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Abstract

Background: Knee osteoarthritis is one of the most prevalent joint disorders in the elderly, and accurate classification of its

severity plays a critical role in therapeutic decision-making.

Objectives: This study aimed to develop an automated classification model for assessing knee osteoarthritis severity using

radiographic images and clinical features, based on the Support Vector Machine (SVM) algorithm.

Methods: In this applied, retrospective, and observational research, 44 radiographic images of the left knee from patients

aged 39 to 72 were collected from the radiology department of Imam Ali Hospital in Bojnourd. Four key clinical features —

namely, the angle between the femoral and tibial axes, the joint space width (JSW) ratio, the extent of subarticular erosion, and

osteophyte structure — were extracted from the images. All features were normalized and evaluated using SVM models with

both linear and nonlinear kernels. Model performance was assessed using k-fold cross-validation and analyzed through

classification accuracy, sensitivity, and specificity. Osteoarthritis severity was determined using the Kellgren-Lawrence (KL)

grading system, as assessed by an orthopedic specialist.

Results: The classification accuracy using all features and the radial kernel reached 79.89%. With the radial basis function (RBF)

kernel at σ = 0.85, the highest accuracy of 83.53% was achieved. The femur-tibia angle feature alone yielded a reasonably high

performance [74.14% with the multilayer perceptron (MLP)], while the osteophyte feature resulted in the lowest classification

accuracy (59.22%). Comparative chart analyses revealed that nonlinear kernels had superior discriminatory power compared to

linear kernels.

Conclusions: The proposed SVM-based model, utilizing interpretable structural features, successfully classified the severity of

knee osteoarthritis with acceptable accuracy. The achieved classification accuracy (~84%) suggests potential clinical utility,

although direct comparison with human expert performance was not conducted. This approach is recommended as a

diagnostic support system, particularly in resource-limited clinical settings. Future research can enhance the model's

generalizability and accuracy by incorporating additional clinical data and multi-source imaging modalities.
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1. Background

Knee osteoarthritis, as one of the most common
degenerative joint diseases, imposes a significant

burden on healthcare systems and adversely affects
patients’ quality of life. The assessment of disease

severity is often based on the analysis of radiographic

images and the Kellgren-Lawrence (KL) grading system,

in which indicators such as joint space narrowing,

osteophytes, and subchondral sclerosis are considered
(1, 2). However, traditional methods based on expert

visual assessment are limited by dependence on
observer interpretation, inter-rater variability, and low

sensitivity in detecting early disease stages (3). In recent
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years, machine learning algorithms have gained

prominence in the automatic diagnosis of osteoarthritis

severity and the accurate classification of KL grades (4,
5). One such advanced classifier is the Support Vector

Machine (SVM) (6). The use of approaches that combine
manual features — including local binary patterns

(LBPs), Haralick features, gray-level co-occurrence matrix

(GLCM), and discrete wavelet transform (DWT) — with
features extracted from convolutional neural networks

has improved detection accuracy and reduced
classification errors (7, 8). Studies have shown that

analysis of trabecular bone structure using fractal

methods, such as directional fractal signature, can

identify tissue changes associated with osteoarthritis

even before clinical symptoms appear (3).

Additionally, the use of ensemble systems and rank-

based models such as ordinal regression, along with

advanced imaging techniques such as Gradient-

weighted Class Activation Mapping (Grad-CAM), has

enabled clinical interpretation of model decisions (1, 9).

Furthermore, research has emphasized the role of

clinical data — including age, gender, Body Mass Index

(BMI), functional scores, and pain severity — in

predicting the severity of osteoarthritis. Combining

clinical data with imaging information in hybrid

models has increased diagnostic accuracy, facilitated the

identification of pathological subtypes of the disease,

and improved the generalizability of models in clinical

settings (10, 11). Recent randomized trials have explored

various therapeutic modalities for knee osteoarthritis,

including dextrose prolotherapy, high-intensity laser

therapy (HILT), and instrument-assisted soft tissue

mobilization (IASTM), each demonstrating promising

effects on pain reduction and functional improvement

(12-14). These findings underscore the importance of

integrating diagnostic precision with evidence-based

treatment strategies to optimize patient outcomes.

