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Abstract

Context: Accurate radiotherapy dose calculation is critical for optimizing treatment efficacy and minimizing toxicity.
Traditional algorithms, while clinically validated, often struggle with complex anatomical variations and heterogeneous tissue
compositions. Recent advances in artificial intelligence (AI) offer promising alternatives for enhancing dose prediction accuracy
and workflow efficiency.

Objectives: This review aims to critically appraise the current landscape of Al-based radiotherapy dose calculation methods,
comparing their performance, interpretability, and clinical applicability across various algorithmic families.

Methods: A comprehensive literature search was conducted using PubMed, Scopus, and IEEE Xplore databases, focusing on
studies published between 2015 and 2025. Included articles were categorized into six Al domains: Machine learning (ML), deep
learning (DL), reinforcement learning (RL), Bayesian models, fuzzy logic systems, and evolutionary algorithms. Comparative
analysis was performed based on dosimetric accuracy, computational efficiency, explainability, and integration with treatment
planning systems (TPS).

Results: The DL models, particularly convolutional neural networks (CNNs) and transformer-based architectures,
demonstrated superior performance in dose prediction for head and neck, prostate, and lung cancers. The RL approaches
showed potential in adaptive planning scenarios, while Bayesian and fuzzy logic models offered enhanced interpretability.
Evolutionary algorithms were effective in multi-objective optimization but required extensive computational resources.
Despite promising results, most studies lacked external validation and standardized benchmarking.

Conclusions: The Al-driven dose calculation methods represent a transformative shift in radiotherapy planning. However,
challenges remain in clinical translation, including algorithm transparency, regulatory approval, and integration with existing
workflows. Future research should prioritize multi-institutional validation, hybrid model development, and human-Al
collaboration frameworks to ensure safe and effective deployment.
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1. Context

Accurate dose calculation is a cornerstone of modern
radiotherapy, directly influencing tumor control and
normal tissue sparing (1). Conventional algorithms such
as Monte Carlo (MC), pencil beam convolution, and the
analytical anisotropic algorithm (AAA) have long served
as clinical standards. However, these methods often
struggle with complex anatomical heterogeneities,

dynamic organ motion, and
inefficiencies in adaptive workflows (2-5).

computational

Recent advances in artificial intelligence (AI) have
introduced transformative possibilities for dose
prediction, treatment planning, and quality assurance
(6). The Al encompasses a broad spectrum of
algorithmic families — including machine learning
(ML), deep learning (DL), reinforcement learning (RL),
Bayesian models, fuzzy logic systems, and evolutionary
algorithms — each offering unique strengths in
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modeling nonlinear relationships, learning from large
datasets, and generalizing across patient populations
(7).

In radiotherapy, Al applications have expanded from
image segmentation and contouring to dose
estimation, plan optimization, and toxicity prediction.
Particularly, convolutional neural networks (CNNs),
transformer-based architectures, and hybrid ensemble
models have demonstrated promising results in
predicting three-dimensional (3D) dose distributions
with high spatial fidelity. The RL has shown potential in
adaptive planning scenarios, while Bayesian and fuzzy
logic models offer enhanced interpretability and
uncertainty quantification (8-12), (13-15).

Despite these advances, several challenges hinder
clinical translation. Many AI models lack external
validation, suffer from limited generalizability, and are
often trained on institution-specific datasets (11).
Moreover, explainability remains a critical barrier,
especially in high-stakes clinical decisions where
transparency and accountability are essential (16).
Regulatory frameworks for Al in medicine are still
evolving, and integration with existing treatment
planning systems (TPS) requires robust interoperability
and human-Al collaboration protocols (17).

2. Objectives

This review aims to critically evaluate the current
landscape of Al-based dose calculation methods in
radiotherapy. We categorize and compare six major
algorithmic families — ML, DL, RL, Bayesian, fuzzy, and
evolutionary — based on their dosimetric accuracy,
computational efficiency, interpretability, and clinical
applicability. By synthesizing findings from over 160
peer-reviewed studies, we highlight key trends,
limitations, and future directions for Al integration in
radiotherapy workflows.

