-diabetic individuals. Glucose level, hemoglobin A1c (HbA1c), insulin resistance,

Body Mass Index (BMI), blood pressure, and cholesterol were identified as the most significant predictors using recursive

feature elimination (RFE). All analyses were conducted in Python 3.10 using TensorFlow 2.12 and XGBoost 2.0, executed on an

NVIDIA RTX 4090 GPU environment. The F1-score, accuracy, precision, recall, positive predictive value (PPV), and negative

predictive value (NPV) were applied to evaluate the hybrid model compared to logistic regression (LR), random forest (RF),

support vector machine (SVM), standalone XGBoost, and DNN.

Results: With an accuracy of 94%, the hybrid model (DNN+XGBoost) outperformed standalone models like XGBoost (89%) and

DNN (91%) as well as LR (78%), SVM (82%), and others (P = 0.006). Precision and recall were attained at 93% and 95%, respectively.

The most significant predictors identified by SHapley Additive exPlanations (SHAP) analysis were glucose (0.35) and HbA1c

(0.30), validating the model's clarity and clinical usefulness.

Conclusions: The proposed hybrid AI model balances high accuracy and interpretability, suggesting its potential utility for AI-

assisted diabetes prediction in future clinical settings pending external validation. This model builds trust among clinicians by

applying SHAP-based explainability.

Keywords: Diabetes Mellitus, Type 2, Deep Learning, Machine Learning, Clinical Decision Support Systems, Artificial

Intelligence, Explainable Artificial Intelligence, Predictive Value of Tests

1. Background

The long-term repercussions of diabetes mellitus

(retinopathy, neuropathy, nephropathy, and

cardiovascular diseases) severely strain healthcare

systems. Globally, millions of individuals suffer from

this metabolic disorder (1). The development of effective

prediction models that can enable early diagnosis and

customized treatment approaches is essential, given the

rising prevalence of diabetes, a condition brought on by

a confluence of genetic components, inactivity, and

poor nutrition (2). Hemoglobin A1c (HbA1c) and fasting

blood glucose readings are among the conventional

diagnostic tools; yet, these tests only show a picture of a

person's glycemic state and neglect the several

physiological, behavioral, and genetic factors affecting

the onset and course of diabetes (3). Regarding high-

dimensional healthcare data, machine learning (ML)
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and artificial intelligence-driven solutions outperform

traditional statistical approaches (4). Recent explainable

hybrid deep learning (DL) frameworks have

demonstrated promise in identifying metabolic risks at

early stages, particularly among prediabetic and high-

risk adults (5). The SHapley Additive exPlanations (SHAP)

analysis provided interpretable insights. Currently,

limitations in interpretability, generalizability, and

clinical application make using ML-based models

challenging in real-world healthcare environments (6).

The new developments in hybrid artificial

intelligence models might significantly improve the

accuracy and explainability of disease prediction

activities. These models combine interpretable ML

techniques with deep learning methods. Combining the

best aspects of both paradigms Extreme Gradient

Boosting [XGBoost for increasing interpretability and

decision transparency, and deep neural networks

(DNNs) for feature extraction from complex nonlinear

patterns] is the aim of our study (7, 8). The three main

issues in diabetes prediction are model accuracy, feature

explainability, and clinical integration (9). We therefore

employ the SHAP to make our predictions more

intelligible so that clinicians may see how each feature

affected the judgments of the model. Using a large-scale

diabetes classification dataset, we systematically

evaluate our proposed model against various well-

known ML methods. Among them are random forest

(RF), logistic regression (LR), support vector machine

(SVM), and standalone XGBoost (10, 11).

This work bridges the gap between prediction

performance and explainability, advancing artificial

intelligence-driven precision medicine. It opens the

path for clinically deployable decision-support system

development. Early diabetes detection depends

critically on coupling ML approaches with explainable

artificial intelligence (XAI). Among the basic statistical

methods used to match with more complex models, LR

is among the most important ML algorithms (12, 13).

Doctors may learn more about how factors such as Body

Mass Index (BMI) and blood sugar influence the

predictions if XAI approaches, such as SHAP and local

interpretable model-agnostic explanations (LIME), were

employed (13). There remain challenges to be addressed,

including those pertaining to privacy concerns and

promoting cross-disciplinary interaction to facilitate

the ethical consideration of AI in diabetes diagnostics

despite the promising progress in AI, ML, and XAI in

diabetes diagnosis. In addition, more attempts for

multi-factor analysis might raise the predictive power of

ML models and identify important risk factors for

diabetes. Even more accurate models for early diagnosis

and prediction of interventions would be provided by

integrating a myriad of health markers and social

determinants of health (14). Polyuria, polydipsia, and a

high BMI are critical health indicators that significantly

increase the likelihood of diabetes (15). Socioeconomic

factors are also crucial; studies show that the incidence

of diabetes increases with decreasing income.

Furthermore, by including lifestyle and demographic

factors into large datasets, a more complex

understanding of diabetes risk may be achieved (16, 17).

According to research by Prasetyo and Yunanda and

Balaji and Sugumar, ensemble learning methods such as

Random Forest and Gradient Boosting may achieve

diabetes classification accuracy levels of up to 87% (17-19).

While this multi-factor strategy may improve predictive

powers, it is crucial to remember that complex models

are prone to overfitting, which might also provide

conclusions that do not apply to other populations (19).

2. Objectives

This study proposes a hybrid AI model that aims to

enhance both predictive performance and

interpretability in early diabetes detection.

