Uncorrected Proof

Shiraz E-Med J. ; In Press(In Press): e166066 https://doi.org/10.5812/semj-166066

Research Article

Published Online: 2025 December 24

A Hybrid Deep Learning and Explainable Al Framework for Early
Detection of Type 2 Diabetes: A Multi-Factor Approach

1,2,"

Mostafa Kashani () 1-2 Sedigheh Barzekar (i} 1>2 Mehran Kamani

Isirjan School of Medical Sciences, Sirjan, Iran
2 student Research Committee, Sirjan School of Medical Sciences, Sirjan, Iran

*CorrespundingAuthor: Student Research Committee, Sirjan School of Medical Sciences, Sirjan, Iran. Email: mehrankamany@yahoo.com

Received: 7 September, 2025; Revised: 26 November, 2025; Accepted: 16 December, 2025

(" N
Abstract

Background: As a global health issue, the need for sophisticated prediction models to support early diabetes mellitus
diagnosis and treatment is growing. Deep learning (DL) models lack interpretability despite their accuracy; traditional machine
learning (ML) models occasionally overlook the complex interaction among genetic, lifestyle, and biological components.

Objectives: This work presents a hybrid DL framework combining deep neural networks (DNNs) and Extreme Gradient
Boosting (XGBoost) to enhance explainability and predictive performance in early diabetes detection.

Methods: This study retrospectively examined 1,284 anonymized patient records collected from two hospitals in Sirjan (March
2023 - 2025), comprising both diabetic and non-diabetic individuals. Glucose level, hemoglobin Aic (HbA1c), insulin resistance,
Body Mass Index (BMI), blood pressure, and cholesterol were identified as the most significant predictors using recursive
feature elimination (RFE). All analyses were conducted in Python 3.10 using TensorFlow 2.12 and XGBoost 2.0, executed on an
NVIDIA RTX 4090 GPU environment. The Fl-score, accuracy, precision, recall, positive predictive value (PPV), and negative
predictive value (NPV) were applied to evaluate the hybrid model compared to logistic regression (LR), random forest (RF),
support vector machine (SVM), standalone XGBoost, and DNN.

Results: With an accuracy of 94%, the hybrid model (DNN+XGBoost) outperformed standalone models like XGBoost (89%) and
DNN (91%) as well as LR (78%), SVM (82%), and others (P = 0.006). Precision and recall were attained at 93% and 95%, respectively.
The most significant predictors identified by SHapley Additive exPlanations (SHAP) analysis were glucose (0.35) and HbAic
(0.30), validating the model's clarity and clinical usefulness.

Conclusions: The proposed hybrid Al model balances high accuracy and interpretability, suggesting its potential utility for Al-
assisted diabetes prediction in future clinical settings pending external validation. This model builds trust among clinicians by
applying SHAP-based explainability.

Keywords: Diabetes Mellitus, Type 2,Deep Learning,Machine Learning,Clinical Decision Support Systems,Artificial
Intelligence, Explainable Artificial Intelligence, Predictive Value of Tests
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1. Background

The long-term repercussions of diabetes mellitus
(retinopathy, neuropathy, nephropathy, and
cardiovascular diseases) severely strain healthcare
systems. Globally, millions of individuals suffer from
this metabolic disorder (1). The development of effective
prediction models that can enable early diagnosis and
customized treatment approaches is essential, given the

rising prevalence of diabetes, a condition brought on by
a confluence of genetic components, inactivity, and
poor nutrition (2). Hemoglobin Aic (HbAic) and fasting
blood glucose readings are among the conventional
diagnostic tools; yet, these tests only show a picture of a
person's glycemic state and neglect the several
physiological, behavioral, and genetic factors affecting
the onset and course of diabetes (3). Regarding high-
dimensional healthcare data, machine learning (ML)
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and artificial intelligence-driven solutions outperform
traditional statistical approaches (4). Recent explainable
hybrid deep learning (DL) frameworks have
demonstrated promise in identifying metabolic risks at
early stages, particularly among prediabetic and high-
risk adults (5). The SHapley Additive exPlanations (SHAP)
analysis provided interpretable insights. Currently,
limitations in interpretability, generalizability, and
clinical application make using ML-based models
challenging in real-world healthcare environments (6).

The new developments in hybrid
intelligence models might significantly improve the
accuracy and explainability of disease prediction
activities. These models combine interpretable ML
techniques with deep learning methods. Combining the
best aspects of both paradigms Extreme Gradient
Boosting [XGBoost for increasing interpretability and
decision transparency, and deep neural networks
(DNNs) for feature extraction from complex nonlinear
patterns] is the aim of our study (7, 8). The three main
issues in diabetes prediction are model accuracy, feature
explainability, and clinical integration (9). We therefore
employ the SHAP to make our predictions more

artificial

intelligible so that clinicians may see how each feature
affected the judgments of the model. Using a large-scale
diabetes classification dataset, we systematically
evaluate our proposed model against various well-
known ML methods. Among them are random forest
(RF), logistic regression (LR), support vector machine
(SVM), and standalone XGBoost (10, 11).