Ultimately, this work seeks to bridge the gap between
algorithmic innovation and clinical implementation,
offering a structured roadmap for researchers,
physicists, and oncologists navigating the evolving
intersection of Al and radiation oncology.

3. Methods

This review was conducted through a structured and
comprehensive evaluation of the literature on Al
applications in radiotherapy dose calculation. A multi-
step methodology was employed to ensure scientific
rigor and relevance.

3.1. Literature Search

Databases including PubMed, Scopus, IEEE Xplore,
and Google Scholar were queried for studies published
up to August 3, 2025. Search terms included
combinations of “radiotherapy dose calculation”, “Al in
radiotherapy”, “machine learning”, “deep learning”,
“Bayesian networks”, “fuzzy logic”, and “treatment
planning optimization”. Boolean operators were used to
refine results and capture a broad spectrum of
traditional and Al-based approaches.

3.2. Criteria

3.2.1. Inclusion Criteria

Studies were selected if they (1) focused on
radiotherapy dose calculation or treatment planning,
(2) applied Al techniques such as ML, DL, RL, Bayesian,
fuzzy, or evolutionary algorithms, (3) discussed clinical
applications, challenges, or future directions, and (4)
were published in peer-reviewed journals or reliable
scientific repositories.

3.2.2. Exclusion Criteria

Articles were excluded if they (1) were not in English,
(2) lacked methodological detail, (3) focused solely on
non-radiotherapy Al applications, or (4) were opinion
pieces without any underlying data.

3.3. Data Extraction and Analysis

After removing duplicates, titles and abstracts were
screened for relevance. Full-text reviews were conducted
to assess alignment with the review’s objectives.
Extracted data included algorithm types, dosimetric
performance, clinical integration, and reported
limitations. Studies were categorized into six Al
domains: The ML, DL, RL, Bayesian, fuzzy logic, and
evolutionary algorithms.

3.4. Synthesis Strategy

Findings were synthesized into thematic sections:
Traditional dose calculation methods, AI roles,
algorithmic techniques, challenges, clinical
applications, and future directions. Emphasis was
placed on comparative performance, interpretability,
and clinical feasibility. Citations were retained to ensure
traceability and academic integrity.

3.5.Scope and Coverage

A total of 160 references were included, spanning
experimental studies, technical reports, and systematic
reviews. The selected literature reflects diverse cancer
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types, imaging modalities, and TPS, offering a
panoramic view of Al's evolving role in radiotherapy.

4.Results

4.1. Comparative Analysis of Artificial Intelligence Models

The Al models for radiotherapy dose calculation span
six major algorithmic families, each offering distinct
advantages in terms of dosimetric accuracy,
computational efficiency, and clinical feasibility. Below
is a comparative synthesis of these approaches and
Table 1 summarizes this section. In Table 1, performance
metrics are synthesized from studies (18-23), (24-28) and
reflect general trends across cancer types and imaging
modalities. Table 2 also shows a summary of key studies
on the applications of Al in radiotherapy dose
calculation and treatment planning.

4.1.1. Machine Learning Models

The ML techniques such as Random Forest (RF),
Support Vector Machines (SVM), Logistic Regression
(LREG), and K-Nearest Neighbors (KNN) have been
widely applied to dose prediction and plan classification
tasks. The RF and SVM models demonstrated robust
performance in identifying organ-atrisk (OAR) dose
thresholds and predicting toxicity outcomes (35-37).
However, their reliance on handcrafted features and
limited scalability to 3D dose maps restrict broader
clinical adoption (18,19).

4.1.2. Deep Learning Architectures

The CNNs, U-Net variants, and transformer-based
models have shown superior performance in voxel-level
dose prediction. The CNNs trained on computed
tomography (CT) and magnetic resonance imaging
(MRI) datasets achieved high spatial fidelity in head and
neck, prostate, and lung cancer cases. Transformer
models further improved contextual learning and
generalization across institutions. Despite their
accuracy, DL models often lack interpretability and
require large annotated datasets for training (20-23).