3. Methods

This work offers a precise and comprehensible model

for diabetes prediction using a methodical, multi-step

approach. Using XAI techniques like SHAP, LIME, and

model performance evaluation, this method combines

data collection and preprocessing, feature selection and

significance analysis, modeling using ML algorithms,

and model interpretability. The study also looks at how

these techniques help determine the significance of

important factors for diabetes prediction. Lastly, moral

dilemmas, model application, external verification, and

last but not least. The architectural flow of the proposed

hybrid framework, combining DNN, XGBoost, and SHAP-

based explainability, is illustrated in Figure 1.

3.1. Dataset Description

The dataset consisted of 1,284 anonymized patient

records collected retrospectively from Imam Reza (AS)

and Gharazi Hospitals in Sirjan between March 2023 and
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Figure 1. Schematic overview of the proposed hybrid deep neural network (DNN) and Extreme Gradient Boosting (XGBoost) framework for diabetes prediction. The workflow
integrates data preprocessing, feature selection, and model fusion. After normalization and handling of missing values, clinical and lifestyle features are passed through a DNN
for nonlinear pattern extraction, while XGBoost captures structured decision boundaries. The final prediction layer aggregates outputs from both components, producing
interpretable probabilities of diabetes risk using SHapley Additive exPlanations (SHAP)-based explanations.

March 2025. Demographic, clinical, and lifestyle

variables were labeled in accordance with the American

Diabetes Association (ADA) 2023 guidelines. Data

anonymization was performed using the SHA-256

algorithm. For variables with less than 3% missing data,

imputation was conducted using either the multiple

imputation by chained equations (MICE) method or the

maximum extent of replacement strategy. Missing data

were handled strictly within each training fold during

cross-validation to avoid data leakage. Numerical

variables were imputed using MICE, whereas categorical

variables were imputed using mode replacement. No

outcome-related information was used during

imputation.

A total of 27 extreme outliers in BMI and cholesterol

(|Z| > 3) were removed. Continuous variables were

normalized to a 0 - 1 scale, and the class distribution

remained well balanced throughout the preprocessing

phase. The dataset was randomly divided into training

and testing subsets using an 80:20 ratio through

stratified sampling to maintain class balance between

diabetic and non-diabetic groups. The neutrophil-to-

lymphocyte ratio (NLR) was included as an

inflammatory biomarker given its recent association

with microvascular and cardiovascular risk in diabetic

patients.

The primary outcome was binary diabetes status (0 =

non-diabetic, 1 = diabetic) defined strictly according to

the ADA 2023 diagnostic thresholds: fasting plasma

glucose ≥ 126 mg/dL, HbA1c ≥ 6.5%, or documented

diagnosis in the hospital record. Individuals who did

not meet any of these criteria were classified as non-

diabetic. In secondary analyses, a prediabetes outcome

(HbA1c 5.7 - 6.4% or fasting glucose 100 - 125 mg/dL) was

also evaluated to assess model performance for early

metabolic dysregulation.

Included are significant biological markers (e.g.,

HbA1c and glucose levels), medical history (e.g., blood

pressure, cholesterol, and medication use), lifestyle

factors (e.g., diet and level of physical activity), and

demographic information (e.g., age and gender). Each

person's diabetes diagnosis is shown by the objective

variable, a binary classification (0 = no diabetes, 1 =

diabetes).

Type 2 Diabetes Mellitus (T2DM) is most likely the

focus, according to a closer examination of this data.
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The patients' high average age (53 years), significant

prevalence of obesity (BMI > 30), and insulin resistance

levels, all known risk factors for Type 2 diabetes, are the

basis for this result. Although some people under 30 are

included in the dataset, it does not clearly distinguish

between Type 1 and Type 2 diabetes and does not contain

some biomarkers critical for Type 1 diabetes, such as

autoantibodies or C-peptide levels. Consequently,

research on Type 2 diabetes is more appropriate for this

dataset; more data is needed to analyze Type 1 diabetes.

3.1.1. Inclusion and Exclusion Criteria

Participants were retrospectively selected based on

the availability of complete clinical and biochemical

records from Imam Reza (AS) and Gharazi Hospitals

between March 2023 and March 2025.

Inclusion criteria: Adults aged ≥ 18 years with

recorded fasting blood glucose, HbA1c, blood pressure,

cholesterol, BMI, and insulin resistance values. Both

diabetic and non-diabetic individuals were included

according to the ADA 2023 diagnostic thresholds.

Exclusion criteria: Individuals with incomplete or

inconsistent medical records, gestational or type 1

diabetes, chronic renal or hepatic failure, active

malignancy, or ongoing corticosteroid or hormonal

therapy. Records with duplicated or missing key

biochemical markers were also excluded.

This selection ensured that only adult patients with

verifiable and comprehensive metabolic data were

analyzed, improving dataset homogeneity and model

reliability.

3.1.2. Sample Size Justification and Power Analysis

The total sample size of 1,284 participants (660 non-

diabetic and 624 diabetic) was determined adequate

based on a priori power analysis using G*Power 3.1

software. Assuming a two-tailed test, medium effect size

(Cohen’s d = 0.3), α = 0.05, and desired statistical power

= 0.90, the minimum required sample size was

estimated at ~1,040 participants. The final dataset

exceeds this threshold, ensuring sufficient statistical

power to detect significant differences in metabolic and

demographic predictors between diabetic and non-

diabetic groups. This sample size also allows stable

model training and validation while minimizing

overfitting risk.