This work bridges the gap between prediction
performance and explainability, advancing artificial
intelligence-driven precision medicine. It opens the
path for clinically deployable decision-support system
development. Early diabetes detection depends
critically on coupling ML approaches with explainable
artificial intelligence (XAI). Among the basic statistical
methods used to match with more complex models, LR
is among the most important ML algorithms (12, 13).
Doctors may learn more about how factors such as Body
Mass Index (BMI) and blood sugar influence the
predictions if XAI approaches, such as SHAP and local
interpretable model-agnostic explanations (LIME), were
employed (13). There remain challenges to be addressed,
including those pertaining to privacy concerns and
promoting cross-disciplinary interaction to facilitate
the ethical consideration of Al in diabetes diagnostics
despite the promising progress in Al, ML, and XAI in

diabetes diagnosis. In addition, more attempts for
multi-factor analysis might raise the predictive power of
ML models and identify important risk factors for
diabetes. Even more accurate models for early diagnosis
and prediction of interventions would be provided by
integrating a myriad of health markers and social
determinants of health (14). Polyuria, polydipsia, and a
high BMI are critical health indicators that significantly
increase the likelihood of diabetes (15). Socioeconomic
factors are also crucial; studies show that the incidence
of diabetes increases with decreasing income.
Furthermore, by including lifestyle and demographic
factors into large datasets, a more complex
understanding of diabetes risk may be achieved (16, 17).
According to research by Prasetyo and Yunanda and
Balaji and Sugumar, ensemble learning methods such as
Random Forest and Gradient Boosting may achieve
diabetes classification accuracy levels of up to 87% (17-19).
While this multi-factor strategy may improve predictive
powers, it is crucial to remember that complex models
are prone to overfitting, which might also provide
conclusions that do not apply to other populations (19).

2. Objectives

This study proposes a hybrid Al model that aims to
enhance  both  predictive  performance  and
interpretability in early diabetes detection.

3. Methods

This work offers a precise and comprehensible model
for diabetes prediction using a methodical, multi-step
approach. Using XAI techniques like SHAP, LIME, and
model performance evaluation, this method combines
data collection and preprocessing, feature selection and
significance analysis, modeling using ML algorithms,
and model interpretability. The study also looks at how
these techniques help determine the significance of
important factors for diabetes prediction. Lastly, moral
dilemmas, model application, external verification, and
last but not least. The architectural flow of the proposed
hybrid framework, combining DNN, XGBoost, and SHAP-
based explainability, is illustrated in Figure 1.

3.1. Dataset Description

The dataset consisted of 1,284 anonymized patient
records collected retrospectively from Imam Reza (AS)
and Gharazi Hospitals in Sirjan between March 2023 and
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Figure 1. Schematic overview of the proposed hybrid deep neural network (DNN) and Extreme Gradient Boosting (XGBoost) framework for diabetes prediction. The workflow
integrates data preprocessing, feature selection, and model fusion. After normalization and handling of missing values, clinical and lifestyle features are passed through a DNN
for nonlinear pattern extraction, while XGBoost captures structured decision boundaries. The final prediction layer aggregates outputs from both components, producing
interpretable probabilities of diabetes risk using SHapley Additive exPlanations (SHAP)-based explanations.

March 2025. Demographic, clinical, and lifestyle
variables were labeled in accordance with the American
Diabetes Association (ADA) 2023 guidelines. Data
anonymization was performed using the SHA-256
algorithm. For variables with less than 3% missing data,
imputation was conducted using either the multiple
imputation by chained equations (MICE) method or the
maximum extent of replacement strategy. Missing data
were handled strictly within each training fold during
cross-validation to avoid data leakage. Numerical
variables were imputed using MICE, whereas categorical
variables were imputed using mode replacement. No
outcome-related used during
imputation.

information was

A total of 27 extreme outliers in BMI and cholesterol
(IZ] > 3) were removed. Continuous variables were
normalized to a 0 - 1 scale, and the class distribution
remained well balanced throughout the preprocessing
phase. The dataset was randomly divided into training
and testing subsets using an 80:20 ratio through
stratified sampling to maintain class balance between
diabetic and non-diabetic groups. The neutrophil-to-
lymphocyte ratio (NLR) was included as an
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inflammatory biomarker given its recent association
with microvascular and cardiovascular risk in diabetic
patients.

The primary outcome was binary diabetes status (0 =
non-diabetic, 1 = diabetic) defined strictly according to
the ADA 2023 diagnostic thresholds: fasting plasma
glucose > 126 mg/dL, HbAlc > 6.5%, or documented
diagnosis in the hospital record. Individuals who did
not meet any of these criteria were classified as non-
diabetic. In secondary analyses, a prediabetes outcome
(HbAIc 5.7 - 6.4% or fasting glucose 100 - 125 mg/dL) was
also evaluated to assess model performance for early
metabolic dysregulation.

Included are significant biological markers (e.g.,
HbAlc and glucose levels), medical history (e.g., blood
pressure, cholesterol, and medication use), lifestyle
factors (e.g., diet and level of physical activity), and
demographic information (e.g., age and gender). Each
person's diabetes diagnosis is shown by the objective
variable, a binary classification (0 = no diabetes, 1 =
diabetes).

Type 2 Diabetes Mellitus (T2DM) is most likely the
focus, according to a closer examination of this data.
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The patients' high average age (53 years), significant
prevalence of obesity (BMI > 30), and insulin resistance
levels, all known risk factors for Type 2 diabetes, are the
basis for this result. Although some people under 30 are
included in the dataset, it does not clearly distinguish
between Type 1 and Type 2 diabetes and does not contain
some biomarkers critical for Type 1 diabetes, such as
autoantibodies or C-peptide levels. Consequently,
research on Type 2 diabetes is more appropriate for this
dataset; more data is needed to analyze Type 1 diabetes.

3.1.1. Inclusion and Exclusion Criteria

Participants were retrospectively selected based on
the availability of complete clinical and biochemical
records from Imam Reza (AS) and Gharazi Hospitals
between March 2023 and March 2025.

Inclusion criteria: Adults aged > 18 years with
recorded fasting blood glucose, HbAlc, blood pressure,
cholesterol, BMI, and insulin resistance values. Both
diabetic and non-diabetic individuals were included
according to the ADA 2023 diagnostic thresholds.