4.1.3. Reinforcement Learning Applications

The RL algorithms, particularly Deep Q-Networks
(DQN), have been explored for adaptive planning and
beam angle optimization. These models dynamically
learn optimal dose delivery strategies based on reward
functions tied to tumor coverage and OAR sparing.
While promising, RL approaches remain
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computationally intensive and are rarely integrated into
commercial TPS (24).

4.1.4. Bayesian and Fuzzy Logic Systems

Bayesian networks [e.g., Bayesian ensemble naive
bayes (BENB), expert knowledge-naive Bayesian network
(EK-NBN)] and fuzzy logic models offer enhanced
transparency and uncertainty quantification. These
systems are particularly useful in scenarios with
incomplete data or ambiguous clinical inputs.
Situational awareness Bayesian networks (SA-BN) have
been applied to decision support in dose escalation
protocols. Although interpretable, these models often
underperform in high-dimensional imaging contexts
(25,26).

4.1.5. Evolutionary Algorithms

Genetic  algorithms  (GA), particle swarm
optimization (PSO), and novel genetic algorithms (NGA)
have been employed for multi-objective dose
optimization. These methods excel in exploring large
solution spaces and balancing trade-offs between tumor
coverage and normal tissue sparing. However, they
require extensive computational resources and are
sensitive to parameter tuning (27, 28).

5. Discussion

5.1. Challenges and Strategic Considerations

While Al has demonstrated remarkable potential in
radiotherapy dose calculation, its clinical integration
remains constrained by several technical, ethical, and
operational challenges. This section synthesizes key
limitations and proposes strategic considerations for
future implementation. A summary of key studies on Al
applications in radiotherapy dose calculation and
treatment planning is shown in Table 3.

5.1.1. Data Quality and Generalizability

The Al models require large, diverse, and high-quality
datasets for training and validation. However,
radiotherapy datasets often suffer from institutional
bias, limited sample sizes, and inconsistent annotation
standards (39-41). These limitations hinder model
generalizability across patient populations, tumor
types, and imaging modalities. Multi-institutional data
sharing frameworks and federated learning approaches
may help mitigate these issues while preserving patient
privacy.
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Table 1. Performance Comparison of Machine Learning, Deep Learning, and Other Artificial Intelligence Models in Clinical Dose Prediction

Algorithm Types Accuracy Interpretability Clinical Integration Computational Cost

ML (RF, SVM) Moderate Moderate Moderate Low

DL (CNN, transformer) High Low Emerging High

RL (DQN) High Low Limited Very high

Bayesian/fuzzy Moderate High Moderate Moderate

Evolutionary High Moderate Experimental High

Abbreviations: ML, machine learning; RF, Random Forest; SVM, Support Vector Machines; DL, deep learning; CNN, convolutional neural network; RL, reinforcement learning;

DQN, Deep Q-Networks.

Table 2. Summary of Key Studies on Artificial Intelligence Applications in Radiotherapy Dose Calculation and Treatment Planning