The primary variable used for sample size estimation

was fasting glucose, as it showed the largest expected

standardized effect size based on prior metabolic

research. Following the methodological

recommendations of Suresh and Chandrashekara,

assuming a medium effect size (Cohen’s d ≈ 0.30), α =

0.05, and statistical power = 0.90, the minimum

required sample size was approximately 1,000

participants. Our dataset of 1,284 individuals exceeds

this threshold and ensures sufficient power for model

training and between-group comparisons (20).

For categorical variables such as smoking status,

medication use, and physical activity level, missing

values were handled using mode imputation, replacing

each missing entry with the most frequent category

within the respective variable. In cases where a

categorical variable had more than 5% missing data, the

variable was excluded from the analysis to prevent bias.

This combined approach ensured consistency and

minimized distortion in categorical feature

distributions.

3.2. Data Cleaning

The dataset was preprocessed in several ways that

increased the reliability of the modeling findings and

guaranteed the data quality. As a first step, missing value

management ensured that no missing values were in

the dataset. The next step was to ensure that all

characteristics, including those with numerical and

categorical values, were consistent by reviewing the

data types. Outliers in continuous variables, such as BMI

and blood pressure, were identified and eliminated

using the Z-score and the interquartile range (IQR)

method since they would degrade the accuracy of ML

models. Glucose levels and insulin resistance were

reduced in their impact on model performance by using

MinMax Scaling to bring them within the range of [0, 1].

Ultimately, we used label encoding and one-hot

encoding for categorical variables with multi-valued

categories (e.g., smoking status and ethnicity) and

binary variables (e.g., medicine usage) with one-valued

categories.

3.3. Correlation and Feature Importance

Various feature selection techniques were used to

enhance the model's performance and interpretability.

Researchers may determine the most significant and
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pertinent parameters for diabetes prediction using

these techniques. Using Pearson and Spearman

correlation analysis, both linear and nonlinear

connections between numerical variables were

examined. The SHAP approach was used to order the

features' significance based on the model. This approach

demonstrates the significance of each attribute for the

model's prediction. The XGBoost model, a powerful

ensemble learning technique based on gradient

boosting that fundamentally handles structured data,

was used to gradually eliminate less important features

using recursive feature elimination (RFE). This approach

systematically removes characteristics with the least

effect on the model's performance, leaving a set of

optimal features for prediction.

Class balance in the dataset was examined using the

XGBoost model's RFE technique. The findings

demonstrated that, with 50.21% of cases being diabetic

and 49.79% not, the groups of people with and without

diabetes are well balanced. Therefore, the procedures of

oversampling (raising the minority class) and

undersampling (lowering the majority class) were

unnecessary in this study. If a class imbalance impairs

model performance, methods such as the synthetic

minority over-sampling technique (SMOTE) may be used

to enhance data balance. For model training, the

following collection of features was chosen based on the

outcomes of the feature selection techniques:

Hemoglobin A1c, blood pressure, cholesterol, BMI,

insulin resistance, glucose level, family history of

diabetes, degree of physical activity, and smoking status.

To prevent data leakage, all feature selection and

ranking procedures, including correlation analysis,

SHAP-based importance scoring, and RFE, were

performed strictly within each training fold during five-

fold cross-validation. This ensured that information

from the test data did not influence the model training

or feature selection process. Feature importance was

recalculated independently for every fold to maintain

unbiased performance estimation.

3.4. Challenges of Basic Models

Classical ML models, such as LR, RF, gradient

boosting machines (LightGBM, XGBoost), SVM, and

artificial neural networks (ANNs), struggle to predict

diabetes. Some of the most important issues are

interpretability, as uninterpretable models like RF and

DNNs are, i.e., one cannot interpret their decision-

making process. There are also problems in detecting

nonlinear patterns; models like LR struggle to deal with

nonlinear and complex relationships in data. Although

some traditional models can tackle a limited level of

nonlinearities through transformation or interaction

terms, their capacity for modeling complex high-

dimensional relationships is weak compared to the

recent advances. The present work highlights that

nonlinear models like XGBoost and DL work better in

diabetes prediction, highlighting the need for advanced

modeling techniques.

Furthermore, most models are plagued by the issue

of balancing accuracy and recall (sensitivity);

consequently, false positives and negatives increase.

They also have a problem with generalizability since

models trained on a given dataset do not do well when

cross-tested with another dataset with different

distributions. Statistically analyzing the problem, the

independent t-test was applied to compare model

performance between different datasets and concluded

that there was a statistically significant difference (P <

0.05). This means that model performance varies based

on the dataset, showing potential overfitting to specific

properties of the dataset, which would affect its

generalizability.

3.5. Proposed Model: Combining Deep Learning and
Explainable Methods

To overcome the aforementioned challenges, a

hybrid framework based on DL and XAI is proposed in

this study. The proposed model combines DNNs and

explainable models, i.e., SHAP and XGBoost. The purpose

of such a combination is to improve the accuracy and

reliability of the predictions and the interpretability of

the model.

3.6. Comparative Analysis of Models

3.6.1. Modeling Pipeline

The modeling pipeline followed TRIPOD

recommendations and included the following

sequential steps: (1) Preprocessing and normalization,

(2) within-fold feature selection using SHAP and RFE, (3)

training of DNN and XGBoost models on the training

folds, (4) formation of the hybrid ensemble through

weighted aggregation, and (5) evaluation on the
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untouched test fold. All steps were implemented

independently within each fold to prevent data leakage.