Exclusion criteria: Individuals with incomplete or
inconsistent medical records, gestational or type 1
diabetes, chronic renal or hepatic failure, active
malignancy, or ongoing corticosteroid or hormonal
therapy. Records with duplicated or missing key
biochemical markers were also excluded.

This selection ensured that only adult patients with
verifiable and comprehensive metabolic data were
analyzed, improving dataset homogeneity and model
reliability.

3.1.2. Sample Size Justification and Power Analysis

The total sample size of 1,284 participants (660 non-
diabetic and 624 diabetic) was determined adequate
based on a priori power analysis using G*Power 3.1
software. Assuming a two-tailed test, medium effect size
(Cohen’s d = 0.3), a = 0.05, and desired statistical power
= 0.90, the minimum required sample size was
estimated at ~1,040 participants. The final dataset
exceeds this threshold, ensuring sufficient statistical
power to detect significant differences in metabolic and
demographic predictors between diabetic and non-
diabetic groups. This sample size also allows stable
model training and validation while minimizing
overfitting risk.

The primary variable used for sample size estimation
was fasting glucose, as it showed the largest expected
standardized effect size based on prior metabolic
research. Following the methodological
recommendations of Suresh and Chandrashekara,
assuming a medium effect size (Cohen’s d = 0.30), a =
0.05, and statistical power = 0.90, the minimum
required sample size was approximately 1,000
participants. Our dataset of 1,284 individuals exceeds
this threshold and ensures sufficient power for model
training and between-group comparisons (20).

For categorical variables such as smoking status,
medication use, and physical activity level, missing
values were handled using mode imputation, replacing
each missing entry with the most frequent category
within the respective variable. In cases where a
categorical variable had more than 5% missing data, the
variable was excluded from the analysis to prevent bias.
This combined approach ensured consistency and
minimized distortion in  categorical feature
distributions.

3.2. Data Cleaning

The dataset was preprocessed in several ways that
increased the reliability of the modeling findings and
guaranteed the data quality. As a first step, missing value
management ensured that no missing values were in
the dataset. The next step was to ensure that all
characteristics, including those with numerical and
categorical values, were consistent by reviewing the
data types. Outliers in continuous variables, such as BMI
and blood pressure, were identified and eliminated
using the Z-score and the interquartile range (IQR)
method since they would degrade the accuracy of ML
models. Glucose levels and insulin resistance were
reduced in their impact on model performance by using
MinMax Scaling to bring them within the range of [0, 1].
Ultimately, we used label encoding and one-hot
encoding for categorical variables with multi-valued
categories (e.g., smoking status and ethnicity) and
binary variables (e.g., medicine usage) with one-valued
categories.

3.3. Correlation and Feature Importance

Various feature selection techniques were used to
enhance the model's performance and interpretability.
Researchers may determine the most significant and
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pertinent parameters for diabetes prediction using
these techniques.
correlation analysis,

connections between
examined. The SHAP approach was used to order the
features' significance based on the model. This approach
demonstrates the significance of each attribute for the
model's prediction. The XGBoost model, a powerful

Using Pearson and Spearman
both linear and nonlinear
numerical variables were

ensemble learning technique based on gradient
boosting that fundamentally handles structured data,
was used to gradually eliminate less important features
using recursive feature elimination (RFE). This approach
systematically removes characteristics with the least
effect on the model's performance, leaving a set of
optimal features for prediction.

Class balance in the dataset was examined using the
XGBoost model's RFE technique. The findings
demonstrated that, with 50.21% of cases being diabetic
and 49.79% not, the groups of people with and without
diabetes are well balanced. Therefore, the procedures of
oversampling (raising the minority class) and
undersampling (lowering the majority class) were
unnecessary in this study. If a class imbalance impairs
model performance, methods such as the synthetic
minority over-sampling technique (SMOTE) may be used
to enhance data balance. For model training, the
following collection of features was chosen based on the
outcomes of the feature selection techniques:
Hemoglobin Alc, blood pressure, cholesterol, BM]J,
insulin resistance, glucose level, family history of
diabetes, degree of physical activity, and smoking status.

To prevent data leakage, all feature selection and
ranking procedures, including correlation analysis,
SHAP-based importance scoring, and RFE, were
performed strictly within each training fold during five-
fold cross-validation. This ensured that information
from the test data did not influence the model training
or feature selection process. Feature importance was
recalculated independently for every fold to maintain
unbiased performance estimation.

3.4. Challenges of Basic Models

Classical ML models, such as LR, RF, gradient
boosting machines (LightGBM, XGBoost), SVM, and
artificial neural networks (ANNs), struggle to predict
diabetes. Some of the most important issues are
interpretability, as uninterpretable models like RF and
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DNNs are, i.e, one cannot interpret their decision-
making process. There are also problems in detecting
nonlinear patterns; models like LR struggle to deal with
nonlinear and complex relationships in data. Although
some traditional models can tackle a limited level of
nonlinearities through transformation or interaction
terms, their capacity for modeling complex high-
dimensional relationships is weak compared to the
recent advances. The present work highlights that
nonlinear models like XGBoost and DL work better in
diabetes prediction, highlighting the need for advanced
modeling techniques.

Furthermore, most models are plagued by the issue
of balancing accuracy and recall (sensitivity);
consequently, false positives and negatives increase.
They also have a problem with generalizability since
models trained on a given dataset do not do well when
cross-tested with another dataset with different
distributions. Statistically analyzing the problem, the
independent t-test was applied to compare model
performance between different datasets and concluded
that there was a statistically significant difference (P <
0.05). This means that model performance varies based
on the dataset, showing potential overfitting to specific
properties of the dataset, which would affect its
generalizability.