. . . Evaluation
Author(s),y Countries Sample Disease Algorithm Method Result
. Post-T2 models predictive (AUC: 0.632); GS
Abdollahi, et al. 33 prostate LSVM, LREG, BENB, SGD, Tenfold cross- - . X N !
(29),2019 fran cancer patients Prostate cancer KNN, DT, RF, ADBO, GANB validation prediction hlgheEAV\Gtct.l 3‘278‘;UC. 0739) vs. ADC
5 199 prostate . q g Denoiser runs in 39 ms vs. 454 ms, 11.6x faster;
Bai, etal. ( 6),2021 USA e Prostate cancer Lightweight CNN Time completes MC dose in ~0.15 5.
Jalalimanesh, et al. Iran Vascular tumor Distributed Q-learning Simulation Robust solutlon§ fortreatln?ent plans under
(30),2017 varying conditions.
Kalendralis, et al. Netherland R e B . cwork AUC AUC: 67.8% overall; 90.4% for table angle errors,
(31),2021 etherlands 5238 patients - ayesian network 54.5% for PTV errors.
Leszczynski, et al. 328 breast . . . .
(32),1999 Canada images Breast cancer Fuzzy k-NN Correlation High agreement with expert (correlation 0.89).
Li, et al. (33),2004 China 3 phantom cases  Prostate cancer GA, CG Time Oppiaimell s ot im <5 min (e 4, 1) 18-
36 min (case C, spine, prostate).
. . . Simulated and Oropharyngeal . DNA-GA optimized in 20 iterations vs. 45 for GA;
Liand Lei (34), 2010 China chest tumor tumor GA Iterations improved OAR sparing.
118 lung cancer SA-BN improved prediction (AU-FROC: 0.83) vs.
Luo, et al. ( 25),2021 USA patients Lung cancer SA-BN, EK-NBN AU-FROC EK-NBN (0.70).
Patnaikuni, et al. India Prostate cancer Two-level fuzzy logic Qualitative Acceptable rect_a! risk estimation without
(35),2022 assessment compromising tumor coverage.
. Head and neck - . Hybrid directive reduced OAR doses by 4.3-16 Gy
Sher, etal. (17),2021 USA 50 patients — Decision tree Dose reduction vs. physician directive.
. Real patient . Setup error Setup error reduced from 1.47 mm to 0.4432
Torshabi ( 26),2022 Iran data - Fuzzy logic, NN reduction mm.
Valdes, et al. ( 36), USA 17 patients Lung and head- Statistical similarity Efficiency Enabled efficient 14entlflcatlon of achievable
2017 neck prior plans.
Wu G, etal.(37), . : . Gamma passing Gamma passing rate (1 mm/1%) improved to 89.7
2021 USA 290 patients Multiple sites DL rate 599.6% across sites.
Wu and Zhu ( 28), USA 3 Brain and GA Dose NGA reduced max dose (102.6 - 104.6%) vs.
2001 Cases abdominal conformity manual (105.4 -106.3%).
Xing, etal. (38), USA 120 lung cancer Lung cancer Hierarchically dense U-Net Gamma passing Boosted AAA dose improved gamma passing

2020

patients

rate

rate to 97.6% vs. 87.8%.

Abbreviations: LREG, Logistic Regression; KNN, K-Nearest Neighbors; RF, Random Forest; CNN, convolutional neural network; MC, Monte Carlo; GA, genetic algorithms; OAT,
organ-atrisk; SA-BN, situational awareness Bayesian networks; DL, deep learning; NGA, novel genetic algorithms; AAA, analytical anisotropic algorithm; ADBO, AdaBoost; ADC,
apparent diffusion coefficient; AU-FROC, area under free-response ROC curve; BENB, Bayesian ensemble naive bayes; CG, conjugate gradient; DT, decision tree; EK-NBN, expert
knowledge-naive Bayesian network; GANB, gaussian naive bayes; GS, Gleason score; LSVM, linear support vector machine; NN, neural network; PTV, planning target volume; SGD,
stochastic gradient descent.

5.1.2. Interpretability and Trust

The DL models, particularly convolutional and
transformer-based architectures, are often criticized for

explainable artificial intelligence (XAI) techniques —
such as attention maps, feature attribution, and

their “black-box” nature (42-44). Clinicians may hesitate

to adopt Al-driven dose recommendations without clear

explanations of algorithmic reasoning. Incorporating

uncertainty quantification — can enhance transparency
and foster clinical trust.

5.1.3. Regulatory and Ethical Barriers

Trends Adv Tech Med. 2026;1(1): 167315
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Table 3. Key Challenges and Strategic Responses for Artificial Intelligence Integration in Radiotherapy Dose Calculation

Challenges Strategic Response

Limited data diversity Federated learning, multi-center data sharing

Lack of interpretability Explainable Al, uncertainty modeling

Regulatory ambiguity Joint guidelines from clinical and regulatory bodies

Poor clinical validation Prospective trials, hybrid human-Al workflows

Algorithmic bias Bias detection, fairness-aware training

Workflow disruption Modular integration with existing TPS

Human-machine collaboration Clinician training, collaborative interface design
Abbreviations: Al artificial intelligence; TPS, treatment planning systems.