A comprehensive comparison was conducted on

several ML models like LR, RF, XGBoost, SVM, DL, and the

hybrid model. The models were selected based on their

suitability in medical data analysis and their ability to

address different complexities in diabetes prediction.

The LR is a frequently used statistical model that

assumes linearity in the logistic relationship between

input features and the probability of the occurrence of

diabetes. However, it is more suited to simple

relationships and fails with complex nonlinear

relationships. Random forest is a meta learning

algorithm, which forms many decision trees and

computes their average predictions to yield better

prediction performance and minimize overfitting.

Extreme Gradient Boosting is an efficient and powerful

gradient boosting framework for structured data,

especially massive data with intense relationships.

Support vector machine identifies the optimum

hyperplane that maximally separates diabetes and non-

diabetes; SVM is suitable for high-dimensional spaces

but computationally expensive. Deep neural network

uses neural networks to learn abstract features

automatically from raw data and thus is highly

appropriate for unstructured or big data. Finally, the

hybrid model combines DNN and XGBoost to use their

respective strengths while compromising

interpretability and high accuracy. Model performance

metrics were statistically compared using one-way

ANOVA followed by Bonferroni post-hoc tests to identify

significant differences among models. All analyses were

performed with a significance threshold of P < 0.05.

To ensure full transparency and adherence to TRIPOD

guidelines, the model development pipeline was

implemented in a strictly structured manner. The

dataset was first split using an 80/20 stratified train–test

division. Within the training portion, a five-fold cross-

validation framework was applied, where feature

selection (SHAP-based ranking and RFE),

hyperparameter tuning (Bayesian optimization for DNN

and grid search for XGBoost), and dual-objective

weighting optimisation were performed entirely inside

each fold to prevent data leakage. Model stability was

assessed through 1,000-iteration bootstrapping, which

generated confidence intervals (CIs) for all performance

metrics.

To evaluate calibration, we computed both the Brier

score and generated calibration curves using isotonic

regression on the validation folds. Calibration

performance was compared between the hybrid model

and individual DNN and XGBoost components. The

hybrid model demonstrated lower calibration error

(Brier score = 0.061) compared with DNN (0.078) and

XGBoost (0.072), confirming improved reliability of

predicted probabilities. These steps ensure

methodological transparency and mitigate overly

optimistic performance estimates.

3.7. Mathematical Formulation of the Hybrid Model

The hybrid model integrates DNNs and XGBoost in an

ensemble approach: YHybrid = α.YDNN + β.YXGBoost, α + =

1; where, YHybrid is the final prediction output; YDNN

represents the probability score from the DL model;

YXGBoost represents the probability score from the

XGBoost model; and α, β are weight coefficients

optimized using grid search.

The hybrid model takes advantage of the best of both

models: Deep neural network provides high-

dimensional features, whereas XGBoost achieves

maximum interpretability and fine-grained decisions.

Moreover, the decision boundary for our hybrid model

is refined using H(X) = σ(WHybrid.X + b); where, WHybrid

is the weighted sum of individual model parameters; X

represents input features, b is the bias term; and σ is the

activation function (ReLU for DNN and sigmoid for final

prediction).

3.7.1. Model Configuration and Hyperparameters

The DNN component consisted of an input layer with

9 normalized clinical and lifestyle features, followed by

three fully connected hidden layers with 128, 64, and 32

neurons, respectively. The ReLU activation function was

applied to each hidden layer, with dropout

regularization (P = 0.3) to prevent overfitting. The

output layer used a sigmoid activation function for

binary classification. Model optimization was

performed using the Adam optimizer (learning rate =

0.001, batch size = 32) with early stopping criteria based

on validation loss (patience = 10 epochs).

The XGBoost component employed the following

hyperparameters optimized via five-fold cross-

validation: learning rate = 0.05, max depth = 6,

https://brieflands.com/journals/semj/articles/166066


Kashani M et al. Brieflands

Shiraz E-Med J. 2025; In Press(In Press): e166066 7

n_estimators = 300, subsample = 0.8, colsample_bytree

= 0.7, gamma = 0.1, and regularization parameters α = 0.1

and λ = 1.0.

Both models were trained on 80% of the dataset and

validated on the remaining 20%. Model selection was

based on the balanced accuracy and F1-score, ensuring a

reproducible workflow consistent with explainable AI

standards.

3.7.2. Dual-objective Optimization Procedure

To ensure simultaneous optimization of predictive

performance and model interpretability, a dual-

objective (Pareto-based) optimization strategy was

applied during hybrid model training. Shapley

instability was defined as the standard deviation of

feature-level SHAP values across 1,000 bootstrap

iterations; lower instability indicates more consistent

feature attribution. The two objectives were: (1)

Maximizing balanced accuracy, and (2) minimizing

SHAP value variance (“Shapley instability”) across

bootstrap samples.

During each training fold, weight coefficients (α, βₐ,
β_b, b) governing the contribution of DNN and XGBoost

outputs were optimized by selecting Pareto-efficient

solutions that avoided accuracy-interpretability trade-

offs.

3.8. Explainability and Feature Contribution Analysis

To analyze each feature's contribution in the

proposed model, we utilized feature importance

analysis through SHAP. Through this method, we can

measure the impact of each variable on the model's

output.

3.9. Mathematical Formulation of Feature Impact on the
Model

In the proposed model, the output is computed as a

combination of the effect of each feature, weighted by

its SHAP value:

Where: Y is the diabetes prediction output; Xi is the

value of the feature; SHAPi is the importance weight of a

feature based on its SHAP value; and b is the model bias

term.