3.5. Proposed Model: Combining Deep Learning and
Explainable Methods

To overcome the aforementioned challenges, a
hybrid framework based on DL and XAI is proposed in
this study. The proposed model combines DNNs and
explainable models, i.e., SHAP and XGBoost. The purpose
of such a combination is to improve the accuracy and
reliability of the predictions and the interpretability of
the model.

3.6. Comparative Analysis of Models

3.6.1. Modeling Pipeline

The modeling
recommendations and

pipeline  followed  TRIPOD
included the following
sequential steps: (1) Preprocessing and normalization,
(2) within-fold feature selection using SHAP and RFE, (3)
training of DNN and XGBoost models on the training
folds, (4) formation of the hybrid ensemble through
weighted aggregation, and (5) evaluation on the
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untouched test fold. All steps were implemented
independently within each fold to prevent data leakage.
A comprehensive comparison was conducted on
several ML models like LR, RF, XGBoost, SVM, DL, and the
hybrid model. The models were selected based on their
suitability in medical data analysis and their ability to
address different complexities in diabetes prediction.

The LR is a frequently used statistical model that
assumes linearity in the logistic relationship between
input features and the probability of the occurrence of
diabetes. However, it is more suited to simple
relationships and fails with complex nonlinear
relationships. Random forest is a meta learning
algorithm, which forms many decision trees and
computes their average predictions to yield better
prediction performance and minimize overfitting.
Extreme Gradient Boosting is an efficient and powerful
gradient boosting framework for structured data,
especially massive data with intense relationships.
Support vector machine identifies the optimum
hyperplane that maximally separates diabetes and non-
diabetes; SVM is suitable for high-dimensional spaces
but computationally expensive. Deep neural network
uses neural networks to learn abstract features
automatically from raw data and thus is highly
appropriate for unstructured or big data. Finally, the
hybrid model combines DNN and XGBoost to use their
respective strengths while compromising
interpretability and high accuracy. Model performance
metrics were statistically compared using one-way
ANOVA followed by Bonferroni post-hoc tests to identify
significant differences among models. All analyses were
performed with a significance threshold of P < 0.05.

To ensure full transparency and adherence to TRIPOD
guidelines, the model development pipeline was
implemented in a strictly structured manner. The
dataset was first split using an 80/20 stratified train-test
division. Within the training portion, a five-fold cross-
validation framework was applied, where feature
selection (SHAP-based ranking and RFE),
hyperparameter tuning (Bayesian optimization for DNN
and grid search for XGBoost), and dual-objective
weighting optimisation were performed entirely inside
each fold to prevent data leakage. Model stability was
assessed through 1,000-iteration bootstrapping, which
generated confidence intervals (CIs) for all performance
metrics.

To evaluate calibration, we computed both the Brier
score and generated calibration curves using isotonic
regression on the validation folds. Calibration
performance was compared between the hybrid model
and individual DNN and XGBoost components. The
hybrid model demonstrated lower calibration error
(Brier score = 0.061) compared with DNN (0.078) and
XGBoost (0.072), confirming improved reliability of
predicted  probabilities. =~ These  steps
methodological transparency and mitigate overly
optimistic performance estimates.

ensure

3.7. Mathematical Formulation of the Hybrid Model

The hybrid model integrates DNNs and XGBoost in an

ensemble approach: Yyypig = 0.Ypnn + B-YxGBooso @ + =
1; where, YHybrid 1S the final prediction output; Ypyn
represents the probability score from the DL model;
YxGBoost epresents the probability score from the
XGBoost model; and a, B are weight coefficients
optimized using grid search.

The hybrid model takes advantage of the best of both
models: Deep neural network provides high-
features, whereas XGBoost achieves
maximum interpretability and fine-grained decisions.
Moreover, the decision boundary for our hybrid model
is refined using H(X) = o(Wyypyig-X + b); where, Wyyp g

dimensional

is the weighted sum of individual model parameters; X
represents input features, b is the bias term; and ¢ is the
activation function (ReLU for DNN and sigmoid for final
prediction).

3.7.1. Model Configuration and Hyperparameters

The DNN component consisted of an input layer with
9 normalized clinical and lifestyle features, followed by
three fully connected hidden layers with 128, 64, and 32
neurons, respectively. The ReLU activation function was
applied to each hidden layer, with dropout
regularization (P = 0.3) to prevent overfitting. The
output layer used a sigmoid activation function for
binary classification. Model optimization was
performed using the Adam optimizer (learning rate =
0.001, batch size = 32) with early stopping criteria based
on validation loss (patience =10 epochs).

The XGBoost component employed the following
hyperparameters optimized via five-fold
validation: learning rate = 0.05, max depth =6,

Cross-
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n_estimators = 300, subsample = 0.8, colsample_bytree
=0.7,gamma = 0.1, and regularization parameters a = 0.1
and A=1.0.

Both models were trained on 80% of the dataset and
validated on the remaining 20%. Model selection was
based on the balanced accuracy and Fi-score, ensuring a
reproducible workflow consistent with explainable Al
standards.

3.7.2. Dual-objective Optimization Procedure

To ensure simultaneous optimization of predictive
performance and model interpretability, a dual-
objective (Pareto-based) optimization strategy was
applied during hybrid model training. Shapley
instability was defined as the standard deviation of
feature-level SHAP values across 1,000 bootstrap
iterations; lower instability indicates more consistent
feature attribution. The two objectives were: (1)
Maximizing balanced accuracy, and (2) minimizing
SHAP value variance (“Shapley instability”) across
bootstrap samples.