The regulatory landscape for Al in medicine is still By addressing these challenges through

evolving. Most jurisdictions lack standardized protocols interdisciplinary collaboration, transparent

for validating and approving Al-based dose calculation
tools (45, 46). Ethical concerns also arise regarding data
ownership, informed consent, and accountability for
treatment outcomes. Collaborative efforts between
developers, clinicians, and regulatory bodies are
essential to establish robust guidelines and ethical
safeguards.

5.14. Clinical Validation and Workflow Integration

Despite promising results in silico, few Al models
have undergone rigorous clinical validation or
prospective trials (7, 47). Integration into existing TPS
requires seamless interoperability, user-friendly
interfaces, and minimal disruption to clinical
workflows. Hybrid models that combine Al predictions
with human oversight may offer a pragmatic pathway
toward adoption.

5.1.5. Algorithmic Bias and Robustness

The AI models trained on imbalanced datasets may
inadvertently propagate biases related to age, gender,
ethnicity, or tumor subtype (47-49). Such biases can lead
to inequitable treatment recommendations and
compromise patient safety. Strategies such as bias
auditing, fairness metrics, and inclusive dataset
curation are critical to ensure equitable Al deployment.

5.1.6. Human-Machine Collaboration

The Al should augment — not replace — clinical
expertise. Effective human-machine interaction requires
training clinicians to interpret algorithmic outputs,
recognize limitations, and make informed decisions (7,
50, 51). Decision support systems must be designed to
facilitate collaboration, not automation, preserving the
clinician’s role as the final arbiter of care.

Trends Adv Tech Med. 2026; 1(1): 167315

development, and rigorous validation, Al technologies
can be safely and effectively integrated into
radiotherapy dose calculation. The path forward lies not
only in algorithmic innovation but in thoughtful
system design that respects clinical realities and ethical
imperatives.

5.1.7. Conclusions

The Al has emerged as a transformative force in
radiotherapy dose calculation, offering unprecedented
capabilities in  precision, adaptability, and
computational efficiency. By leveraging diverse
algorithmic families — including ML, DL, RL, Bayesian
models, fuzzy logic, and evolutionary techniques — Al
enables personalized treatment planning, real-time
dose optimization, and enhanced clinical decision
support.

This review synthesized findings from over 160 peer-
reviewed studies, highlighting the comparative
performance of Al models across cancer types and
treatment  modalities. The DL  architectures
demonstrated superior spatial accuracy, while Bayesian
and fuzzy systems offered interpretability and
uncertainty modeling. The RL and evolutionary
algorithms showed promise in adaptive and multi-
objective  planning, albeit with  significant
computational demands.

Despite these advancements, several limitations
persist. Most Al models are trained on institution-
specific datasets, limiting their generalizability. The lack
of external validation and standardized benchmarking
impedes clinical trust and regulatory approval.
Furthermore, the “black-box” nature of many
algorithms raises concerns about transparency and
accountability in high-stakes clinical environments.
Ethical challenges — including data privacy, algorithmic
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bias, and human-machine interaction — must also be
addressed to ensure equitable and safe deployment.

To bridge the gap between innovation and
implementation, future research should prioritize:

- Multi-institutional data sharing and federated
learning frameworks.

- Development of XAI
interpretability.

tools for clinical

- Prospective clinical trials and real-world validation
studies.

- Integration of Al into existing TPS with modular
design.

- Training programs for clinicians to foster effective
human-Al collaboration.

In conclusion, Al-driven dose calculation represents a
paradigm shift in radiation oncology. While the path to
clinical integration is complex, the potential benefits —
improved accuracy, efficiency, and personalization — are
substantial. By addressing current limitations through
interdisciplinary collaboration and ethical innovation,
Al can redefine the future of radiotherapy and
contribute meaningfully to precision cancer care.
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