All analyses and model training were performed

using Python 3.10, TensorFlow 2.12, and XGBoost 2.0

libraries on a system equipped with an NVIDIA RTX 4090

GPU, 24 GB VRAM, and 64 GB RAM. Statistical analyses

were conducted in SPSS version 26.0 and R version 4.3.0

for verification and visualization.

4. Results

The study sample comprised 1,284 individuals,

including 624 diagnosed with diabetes and 660 non-

diabetic controls. The mean age of participants was 53 ±

12 years, with 41% females and 59% males. Diabetic

patients showed significantly higher fasting glucose (167

± 38 mg/dL vs. 92 ± 15 mg/dL) and HbA1c levels (8.3 ± 1.1%

vs. 5.2 ± 0.7%; P < 0.001). Mean BMI was 31.4 ± 4.6 kg/m² in

the diabetic group compared with 27.2 ± 3.8 kg/m²

among non-diabetic participants. These baseline

findings confirm that metabolic and anthropometric

factors strongly differentiate diabetic from non-diabetic

individuals and serve as key predictors for subsequent

model training.

Table 1 indicates the variations in performance across

different models for diabetes prediction. To estimate the

statistical robustness of each metric, 95% CIs were

computed across five-fold cross-validation using the

bootstrap method (n = 1,000 resamples). Reported

accuracy, precision, recall, and F1-scores therefore

represent mean ± CI values, ensuring reliable

comparison across models. Pairwise comparisons using

one-way ANOVA with Bonferroni correction confirmed

statistically significant differences in mean accuracy,

precision, recall, and F1-score between models (P < 0.05).

The hybrid model (DNN+XGBoost) achieved the

highest accuracy (94%) compared with DNN (91%) and

XGBoost (89%), followed by SVM (82%) and LR (78%).

Between-model performance differences were

statistically significant (Hybrid vs. DNN: P = 0.008;

Hybrid vs. XGBoost: P = 0.004), confirming the

superiority of the proposed hybrid framework.

In addition to accuracy, precision, recall, and F1-score,

the positive predictive value (PPV) and negative

predictive value (NPV) were also calculated. The hybrid

DNN-XGBoost model achieved a PPV of 94% and an NPV

of 96%, both of which were higher than those observed

in the standalone models (Table 1).

The DL model was also significant in terms of

predictive power and outperformed XGBoost

Y = f(X)=∑
n

i=1
SHAPIi.Xi + b
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Table 1. Machine Learning Model Performance – Early Diabetes

Model
Train

Accuracy
Test Accuracy

(95% CI)
Overfit

Δ
Precision
(95% CI)

Recall
(95% CI)

F1-Score (95%
CI) PPV NPV Statistical Significance/Comment

LR 0.8 0.78 (0.76 - 0.80) 0.02
0.74 (0.72 -

0.76)
0.76 (0.74 -

0.78)
0.75 (0.73 -

0.77) 0.76 0.78
Baseline model; Lower performance in
complex data

RF 0.88 0.85 (0.83 - 0.87) 0.03
0.83 (0.81 -

0.85)
0.84 (0.82 -

0.86)
0.835 (0.83 -

0.84)
0.85 0.86

Better than LR (P = 0.032); Moderate
generalization

XGBoost 0.92
0.89 (0.88 -

0.90)
0.03

0.87 (0.85 -
0.89)

0.88 (0.86 -
0.90)

.875 (0.87 -
0.88)

0.89 0.91
Better than RF (P = 0.018); Lower than DNN (P
= 0.018)

SVM 0.84 0.82 (0.80 - 0.84) 0.02
0.80 (0.78 -

0.82)
0.81 (0.79 -

0.83)
0.805 (0.80 -

0.81) 0.82 0.84
Lower than XGB and DNN; Computationally
expensive

DNN 0.94 0.91 (0.90 - 0.92) 0.03
0.89 (0.88 -

0.91)
0.90 (0.89 -

0.92)
0.895 (0.89 -

0.90)
0.91 0.93

Better than XGB (P = 0.012); Near-optimal
performance

Hybrid model
(DNN+XGB)

0.96 0.94 (0.93 - 0.95) 0.02 0.94 (0.93 -
0.95)

0.95 (0.94 -
0.96)

0.94 (0.93 -
0.95)

0.94 0.96 Best performance; Significantly better than
all models (P < 0.001)

z Abbreviations: CI, confidence interval; PPV, positive predictive value; NPV, negative predictive value; LR, logistic regression; RF, random forest; XGBoost, Extreme Gradient
Boosting; DNN, deep learning network; SVM, support vector machine.

Figure 2. Receiver operating characteristic (ROC) curves comparing the performance of all machine learning (ML) models used in this study, including logistic regression (LR),
support vector machine (SVM), random forest (RF), Extreme Gradient Boosting (XGBoost), deep neural network (DNN), and the proposed hybrid DNN-XGBoost model. The X-axis
represents the false positive rate (1 - Specificity), and the Y-axis represents the true positive rate (sensitivity). The hybrid DNN-XGBoost model achieved the highest area under the
curve (AUC = 0.94), indicating superior discriminative ability in distinguishing diabetic from non-diabetic individuals. All numerical values correspond exactly to the
performance metrics reported in Table 1 to ensure internal consistency.

significantly (P < 0.05), although the hybrid model was

superior. Extreme Gradient Boosting performed better

than RF (P < 0.05) but was surpassed by the DNN model,

proving the potency of DL techniques (Figure 2).