During each training fold, weight coefficients (a, Ba,
B_b, b) governing the contribution of DNN and XGBoost
outputs were optimized by selecting Pareto-efficient
solutions that avoided accuracy-interpretability trade-
offs.

3.8. Explainability and Feature Contribution Analysis

To analyze each feature's contribution in the
proposed model, we utilized feature importance
analysis through SHAP. Through this method, we can
measure the impact of each variable on the model's
output.

3.9. Mathematical Formulation of Feature Impact on the
Model

In the proposed model, the output is computed as a
combination of the effect of each feature, weighted by
its SHAP value:

Y=f(X)=Y SHAPI.X+}b

Where: Y is the diabetes prediction output; X; is the
value of the feature; SHAP; is the importance weight of a

feature based on its SHAP value; and b is the model bias
term.

Shiraz E-Med ].2025; In Press(In Press): e166066

All analyses and model training were performed
using Python 3.10, TensorFlow 2.12, and XGBoost 2.0
libraries on a system equipped with an NVIDIA RTX 4090
GPU, 24 GB VRAM, and 64 GB RAM. Statistical analyses
were conducted in SPSS version 26.0 and R version 4.3.0
for verification and visualization.

4. Results

The study sample comprised 1,284 individuals,
including 624 diagnosed with diabetes and 660 non-
diabetic controls. The mean age of participants was 53 +
12 years, with 41% females and 59% males. Diabetic
patients showed significantly higher fasting glucose (167
+38 mg/dL vs. 92 + 15 mg/dL) and HbAic levels (8.3 + 1.1%
vs. 5.2 £ 0.7%; P < 0.001). Mean BMI was 31.4 £ 4.6 kg/m? in
the diabetic group compared with 272 *+ 3.8 kg/m?
among non-diabetic participants. These baseline
findings confirm that metabolic and anthropometric
factors strongly differentiate diabetic from non-diabetic
individuals and serve as key predictors for subsequent
model training.

Table 1indicates the variations in performance across
different models for diabetes prediction. To estimate the
statistical robustness of each metric, 95% CIs were
computed across five-fold cross-validation using the
bootstrap method (n = 1,000 resamples). Reported
accuracy, precision, recall, and Fi-scores therefore
represent mean * CI values, ensuring reliable
comparison across models. Pairwise comparisons using
one-way ANOVA with Bonferroni correction confirmed
statistically significant differences in mean accuracy,
precision, recall, and F1-score between models (P < 0.05).

The hybrid model (DNN+XGBoost) achieved the
highest accuracy (94%) compared with DNN (91%) and
XGBoost (89%), followed by SVM (82%) and LR (78%).
Between-model  performance  differences  were
statistically significant (Hybrid vs. DNN: P = 0.008;
Hybrid vs. XGBoost: P = 0.004), confirming the
superiority of the proposed hybrid framework.

In addition to accuracy, precision, recall, and Fi-score,
the positive predictive value (PPV) and negative
predictive value (NPV) were also calculated. The hybrid
DNN-XGBoost model achieved a PPV of 94% and an NPV
of 96%, both of which were higher than those observed
in the standalone models (Table 1).

The DL model was also significant in terms of
predictive power and outperformed XGBoost
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Table 1. Machine Learning Model Performance - Early Diabetes

Model ACTC‘::ZCY Tes(t;;ﬁ/f‘c’ffcy Ovzrﬁt P(‘:;;gl’)" (;{;;acl}) H'SCOC‘I‘; (95%  ppy NPV statistical Significance/Comment

IR 08 0.78(0.76 - 0.80) 0.02 0.73-(7(;4)72 - 0.73(708.)74 - 0.7(5).(7(;.)73 - 076 078 cBglsTelei)ilneir;:tgel; Lower performance in

RE 0.88 0.85(0.83-0.87)  0.03 0'83.22')81 - o.sg.g%)sz - 0'83)5. éfl’j“ © 085 086 g:ff:rraﬁ?fﬁﬁw =0.032); Moderate

XGBoost 0.92 0.83&%.)88- 0.03 O.Sg'(SOQ.)SS - 0.835)(()).;56 - .87(5)'(808.)87- 0.89 0.91 Eeot.tglrst)han RF (P = 0.018); Lower than DNN (P
SYM DEA 0.82(0.80-0.84) 0GP 0.8(())‘5(3(2)‘)78 - O‘Sé'(s()3‘)79 - O.So(ig))‘so © om @@ ]e-il‘;v:rl;sti}\ll:n XGB and DNN; Computationally
DNN 0.94 0.91(0.90-0.92) 0.03 0'83,(9(})88- 049353.)89- 0.85())?‘;9((())589- 091 093 g:tﬁe);rt:::c)e(GB(P: 0.012); Near-optimal
gﬁ;ﬂ(rgg;iel 0.96 0.94(0.93-0.95)  0.02 0.93.(9(;.)93 - 0.93(906.334 - 0.93.!(9(;.)93 © 094 096 gﬁs;l%%rg)sr(rging%(S)%nificantly better than

% Abbreviations: CI, confidence interval; PPV, positive predictive value; NPV, negative predictive value; LR, logistic regression; RF, random forest; XGBoost, Extreme Gradient

Boosting; DNN, deep learning network; SVM, support vector machine.
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Figure 2. Receiver operating characteristic (ROC) curves comparing the performance of all machine learning (ML) models used in this study, including logistic regression (LR),
support vector machine (SVM), random forest (RF), Extreme Gradient Boosting (XGBoost), deep neural network (DNN), and the proposed hybrid DNN-XGBoost model. The X-axis
represents the false positive rate (1- Specificity), and the Y-axis represents the true positive rate (sensitivity). The hybrid DNN-XGBoost model achieved the highest area under the
curve (AUC = 0.94), indicating superior discriminative ability in distinguishing diabetic from non-diabetic individuals. All numerical values correspond exactly to the

performance metrics reported in Table 1 to ensure internal consistency.

significantly (P < 0.05), although the hybrid model was
superior. Extreme Gradient Boosting performed better
than RF (P < 0.05) but was surpassed by the DNN model,
proving the potency of DL techniques (Figure 2).