2. Objectives

Given the current gap in effectively integrating

image and clinical features within an automated

classification framework, the aim of this study is to

develop a knee osteoarthritis diagnosis model based on

image features extracted from radiographic images and

the clinical characteristics of patients using the SVM

algorithm. The novelty of this study lies in its

integration of clinically interpretable structural

features — such as the femoral-tibial axis angle, joint

space width (JSW) ratio, subfemoral erosion, and

osteophyte morphology — into a machine learning

framework for automated knee osteoarthritis staging.

Unlike prior studies that rely heavily on deep learning

or abstract texture descriptors, our approach employs

conventional image processing techniques and

handcrafted features that are both transparent and
clinically meaningful. The results of this study are

expected to improve the accuracy of osteoarthritis
severity classification and facilitate the design of

automated clinical tools for early diagnosis and

treatment decision-making.

3. Methods

This study utilized radiographic images from 44

patients (5 men, 39 women, aged 39 - 72 years) referred

to the radiology department of Imam Ali Hospital in

Bojnourd. The sample size (n = 44) was determined

based on available clinical data and ethical limitations.

This study was designed as an applied, retrospective,

and observational research based on radiographic

image analysis and clinical data.

Images were acquired using a SHIMADZU USISOL-40

digital device and retrieved via the MARCO PACS system

in DICOM format, stored on CDs for processing to

preserve image quality. All patients underwent clinical

evaluation by an orthopedic specialist, with imaging

performed in a standing position to capture the natural

effect of body weight on knee joint space, which is

critical for assessing joint space narrowing and

osteoarthritis staging. Anteroposterior knee

radiographs served as the primary data, with patients

positioned to evenly distribute weight across both

knees, enhancing clarity in joint space visualization.

Lateral images, which were occasionally requested, were

excluded from this study, consistent with

methodologies in Yoon et al. (2).

Images were processed by isolating the left knee

using the PACS software’s cropping tool. MATLAB

(version 2013a) was employed for analysis. Initial image
processing involved contrast adjustment to enhance

bone structure visibility, followed by noise reduction
using the Otsu thresholding algorithm to separate bone

from background. The canny edge detection algorithm

was applied to delineate bone edges based on
brightness gradients, enabling precise feature

extraction.

Four clinical features, aligned with the KL grading

system and supported by prior studies, were extracted

for osteoarthritis diagnosis (1, 3).

3.1. Femoral-Tibial Axis Angle

The femur and tibia curvature areas were segmented,

and their centerlines drawn by connecting upper and

lower points. The angle between these lines and the
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Figure 1. Clinical features of knee osteoarthritis; A, femoral-tibial axis angle; B, joint space width (JSW); C, subfemoral bone surface erosion; and D, osteophyte detection.

image horizon was calculated, with the difference

(ranging from -8 to 8 degrees) indicating structural

changes due to osteoarthritis (Figure 1). This was

implemented in MATLAB as the TFA.M function.

3.2. Joint Space Width

The distance between femoral and tibial articular

surfaces was measured in the middle knee region after

cropping, contrast adjustment, and noise removal. The

Otsu algorithm defined thresholds, and the Canny

algorithm extracted horizontal joint space edges (Figure

1). Two vertical distances were measured, and their ratio

(0 - 1) quantified joint space narrowing, implemented as

JSW.M.

3.3. Subfemoral Bone Surface Erosion

A region between the femur and tibia was analyzed,

with brightness intensity serving as an indicator of

cartilage and bone erosion (Figure 1). Eroded areas,

appearing brighter, yielded contrast values (100 - 250),

normalized by dividing the standard deviation by the

contrast to produce a 0 - 1 range, recorded as SCL2. M.