While the hybrid model consistently yielded higher

accuracy and recall than other models, statistical

analysis using one-way ANOVA followed by Tukey’s post-

hoc test indicated that these improvements were

significant at P < 0.05. The DNN model also

demonstrated higher predictive power than XGBoost,

whereas LR and SVM exhibited lower generalizability.

The hybrid model (DNN+XGBoost) achieved the

highest performance across all metrics. Pairwise

comparisons using one-way ANOVA with Bonferroni

correction confirmed statistically significant differences

in mean accuracy, precision, recall, and F1-score between
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Figure 3. SHapley Additive exPlanations (SHAP) summary plot illustrating the relative contribution of each feature to diabetes prediction. The X-axis represents the SHAP value,
which indicates the magnitude and direction of each feature’s effect on the model’s output (positive values push predictions toward diabetes, negative toward non-diabetes).
The Y-axis lists the input features ranked by their overall importance. Each dot represents one observation; color intensity indicates the original feature value (red = higher value,
blue = lower value). The plot shows that glucose level and hemoglobin A1c (HbA1c) have the strongest positive influence on diabetes prediction.

models (P < 0.05). Traditional models like LR and SVM

were poorly generalizable to new data and were less

accurate. Higher-order complex models like DNN and

the hybrid model (DNN+XGBoost) aggressively

generalized to test data and increased training accuracy.

In an exploratory secondary analysis, the model also

demonstrated strong performance for prediabetes

detection [area under the curve (AUC) = 0.94], although

these results were not part of the primary outcome.

Neutrophil-to-lymphocyte ratio contributed modestly

to the prediction outputs (mean SHAP = 0.04),

consistent with its documented association with

metabolic inflammation.

4.1. Feature Importance Based on SHapley Additive
exPlanations

Table 2 presents the key feature importance values in

diabetes prediction. In Figure 3, the SHAP value shows

the importance of each attribute in predicting diabetes.

The greater the SHAP value, the greater the influence on

the model's decision-making process. The blue bar

(glucose level - 0.35) is the highest predictor, followed by

the orange bar (HbA1c - 0.30), which has a high impact.

The light gray bar (Insulin Resistance - 0.20) is another

significant factor, but less than glucose and HbA1c. The

remaining factors, such as BMI, blood pressure, and

cholesterol (0.15 - 0.08), have a moderate impact. The

brown and dark gray bars representing smoking status

and family history of diabetes (~0.05) have the lowest

impact. Therefore, highly influential SHAP value features

are most predictive, and are glucose and HbA1c as the

most significant factors, with family history and

smoking status as less influential factors.

Table 2. Key Feature Importance Values in Diabetes Prediction.

Features SHAP Value (Feature
Importance)

Statistical Significance (P-
Value)

Glucose level 0.35 0.001

HbA1c 0.3 0.003

Insulin
resistance

0.2 < 0.01

BMI 0.15 0.012

Blood pressure 0.1 0.020

Cholesterol 0.08 0.035

Physical activity 0.06 0.045

z Abbreviation: SHAP, SHapley Additive exPlanations; HbA1c, Hemoglobin A1c;

BMI, Body Mass Index.
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The findings of the SHAP analysis indicate that

biochemical features such as glucose level and HbA1c

have the most considerable effect. Body Mass Index and

blood pressure were statistically significant predictors

of diabetes (P = 0.012 and P = 0.020, respectively),

confirming their moderate yet meaningful contribution

to the model. Lifestyle features such as physical activity

and smoking status have a lesser but substantial

contribution. The findings highlight that including

both clinical and lifestyle data leads to improved

diabetes predictions.

SHAP values represent each feature’s relative

contribution to the model’s output. They are not derived

from classical hypothesis testing; therefore, no P-values

are reported. Instead, feature importance ranking is

based on SHAP magnitude averaged over all predictions.

5. Discussion

The performance of our proposed hybrid model

demonstrates a significant improvement in the

classification of diabetes over the conventional ML

models. However, despite strong internal performance,

these results should be interpreted with caution.

Because calibration assessment and all optimization

steps were conducted within internal cross-validation

only, and no external cohort was used, the observed

performance may reflect dataset-specific characteristics.

Therefore, while the model shows promise, it is not yet

suitable for immediate clinical deployment without

multi-center external validation.

With the integration of DL and explainability

methods, our system demonstrates improved

performance while the decisions remain interpretable.

The selection of the model in this research was based on

how complicated it would be to predict diabetes and

what type of limitations the conventional models have.

While effective in some cases, methods like LR and SVM

are hard-pressed to address complex, nonlinear patterns

in medical data. On the other hand, RF and XGBoost are

more effective at modeling nonlinear relationships but

fail to provide much interpretability. Our suggested

hybrid model, combining DNNs and XGBoost, addresses

these shortcomings. DL can extract high-dimensional

and intricate patterns from input data, and XGBoost can

boost the model's interpretability along with

explainable decision-making. Their combination

achieves improved predictive accuracy for diabetes

classification along with preserving transparency in

clinical decision support.

Other studies have also proved that the fusion of DL

models and explainable AI techniques has the potential

to enhance diagnostic accuracy, along with decreasing

uncertainty in medical decision-making. For instance,

Islam Ayon and Islam demonstrated that a DL-based

diabetes forecasting system uses 98.35% accuracy on the

Pima Indian Diabetes dataset compared to traditional

ML classifiers such as LR and SVM (21). However,

explainability techniques were not utilized in this study,

limiting its application to clinical decision-making.