While the hybrid model consistently yielded higher
accuracy and recall than other models, statistical
analysis using one-way ANOVA followed by Tukey’s post-
hoc test indicated that these improvements were

significant at P < 0.05. The DNN model also
demonstrated higher predictive power than XGBoost,
whereas LR and SVM exhibited lower generalizability.
The hybrid model (DNN+XGBoost) achieved the
highest performance across all metrics. Pairwise
comparisons using one-way ANOVA with Bonferroni
correction confirmed statistically significant differences
in mean accuracy, precision, recall, and F1-score between
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Figure 3. SHapley Additive exPlanations (SHAP) summary plot illustrating the relative contribution of each feature to diabetes prediction. The X-axis represents the SHAP value,
which indicates the magnitude and direction of each feature’s effect on the model’s output (positive values push predictions toward diabetes, negative toward non-diabetes).
The Y-axis lists the input features ranked by their overall importance. Each dot represents one observation; color intensity indicates the original feature value (red = higher value,
blue =lower value). The plot shows that glucose level and hemoglobin Aic (HbAi1c) have the strongest positive influence on diabetes prediction.

models (P < 0.05). Traditional models like LR and SVM
were poorly generalizable to new data and were less
accurate. Higher-order complex models like DNN and
the hybrid model (DNN+XGBoost) aggressively
generalized to test data and increased training accuracy.

In an exploratory secondary analysis, the model also
demonstrated strong performance for prediabetes
detection [area under the curve (AUC) = 0.94], although
these results were not part of the primary outcome.
Neutrophil-to-lymphocyte ratio contributed modestly
to the prediction outputs (mean SHAP = 0.04),
consistent with its documented association with
metabolic inflammation.

4.1. Feature Importance Based on SHapley Additive
exPlanations

Table 2 presents the key feature importance values in
diabetes prediction. In Figure 3, the SHAP value shows
the importance of each attribute in predicting diabetes.
The greater the SHAP value, the greater the influence on
the model's decision-making process. The blue bar
(glucose level - 0.35) is the highest predictor, followed by
the orange bar (HbA1c - 0.30), which has a high impact.
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The light gray bar (Insulin Resistance - 0.20) is another
significant factor, but less than glucose and HbAic. The
remaining factors, such as BMI, blood pressure, and
cholesterol (0.15 - 0.08), have a moderate impact. The
brown and dark gray bars representing smoking status
and family history of diabetes (~0.05) have the lowest
impact. Therefore, highly influential SHAP value features
are most predictive, and are glucose and HbAIc as the
most significant factors, with family history and
smoking status as less influential factors.

Table 2. Key Feature Importance Values in Diabetes Prediction.

Features SHAII;Y;I;: a(]F;:;ure Statistical‘,?lgllllei)ficance (P-
Glucose level 035 0.001
HbA1c 03 0.003
:'l;:gltlannce 02 <o.01
BMI 0.15 0.012
Blood pressure 0.1 0.020
Cholesterol 0.08 0.035
Physical activity 0.06 0.045

“ Abbreviation: SHAP, SHapley Additive exPlanations; HbAlc, Hemoglobin Alc;
BMI, Body Mass Index.
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The findings of the SHAP analysis indicate that
biochemical features such as glucose level and HbAilc
have the most considerable effect. Body Mass Index and
blood pressure were statistically significant predictors
of diabetes (P = 0.012 and P = 0.020, respectively),
confirming their moderate yet meaningful contribution
to the model. Lifestyle features such as physical activity
and smoking status have a lesser but substantial
contribution. The findings highlight that including
both clinical and lifestyle data leads to improved
diabetes predictions.

SHAP values represent each feature’s
contribution to the model’s output. They are not derived
from classical hypothesis testing; therefore, no P-values
are reported. Instead, feature importance ranking is
based on SHAP magnitude averaged over all predictions.

relative

5. Discussion

The performance of our proposed hybrid model
demonstrates a significant improvement in the
classification of diabetes over the conventional ML
models. However, despite strong internal performance,
these results should be interpreted with caution.
Because calibration assessment and all optimization
steps were conducted within internal cross-validation
only, and no external cohort was used, the observed
performance may reflect dataset-specific characteristics.
Therefore, while the model shows promise, it is not yet
suitable for immediate clinical deployment without
multi-center external validation.

With the integration of DL and explainability
methods, our system demonstrates improved
performance while the decisions remain interpretable.
The selection of the model in this research was based on
how complicated it would be to predict diabetes and
what type of limitations the conventional models have.
While effective in some cases, methods like LR and SVM
are hard-pressed to address complex, nonlinear patterns
in medical data. On the other hand, RF and XGBoost are
more effective at modeling nonlinear relationships but
fail to provide much interpretability. Our suggested
hybrid model, combining DNNs and XGBoost, addresses
these shortcomings. DL can extract high-dimensional
and intricate patterns from input data, and XGBoost can
boost the interpretability along with
explainable decision-making. Their combination
achieves improved predictive accuracy for diabetes

model's

10

classification along with preserving transparency in
clinical decision support.