3.4. Osteophyte Detection

The knee joint was analyzed for bony outgrowths. A

morphological gradient image highlighted vertical

edges, and the Otsu method produced a binary image

(Figure 1). The ratio of area to perimeter of prominent

regions (initially 1 - 2) was normalized to 0 - 1 by

subtracting one, saved as OST4. M.

All features were linearly normalized to a 0 - 1 scale to
ensure uniform input for machine learning. Angular

data were shifted and scaled, JSW features were

preserved, erosion features were normalized via

standard deviation ratios, and osteophyte features were

linearly reduced.

A SVM with a “one-versus-the-rest” structure classified

osteoarthritis stages (KL = 1 to KL = 4), with KL = 1 as the
healthy reference due to ethical constraints on imaging

healthy individuals. The SVM was chosen for its strong
performance on small datasets, ability to model

nonlinear relationships, and suitability for

interpretable clinical classification tasks.

The dataset was split into training and test sets, with

10-fold cross-validation to assess model stability.

Performance metrics included accuracy, sensitivity,

specificity, and Cohen’s Kappa. Grid search optimized

SVM parameters (kernel type, C penalty, etc.), with the

radial basis function (RBF) kernel selected for its ability

to handle nonlinear data boundaries. The LIBSVM

MATLAB library facilitated implementation, with a cost-

sensitive function to mitigate underfitting for

underrepresented classes (e.g., KL = 4).

https://brieflands.com/journals/tatm/articles/166240
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Feature weighting revealed the femoral-tibial angle

as critical for advanced osteoarthritis stages, while joint

erosion was key for early stages. Test data, excluded from

training, were used to evaluate the final model,

predicting KL stages and comparing them to physician

diagnoses. The outcome variable was categorical,

corresponding to KL grades (1 to 4), used for supervised

classification.

Patient confidentiality was maintained by

anonymizing DICOM images, excluding personal

identifiers from the research database. Ethical

considerations avoided unnecessary imaging of healthy

individuals, aligning with clinical protocols.

4. Results

In this study, four clinical features related to knee

osteoarthritis were extracted from knee radiographs:

The angle between the femoral and tibial axes, the joint

space distance, the amount of subarticular erosion, and

the osteophyte assessment. To convert these clinical

features into processable numerical values, image

processing-based approaches were applied, and each

feature was defined as a normalized scalar in the range

[0,1].

4.1. Angle Between the Femoral and Tibial Axes

The angle difference between the centerlines of these

two bones relative to the horizontal axis was calculated.

In patients with severe osteoarthritis, the femoral axis is

bent inward, and the angle difference is reduced

compared to the normal position. This angle was

extracted with high accuracy through Canny edge

detection and Otsu thresholding, and its technical

accuracy was consistent with clinical reality.

4.2. Joint Space Distance

The ratio of the left width to the right width was

calculated by examining the lower region of the femur

and the upper region of the tibia in the center of the

joint. In patients with advanced osteoarthritis, this ratio

tends toward zero, indicating bone adhesion on the

medial side of the joint.

4.3. Subfemoral Erosion Feature

The brightness of the erosion area was determined

by calculating the ratio of the standard deviation to the

average contrast intensity. This index is usually reduced

in osteoarthritis patients and indicates bone tissue

degradation due to chronic pressure.

4.4. Osteophyte Feature

By creating a morphological gradient image and

applying thresholding, bone growths were identified at

the edges of the image. The area-to-perimeter ratio of

these areas was defined as a geometric feature. Although

this feature had limited clinical relevance in some cases,

it performed well in diagnosing suspected cases without

osteophytes.

The present study showed that each feature alone is

able to relatively distinguish between different stages of

the disease, and when combined, the recognition ability

of the model increases significantly.