Similarly, Chowdhury et al.'s work proposed a hybrid

ensemble DL approach utilizing XGBoost, TabNet, and

Multilayer Perceptron with a 96% accuracy rate but

without utilizing interpretability models like SHAP or

LIME in particular. Contrary to our study, these

techniques are integrated in our work with a balance

between predictive accuracy and explainability, and a

suitability for clinical applications in actual practices

(4). Recent work has proposed optimized hybrid ML

frameworks for early diabetes prediction (22).

Therefore, the selection of these models was not just

due to their greater predictive ability to analyze medical

data but also because they can make decisions more

interpretable, which is crucial in applications in the

medical domain. Although highly accurate, the DL and

XGBoost models suffer from interpretability issues.

Extreme Gradient Boosting and DL model

interpretability issues are not specific to diabetes

prediction but are common to all medical applications.

The models are black-box algorithms, and it is not easy

to directly interpret their decisions. Studies in

cardiovascular disease diagnosis, cancer detection, and

neurological disorder classification have all reported

the same problem of lacking interpretability. Therefore,

the interpretability problem in these models is a

common issue in AI-based medical diagnosis, and

explainable AI approaches are needed to improve

confidence and clinician adoption in practice.

Alternatively, simpler models like LR have no strong

predictive power in complex patterns.

Our hybrid approach successfully balances

performance and interpretability. This is achieved by

combining the high predictive power of DL with

XGBoost interpretability. DL techniques can learn

complicated, nonlinear data relationships, but are

black-box models with little explainability. Extreme
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Gradient Boosting provides feature importance values

and decision tree structures that bring in explainability.

Our model merges these two together and retains the

high predictive capability while incorporating feature

attribution techniques, e.g., SHAP, to enhance model

interpretability. The SHAP has been extensively

employed in clinical AI applications to explain how each

feature contributes to model predictions. Similarly, a

recent explainable AI analysis using statistical and ML

models for diabetes emphasized that transparent

interpretability enhances clinical trust and decision

reliability (9). Islam et al. demonstrated that the

integration of SHAP analysis and ML models with

hyperparameter optimization improves diabetes

prediction significantly by recognizing the most

dominant risk factors, i.e., glucose level, BMI, and blood

pressure (1). In contrast, in another study, SHAP and LIME

was applied for interpreting the contribution of clinical

variables in diabetes diagnosis, confirming that

explainable AI reinforces the credibility of AI-based

medical decision-making so that clinicians can believe

and interpret the model's predictions (23). It is more

suitable for medical decision-making.

One of the most encouraging features of the

proposed model is interpretability, explored by SHAP,

following earlier research demonstrating the potential

of SHAP in medical AI applications. In the present study,

a hybrid AI-based approach to diabetes prediction uses

DNNs and XGBoost to balance model interpretability

and superior accuracy. A systematic comparison with

several ML models validated the proposed hybrid model

to be much better compared to traditional approaches,

achieving 94% accuracy on test data. The model is

superior in predictive accuracy compared to LR, RF, SVM,

and XGBoost.

The new paradigm offers a new baseline for AI-based

diabetes prediction and allows for more creative,

interpretable, and clinically significant models. Model

interpretability analysis helps clinicians make more

informed decisions and guides public health policy

development to reduce the risk of diabetes (24, 25).

Feature importance analysis showed that glucose level,

HbA1c, and insulin resistance are the most significant

predictors of diabetes, although lifestyle variables such

as physical activity and smoking status also contribute

to the model output. With this heterogeneous feature

set, the model provides accurate predictions and

interpretable and actionable insights for clinical

decision-making.

Unlike prior hybrid DNN-XGBoost models that

primarily focused on improving predictive accuracy, for

example, Li et al. developed a GA-optimized XGBoost

stacking ensemble for diabetes risk prediction, yet

lacked a dual-objective interpretability-performance

optimization (26). This study introduces a dual-objective

optimization framework that simultaneously enhances

interpretability and stability. Specifically, our model

incorporates SHAP-based feedback during training and

adjusts weight coefficients (α, βₐ, β_b, and b) through a

Pareto optimization process that minimizes Shapley

instability while maximizing balanced accuracy.

Similarly, Iftikhar et al. proposed a hybrid DL

architecture with integrated SHAP and class-imbalance

handling for diabetes prediction, though without the

Pareto‐optimization of stability and accuracy we adopt

(27).

Furthermore, unlike earlier works that used

standardized datasets such as Pima Indian or UCI

repositories, our approach employs a real-world

multiclinical dataset collected from two independent

hospitals, providing higher ecological validity and

clinical realism. To overcome the twin challenges of

suboptimal predictive accuracy and insufficient clinical

transparency, two major factors fueling physicians’

skepticism toward AI-driven diabetes systems, this study

proposes a new multi-objective weighting strategy. For

the first time, the nonlinear learning strength of DNNs

is combined with the structured-data efficiency of

XGBoost in a unified hybrid framework. The model’s

weighting parameters (α, βₐ, β_b, and b) are optimized

through training via a dual-objective function that

maximizes balanced accuracy while minimizing

Shapley instability. This architecture introduces three

major contributions that bridge methodological

innovation and practical clinical deployment.

In contrast to prior models that either rely solely on

high-performing algorithms like XGBoost, with limited

interpretability or those that prioritize accuracy at the

expense of transparency, this study presents a hybrid

approach that delivers both performance and insight.

By fusing DNN and XGBoost outputs within a weighted

aggregation layer and incorporating both local and

global SHAP visualizations, the model offers clinicians

intuitive reasoning alongside robust prediction. This

method improved the Shapley Consistency Index by 23%
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compared to the best-performing models reported in

the literature (9).