Other studies have also proved that the fusion of DL
models and explainable Al techniques has the potential
to enhance diagnostic accuracy, along with decreasing
uncertainty in medical decision-making. For instance,
Islam Ayon and Islam demonstrated that a DIL-based
diabetes forecasting system uses 98.35% accuracy on the
Pima Indian Diabetes dataset compared to traditional
ML classifiers such as LR and SVM (21). However,
explainability techniques were not utilized in this study,
limiting its application to clinical decision-making.
Similarly, Chowdhury et al.'s work proposed a hybrid
ensemble DL approach utilizing XGBoost, TabNet, and
Multilayer Perceptron with a 96% accuracy rate but
without utilizing interpretability models like SHAP or
LIME in particular. Contrary to our study, these
techniques are integrated in our work with a balance
between predictive accuracy and explainability, and a
suitability for clinical applications in actual practices
(4). Recent work has proposed optimized hybrid ML
frameworks for early diabetes prediction (22).

Therefore, the selection of these models was not just
due to their greater predictive ability to analyze medical
data but also because they can make decisions more
interpretable, which is crucial in applications in the
medical domain. Although highly accurate, the DL and
XGBoost models suffer from interpretability issues.
Extreme Gradient Boosting and DL model
interpretability issues are not specific to diabetes
prediction but are common to all medical applications.
The models are black-box algorithms, and it is not easy
to directly interpret their decisions. Studies in
cardiovascular disease diagnosis, cancer detection, and
neurological disorder classification have all reported
the same problem of lacking interpretability. Therefore,
the interpretability problem in these models is a
common issue in Al-based medical diagnosis, and
explainable AI approaches are needed to improve
confidence and clinician adoption in practice.
Alternatively, simpler models like LR have no strong
predictive power in complex patterns.

Our hybrid approach successfully balances
performance and interpretability. This is achieved by
combining the high predictive power of DL with
XGBoost interpretability. DL techniques can learn
complicated, nonlinear data relationships, but are
black-box models with little explainability. Extreme
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Gradient Boosting provides feature importance values
and decision tree structures that bring in explainability.
Our model merges these two together and retains the
high predictive capability while incorporating feature
attribution techniques, e.g., SHAP, to enhance model
interpretability. The SHAP has been extensively
employed in clinical Al applications to explain how each
feature contributes to model predictions. Similarly, a
recent explainable Al analysis using statistical and ML
models for diabetes emphasized that transparent
interpretability enhances clinical trust and decision
reliability (9). Islam et al. demonstrated that the
integration of SHAP analysis and ML models with
hyperparameter optimization improves diabetes
prediction significantly by recognizing the most
dominant risk factors, i.e., glucose level, BMI, and blood
pressure (1). In contrast, in another study, SHAP and LIME
was applied for interpreting the contribution of clinical
variables in diabetes diagnosis, confirming that
explainable Al reinforces the credibility of Al-based
medical decision-making so that clinicians can believe
and interpret the model's predictions (23). It is more
suitable for medical decision-making.

One of the most encouraging features of the
proposed model is interpretability, explored by SHAP,
following earlier research demonstrating the potential
of SHAP in medical Al applications. In the present study,
a hybrid Al-based approach to diabetes prediction uses
DNNs and XGBoost to balance model interpretability
and superior accuracy. A systematic comparison with
several ML models validated the proposed hybrid model
to be much better compared to traditional approaches,
achieving 94% accuracy on test data. The model is
superior in predictive accuracy compared to LR, RF, SVM,
and XGBoost.

The new paradigm offers a new baseline for Al-based
diabetes prediction and allows for more creative,
interpretable, and clinically significant models. Model
interpretability analysis helps clinicians make more
informed decisions and guides public health policy
development to reduce the risk of diabetes (24, 25).
Feature importance analysis showed that glucose level,
HbAIc, and insulin resistance are the most significant
predictors of diabetes, although lifestyle variables such
as physical activity and smoking status also contribute
to the model output. With this heterogeneous feature
set, the model provides accurate predictions and
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interpretable and actionable insights for clinical
decision-making.

Unlike prior hybrid DNN-XGBoost models that
primarily focused on improving predictive accuracy, for
example, Li et al. developed a GA-optimized XGBoost
stacking ensemble for diabetes risk prediction, yet
lacked a dual-objective interpretability-performance
optimization (26). This study introduces a dual-objective
optimization framework that simultaneously enhances
interpretability and stability. Specifically, our model
incorporates SHAP-based feedback during training and
adjusts weight coefficients (q, Ba, B_b, and b) through a
Pareto optimization process that minimizes Shapley
instability while maximizing balanced accuracy.
Similarly, Iftikhar et al. proposed a hybrid DL
architecture with integrated SHAP and class-imbalance
handling for diabetes prediction, though without the
Pareto-optimization of stability and accuracy we adopt
(27).

Furthermore, unlike earlier works that used
standardized datasets such as Pima Indian or UCI
repositories, our approach employs a real-world
multiclinical dataset collected from two independent
hospitals, providing higher ecological validity and
clinical realism. To overcome the twin challenges of
suboptimal predictive accuracy and insufficient clinical
transparency, two major factors fueling physicians’
skepticism toward Al-driven diabetes systems, this study
proposes a new multi-objective weighting strategy. For
the first time, the nonlinear learning strength of DNNs
is combined with the structured-data efficiency of
XGBoost in a unified hybrid framework. The model’s
weighting parameters (a, Ba, B_b, and b) are optimized
through training via a dual-objective function that
maximizes balanced accuracy while minimizing
Shapley instability. This architecture introduces three
major contributions that bridge methodological
innovation and practical clinical deployment.

In contrast to prior models that either rely solely on
high-performing algorithms like XGBoost, with limited
interpretability or those that prioritize accuracy at the
expense of transparency, this study presents a hybrid
approach that delivers both performance and insight.
By fusing DNN and XGBoost outputs within a weighted
aggregation layer and incorporating both local and
global SHAP visualizations, the model offers clinicians
intuitive reasoning alongside robust prediction. This
method improved the Shapley Consistency Index by 23%
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compared to the best-performing models reported in
the literature (9).