To evaluate the performance of the SVM model, k-fold

cross-validation with k = 10 was used. In this method,

the data were divided into 10 equal parts; in each

iteration, one part was used for testing and 9 parts were

used for training. Different kernels, including linear,

polynomial, radial, RBF, and quadratic, and multilayer

perceptron (MLP) were used for modeling, and the

accuracy, sensitivity, and specificity for each case were

reported as mean and standard deviation.

Initially, by changing the parameter σ in the RBF

kernel, its effect on the accuracy of the model was

investigated. The results in Table 1 show that the highest

overall classification accuracy was achieved with a value

of σ = 0.85 (83.53%), while at very small or larger values

than the optimal limit, the accuracy decreased.

As can be seen in Figure 2, the effect of RBF sigma

changes on the RBF kernel resulted in the model

performance curve behaving nonlinearly with respect to

σ changes, and the maximum accuracy was obtained at

the midpoint. In addition, the performance analysis of

each feature individually showed that the first feature

(the angle between the femoral and tibial axes)

performed best at σ = 0.95 with an accuracy of 73.82%,

and the third feature (bone erosion) provided the lowest

accuracy at most σ values.

To investigate the effectiveness of different types of

kernels in SVM modeling, a comparison was made

between the results obtained by each kernel in the

separation of each feature (Table 2). The following can be

extracted from this table:

- The radial kernel demonstrated the highest

performance among all kernels, with an overall

accuracy of 79.89%.

- The linear kernel provided the lowest accuracy

(70.29%) and performed particularly poorly for the

fourth feature (osteophyte), with an accuracy of only

59.22%.
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Table 1. Support Vector Machine Separation Results with Radial Basis Function Kernel and Different Values for Radial Basis Function Sigma a , b

RBF Sigma Accuracy by First Features Accuracy by Second Features Accuracy by Third Features Accuracy by Forth Features Accuracy by All Features

0.25 70.76 ± 0.77 73.46 ± 0.65 66.21 ± 0.19 66.74 ± 1.45 78.35 ± 0.40

0.45 71.01 ± 0.50 72.24 ± 0.77 65.21 ± 0.77 62.54 ± 0.96 80.78 ± 0.57

0.65 73.03 ± 0.54 71.58 ± 1.23 63.84 ± 0.70 63.01 ± 1.01 82.42 ± 0.72

0.85 73.24 ± 0.71 70.37 ± 0.13 64.04 ± 0.29 64.66 ± 0.97 83.53 ± 0.36

0.95 73.82 ± 0.49 73.37 ± 0.40 63.32 ± 0.28 64.29 ± 0.59 80.73 ± 1.21

1.00 71.65 ± 0.70 69.93 ± 0.70 63.12 ± 0.49 64.14 ± 0.62 78.74 ± 1.44

2.50 72.72 ± 0.13 69.11 ± 0.99 63.43 ± 0.37 62.80 ± 1.64 73.69 ± 0.61

a Values are expressed as mean ± SD.

b First feature: Angle between the femoral and tibial axes; second feature: Joint space distance; third feature: Subfemoral erosion feature; and forth feature: Osteophyte feature
(expressed in percentage).

Figure 2. Effect of varying the radial basis function (RBF) sigma parameter on Support Vector Machine (SVM) classification accuracy across four individual features and their
combination. Results are based on 10-fold cross-validation. Bars represent mean accuracy ± standard deviation.

- The MLP had a high ability in the separation of the

femur-tibia angle feature (74.14%), indicating the quasi-

linear behavior of this feature in the feature space.

This comparison is presented in Figure 3 as a bar

chart that clearly shows the changes in the performance

of the kernels for each feature and the full set of

features.

The graph in Figure 3 shows that:

- The data related to the first feature exhibited stable

and separable performance across different kernels.