In addition to established markers like fasting

glucose and HbA1c, the model integrates inflammatory

indicators such as the NLR — a metric proven in 2024

multicohort studies to correlate with cardiovascular

outcomes in diabetic patients. This expanded input

space allowed the model to achieve a prediabetes

prediction AUC of 94%, surpassing existing benchmarks

by at least 1.6 percentage points (19).

The framework also incorporates a Pareto

optimization process to find the optimal trade-off

between prediction accuracy and model explainability.

By fine-tuning the weights to keep the SHAP value

fluctuation below 0.02 during bootstrap validation —

while maintaining sensitivity above 92% — the system

effectively narrows the gap between opaque high-

performing models and interpretable but limited

alternatives (28). The improved stability of model

explanations was supported by the dual-objective

optimization procedure described in the Methods,

which jointly maximized balanced accuracy while

minimizing SHAP variability. Consistent with the Results

section, exploratory analyses showed that prediabetes

detection performance remained high (AUC = 0.94), and

NLR contributed modestly to the model’s outputs as an

inflammatory marker. These findings reinforce the

potential value of combining metabolic and

inflammatory markers within explainable hybrid

frameworks.

Although the proposed hybrid model achieved

robust performance, a major limitation of this study is

the absence of external validation. The model was

developed and tested using data from two hospitals

within the same geographic region, which may restrict

its generalizability to broader or more diverse

populations. Future research should include

independent external datasets from different

institutions to validate the model’s reproducibility and

ensure its applicability across various clinical

environments.

The proposed hybrid DNN-XGBoost framework also

holds potential for practical integration into routine

clinical workflows. In a real-world setting, the model can

be embedded within clinical decision support systems

(CDSS) or integrated directly into hospital electronic

health record (EHR) platforms. Once patient data such

as fasting glucose, HbA1c, BMI, and blood pressure are

entered into the system, the model can automatically

generate a personalized probability of developing type 2

diabetes. Importantly, the SHAP-based explainability

component provides clinicians with an interactive

visual dashboard that highlights the most influential

features contributing to each prediction, thereby

supporting transparent and interpretable decision-

making.

The intended clinical use of the model is to support

early diabetes risk stratification during routine

outpatient visits. The system is designed as an assistive

decision-support tool rather than a stand-alone

diagnostic device, providing clinicians with transparent

risk scores and SHAP-based explanations.

In a typical workflow, this system could assist

healthcare professionals in three critical stages of

diabetes management: early screening, where

individuals at elevated risk are automatically flagged

during routine examinations; diagnostic confirmation,

where clinicians can cross-verify AI-driven risk estimates

with laboratory findings; and follow-up monitoring,

where periodic patient data updates enable dynamic

risk reassessment. Such integration ensures that AI

augments rather than replaces clinical judgment,

offering a data-driven yet interpretable tool for

precision prevention.

From an operational standpoint, the model’s

computational requirements are moderate once

training is complete, making real-time inference

feasible even in hospitals with limited computational

infrastructure. With further validation and regulatory

approval, this framework could be seamlessly

embedded within existing clinical infrastructures to

enhance early detection, reduce diagnostic delay, and

support personalized treatment planning in diabetes

care (29-31).

5.1. Conclusion

The findings of this study demonstrate that the

proposed hybrid DNN–XGBoost model can achieve

strong predictive accuracy and enhanced

interpretability in identifying individuals at risk of type

2 diabetes. By integrating DL for nonlinear feature

representation with XGBoost for structured decision

transparency, the model addresses common trade-offs
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between performance and explainability that limit

many existing ML approaches.

While these results are promising, they should be

interpreted within the scope of the available dataset and

internal validation. External validation across multi-

center populations is still required to confirm the

model’s generalizability and real-world applicability.

Moreover, the retrospective nature of this study and its

focus on a single geographic population may introduce

selection and demographic biases.

The hybrid architecture provides a useful foundation

for the development of explainable clinical decision-

support systems in diabetes care. However, further work

is necessary to evaluate its robustness in prospective

studies, optimize its computational efficiency, and

integrate it safely into healthcare workflows. Rather

than claiming clinical readiness, the current evidence

supports its potential for clinical utility pending

additional validation.

Overall, this research underscores the growing

importance of hybrid artificial intelligence frameworks

that balance performance with interpretability, offering

a realistic step toward more transparent and data-

driven healthcare applications.

5.2. Limitations

Although the proposed hybrid DNN-XGBoost model

demonstrated excellent predictive accuracy and

interpretability, several limitations must be

acknowledged.

First, as the dataset originated from only two

hospitals in Sirjan, Iran, potential demographic bias

may exist, limiting the generalizability of the model to

broader or ethnically diverse populations. Future

studies should validate this framework across multi-

center and cross-national datasets.

Second, while five-fold cross-validation was

employed to mitigate the risk of overfitting, DL

components are inherently prone to learning noise and

spurious correlations in smaller datasets. Although the

hybrid design and regularization techniques (dropout

and early stopping) helped control this effect, further

external validation is required to confirm model

robustness.

Third, the hybrid framework demands substantial

computational resources, as DNN training involves

intensive parameter optimization and high memory

usage. This may limit practical deployment in low-

resource healthcare environments without access to

high-performance computing infrastructure.

Future research should address these limitations by

expanding the dataset diversity, incorporating federated

learning approaches for distributed validation, and

exploring lightweight model architectures to reduce

computational cost while preserving interpretability.
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