In addition to established markers like fasting
glucose and HbAIc, the model integrates inflammatory
indicators such as the NLR — a metric proven in 2024
multicohort studies to correlate with cardiovascular
outcomes in diabetic patients. This expanded input
space allowed the model to achieve a prediabetes
prediction AUC of 94%, surpassing existing benchmarks
by at least 1.6 percentage points (19).

The framework also incorporates a Pareto
optimization process to find the optimal trade-off
between prediction accuracy and model explainability.
By fine-tuning the weights to keep the SHAP value
fluctuation below 0.02 during bootstrap validation —
while maintaining sensitivity above 92% — the system
effectively narrows the gap between opaque high-
performing models and interpretable but limited
alternatives (28). The improved stability of model
explanations was supported by the dual-objective
optimization procedure described in the Methods,
which jointly maximized balanced accuracy while
minimizing SHAP variability. Consistent with the Results
section, exploratory analyses showed that prediabetes
detection performance remained high (AUC = 0.94), and
NLR contributed modestly to the model’s outputs as an
inflammatory marker. These findings reinforce the

potential value of combining metabolic and
inflammatory markers within explainable hybrid
frameworks.

Although the proposed hybrid model achieved
robust performance, a major limitation of this study is
the absence of external validation. The model was
developed and tested using data from two hospitals
within the same geographic region, which may restrict
its generalizability to broader or more diverse

populations.  Future research should include
independent external datasets from different
institutions to validate the model’s reproducibility and
ensure its applicability across various clinical
environments.

The proposed hybrid DNN-XGBoost framework also
holds potential for practical integration into routine
clinical workflows. In a real-world setting, the model can
be embedded within clinical decision support systems
(CDSS) or integrated directly into hospital electronic
health record (EHR) platforms. Once patient data such

12

as fasting glucose, HbAic, BMI, and blood pressure are
entered into the system, the model can automatically
generate a personalized probability of developing type 2
diabetes. Importantly, the SHAP-based explainability
component provides clinicians with an interactive
visual dashboard that highlights the most influential
features contributing to each prediction, thereby
supporting transparent and interpretable decision-
making.

The intended clinical use of the model is to support
early diabetes risk stratification during routine
outpatient visits. The system is designed as an assistive
decision-support tool rather than a stand-alone
diagnostic device, providing clinicians with transparent
risk scores and SHAP-based explanations.

In a typical workflow, this system could assist
healthcare professionals in three critical stages of
diabetes management: early where
individuals at elevated risk are automatically flagged
during routine examinations; diagnostic confirmation,
where clinicians can cross-verify Al-driven risk estimates
with laboratory findings; and follow-up monitoring,
where periodic patient data updates enable dynamic
risk reassessment. Such integration ensures that Al
augments rather than replaces clinical judgment,

screening,

offering a data-driven yet interpretable tool for
precision prevention.

From an operational standpoint, the model’s
computational requirements are moderate once
training is complete, making real-time inference
feasible even in hospitals with limited computational
infrastructure. With further validation and regulatory
approval, this framework could be seamlessly
embedded within existing clinical infrastructures to
enhance early detection, reduce diagnostic delay, and
support personalized treatment planning in diabetes
care (29-31).

5.1. Conclusion

The findings of this study demonstrate that the
proposed hybrid DNN-XGBoost model can achieve
strong  predictive = accuracy and  enhanced
interpretability in identifying individuals at risk of type
2 diabetes. By integrating DL for nonlinear feature
representation with XGBoost for structured decision
transparency, the model addresses common trade-offs
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between performance and explainability that limit
many existing ML approaches.

While these results are promising, they should be
interpreted within the scope of the available dataset and
internal validation. External validation across multi-
center populations is still required to confirm the
model’s generalizability and real-world applicability.
Moreover, the retrospective nature of this study and its
focus on a single geographic population may introduce
selection and demographic biases.

The hybrid architecture provides a useful foundation
for the development of explainable clinical decision-
support systems in diabetes care. However, further work
is necessary to evaluate its robustness in prospective
studies, optimize its computational efficiency, and
integrate it safely into healthcare workflows. Rather
than claiming clinical readiness, the current evidence
supports its potential for clinical utility pending
additional validation.

Overall, this research underscores the growing
importance of hybrid artificial intelligence frameworks
that balance performance with interpretability, offering
a realistic step toward more transparent and data-
driven healthcare applications.

5.2. Limitations

Although the proposed hybrid DNN-XGBoost model

demonstrated excellent predictive accuracy and
interpretability, several limitations must be
acknowledged.

First, as the dataset originated from only two
hospitals in Sirjan, Iran, potential demographic bias
may exist, limiting the generalizability of the model to
broader or ethnically diverse populations. Future
studies should validate this framework across multi-
center and cross-national datasets.

Second, five-fold cross-validation was
employed to mitigate the risk of overfitting, DL

while

components are inherently prone to learning noise and
spurious correlations in smaller datasets. Although the
hybrid design and regularization techniques (dropout
and early stopping) helped control this effect, further
external validation is required to confirm model
robustness.

Third, the hybrid framework demands substantial
computational resources, as DNN training involves
intensive parameter optimization and high memory
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usage. This may limit practical deployment in low-
resource healthcare environments without access to
high-performance computing infrastructure.

Future research should address these limitations by
expanding the dataset diversity, incorporating federated
learning approaches for distributed validation, and
exploring lightweight model architectures to reduce
computational cost while preserving interpretability.
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