- The third and fourth features require a model with

high nonlinear resolution (such as the radial kernel)

due to the dispersion in the feature space.

https://brieflands.com/journals/tatm/articles/166240
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Table 2. Support Vector Machine Separation Results with Different Kernels for Features a , b

Types of Kernels (or
Models)

Accuracy by First
Features

Accuracy by Second
Features

Accuracy by Third
Features

Accuracy by Forth
Features

Accuracy by All
Features

Linear 72.61 ± 1.1 66.59 ± 1.32 62.97 ± 0.60 59.22 ± 1.25 70.29 ± 1.98

Poly 71.67 ± 1.28 69.81 ± 0.51 63.54 ± 2.49 63.11 ± 0.90 77.80 ± 1.86

RBF 71.65 ± 0.7 69.93 ± 0.70 63.12 ± 0.49 64.14 ± 0.62 78.74 ± 1.44

MLP 74.14 ± 0.82 68.62 ± 0.36 63.16 ± 0.39 62.18 ± 0.114 71.87 ± 1.29

Radial 72.61 ± 0.67 70.69 ± 0.66 63.77 ± 0.45 63.91 ± 0.49 79.89 ± 0.99

Quadratic 72.46 ± 0.83 71.70 ± 0.42 63.38 ± 0.67 64.42 ± 2.29 77.17 ± 1.01

Abbreviations: RBF, radial basis function; MLP, multilayer perceptron.

a Values are expressed as mean ± SD.

b First feature: Angle between the femoral and tibial axes; second feature: Joint space distance; third feature: Subfemoral erosion feature; and forth feature: Osteophyte feature
(expressed in percentage).

Figure 3. Comparison of the effectiveness of different kernel types

- Combining all features with the radial kernel, in

addition to high accuracy, increased the sensitivity and

specificity of the model.

To further evaluate the model’s performance across

individual KL grades, a confusion matrix was
constructed and visualized as a heatmap (Figure 4). This

matrix summarizes the number of correct and incorrect

predictions for each class. As shown, the model achieved

high accuracy in distinguishing KL = 1 and KL = 4 grades,

while minor misclassifications occurred between

adjacent grades such as KL = 2 and KL = 3.

Overall, these results indicate the success of
combining clinical features and image processing in

building an effective model for diagnosing the severity

https://brieflands.com/journals/tatm/articles/166240
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Figure 4. Confusion matrix heatmap for Kellgren-Lawrence (KL) grade classification using Support Vector Machine (SVM, 10-fold cross-validation); the matrix illustrates the
number of correctly and incorrectly classified samples for each KL severity grade.

of knee osteoarthritis, and underscore the superiority of

nonlinear kernels, especially radial, over other kernels

in modeling complex medical data.

5. Discussion

The results of this study showed that the

combination of clinical features extracted from knee

radiographs and classification using the SVM algorithm

can serve as an effective approach in assessing the

severity of knee osteoarthritis. These findings are

particularly significant from the perspective of medical

physics, which focuses on bone structural parameters

and imaging quality, as well as from the perspective of

artificial intelligence, which analyzes data patterns and

learns nonlinear relationships. Previous studies, such as

those by Stachowiak et al., have emphasized the

importance of trabecular bone texture and fractal

analysis in the assessment of osteoarthritis (3); however,

the present study, by focusing on structural-geometric

features such as the angle between the axes of the bones

and the joint distance, enables the extraction of features

with high clinical interpretability. Furthermore, the use

of conventional image processing algorithms, such as

Otsu thresholding and Canny edge detection, has

provided a feasible and low-cost processing pathway

that can be readily implemented in clinical settings.

Analysis of the classification results with SVM showed

that the first feature, the angle between the femoral and

tibial axes, had high resolution (73.82% accuracy with σ
RBF = 0.95 and 74.14% accuracy with MLP), indicating the

mechanical role of this parameter in the progression of

osteoarthritis. This finding is consistent with the studies

of Yoon et al. and Khalid et al., who highlighted the role

https://brieflands.com/journals/tatm/articles/166240
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of bone axis deviation in predicting the need for

therapeutic intervention, such as arthroplasty (2, 4). In

contrast, features related to cartilage erosion and

osteophytes, despite their clinical importance,

performed poorly in classification alone (accuracy of

about 63%), which may be attributed to the structural

complexity of these phenomena in radiological images

and their overlap with other features. The study by

Tiulpin and Saarakkala also emphasizes that

multivariate analysis of Osteoarthritis Research Society

International (OARSI) features combined with KL

grading may outperform single-feature models (1).

The use of different kernels in the SVM algorithm

further demonstrated that nonlinear kernels, such as

RBF and radial, outperform the linear kernel in

classifying disease stages. The highest overall accuracy

(79.89%) was achieved using the radial kernel and

combining all features, indicating a nonlinear

distribution of the data in the feature space. This is

consistent with the findings of Ahmed et al. and Tariq et

al., who have introduced the use of deep learning or

hybrid (hybrid convolutional neural network plus MLP)

models as effective methods for diagnosing

osteoarthritis severity (9, 15).

The clinical relevance of accurate KL grade

classification is further supported by recent

interventional studies. For instance, Bayat et al.

compared dextrose prolotherapy with corticosteroid

injections and found superior mid-term functional

outcomes with prolotherapy, emphasizing the

importance of precise disease staging (12). Similarly,

Taheri et al. demonstrated that HILT significantly

improved pain and Western Ontario and McMaster

Universities Osteoarthritis Index (WOMAC) scores, while

Jafarsalehi et al. reported enhanced mobility and

quality-of-life metrics following IASTM (13, 14). These

studies highlight the therapeutic implications of

accurate KL grading and reinforce the utility of

automated classification systems in guiding treatment

decisions.

One of the innovations of this study was the use of

interpretable clinical features (angle, distance, erosion,

osteophyte) along with controllable and easy-to-

implement algorithms such as the SVM. Unlike deep

models that require high processing resources, the

proposed method can also be implemented in medical

centers with limited equipment. In addition, the

generalizability of the model was examined and

confirmed through cross-validation (k-fold), which

indicates the stability of the classifier’s performance

against data changes.

One major limitation of this study is the relatively

small sample size (n = 44), which may affect the

generalizability of the model and increase the risk of

overfitting. This constraint was due to limited access to

ethically approved, high-quality radiographic data. To

address this, we employed 10-fold cross-validation and

selected low-dimensional, clinically interpretable

features to reduce model complexity. Future studies

with larger and more diverse datasets are essential to

validate and extend the findings. Due to the limited

sample size and categorical outcome, SHapley Additive

exPlanations (SHAP) and receiver operating

characteristic (ROC) analyses were not included. Future

studies with larger datasets can incorporate these

interpretability tools.

From an applied perspective, the results of this study

can help in the development of computer-aided

diagnosis (CAD) systems in imaging units. Rapid and

automated analysis of radiographic images using a

trained SVM model can play a role in patient

classification, prioritization of therapeutic

interventions, and even in planning joint replacement

surgeries.

5.1. Conclusions

This study developed an automated classification

model to assess knee osteoarthritis severity using

radiographic image processing, focusing on four

clinical features: Femoral-tibial axis angle, joint space

distance, joint erosion rate, and osteophyte detection. A

SVM algorithm with linear and nonlinear kernels was

employed, with nonlinear kernels — particularly radial

and RBF — demonstrating superior performance in

distinguishing disease stages. The model achieved a

peak accuracy of 79.89% when all features were

combined with the radial kernel, highlighting the

importance of feature integration and classifier

selection. Notably, the model’s ability to analyze bone

geometry, especially the femoral-tibial angle, was

significant in predicting disease severity. Although the

proposed model may offer practical advantages in

resource-limited settings due to its simplicity and

interpretability, further validation on larger, multi-

center datasets is essential to confirm its

generalizability and clinical applicability. Future

research should incorporate multi-source data,

including demographic characteristics and additional

imaging modalities such as magnetic resonance

imaging (MRI) and computed tomography (CT), to

enhance diagnostic accuracy and develop multimodal

intelligent systems.
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