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Abstract

Context: Accurate radiotherapy dose calculation is critical for optimizing treatment efficacy and minimizing toxicity.

Traditional algorithms, while clinically validated, often struggle with complex anatomical variations and heterogeneous tissue

compositions. Recent advances in artificial intelligence (AI) offer promising alternatives for enhancing dose prediction accuracy

and workflow efficiency.

Objectives: This review aims to critically appraise the current landscape of AI-based radiotherapy dose calculation methods,

comparing their performance, interpretability, and clinical applicability across various algorithmic families.

Methods: A comprehensive literature search was conducted using PubMed, Scopus, and IEEE Xplore databases, focusing on

studies published between 2015 and 2025. Included articles were categorized into six AI domains: Machine learning (ML), deep

learning (DL), reinforcement learning (RL), Bayesian models, fuzzy logic systems, and evolutionary algorithms. Comparative

analysis was performed based on dosimetric accuracy, computational efficiency, explainability, and integration with treatment

planning systems (TPS).

Results: The DL models, particularly convolutional neural networks (CNNs) and transformer-based architectures,

demonstrated superior performance in dose prediction for head and neck, prostate, and lung cancers. The RL approaches

showed potential in adaptive planning scenarios, while Bayesian and fuzzy logic models offered enhanced interpretability.

Evolutionary algorithms were effective in multi-objective optimization but required extensive computational resources.

Despite promising results, most studies lacked external validation and standardized benchmarking.

Conclusions: The AI-driven dose calculation methods represent a transformative shift in radiotherapy planning. However,

challenges remain in clinical translation, including algorithm transparency, regulatory approval, and integration with existing

workflows. Future research should prioritize multi-institutional validation, hybrid model development, and human-AI

collaboration frameworks to ensure safe and effective deployment.

Keywords: Radiotherapy, Dose Calculation, Artificial Intelligence, Deep Learning, Treatment Planning, Clinical Integration

1. Context

Accurate dose calculation is a cornerstone of modern

radiotherapy, directly influencing tumor control and

normal tissue sparing (1). Conventional algorithms such

as Monte Carlo (MC), pencil beam convolution, and the

analytical anisotropic algorithm (AAA) have long served

as clinical standards. However, these methods often

struggle with complex anatomical heterogeneities,

dynamic organ motion, and computational

inefficiencies in adaptive workflows (2-5).

Recent advances in artificial intelligence (AI) have
introduced transformative possibilities for dose

prediction, treatment planning, and quality assurance

(6). The AI encompasses a broad spectrum of
algorithmic families — including machine learning

(ML), deep learning (DL), reinforcement learning (RL),
Bayesian models, fuzzy logic systems, and evolutionary

algorithms — each offering unique strengths in
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modeling nonlinear relationships, learning from large

datasets, and generalizing across patient populations

(7).

In radiotherapy, AI applications have expanded from

image segmentation and contouring to dose

estimation, plan optimization, and toxicity prediction.

Particularly, convolutional neural networks (CNNs),

transformer-based architectures, and hybrid ensemble

models have demonstrated promising results in

predicting three-dimensional (3D) dose distributions

with high spatial fidelity. The RL has shown potential in

adaptive planning scenarios, while Bayesian and fuzzy

logic models offer enhanced interpretability and

uncertainty quantification (8-12), (13-15).

Despite these advances, several challenges hinder

clinical translation. Many AI models lack external
validation, suffer from limited generalizability, and are

often trained on institution-specific datasets (11).

Moreover, explainability remains a critical barrier,

especially in high-stakes clinical decisions where

transparency and accountability are essential (16).
Regulatory frameworks for AI in medicine are still

evolving, and integration with existing treatment

planning systems (TPS) requires robust interoperability

and human-AI collaboration protocols (17).

2. Objectives

This review aims to critically evaluate the current
landscape of AI-based dose calculation methods in

radiotherapy. We categorize and compare six major

algorithmic families — ML, DL, RL, Bayesian, fuzzy, and
evolutionary — based on their dosimetric accuracy,

computational efficiency, interpretability, and clinical
applicability. By synthesizing findings from over 160

peer-reviewed studies, we highlight key trends,

limitations, and future directions for AI integration in
radiotherapy workflows.

Ultimately, this work seeks to bridge the gap between

algorithmic innovation and clinical implementation,

offering a structured roadmap for researchers,

physicists, and oncologists navigating the evolving

intersection of AI and radiation oncology.

3. Methods

This review was conducted through a structured and

comprehensive evaluation of the literature on AI

applications in radiotherapy dose calculation. A multi-

step methodology was employed to ensure scientific

rigor and relevance.

3.1. Literature Search

Databases including PubMed, Scopus, IEEE Xplore,

and Google Scholar were queried for studies published

up to August 3, 2025. Search terms included
combinations of “radiotherapy dose calculation”, “AI in

radiotherapy”, “machine learning”, “deep learning”,
“Bayesian networks”, “fuzzy logic”, and “treatment

planning optimization”. Boolean operators were used to

refine results and capture a broad spectrum of
traditional and AI-based approaches.

3.2. Criteria

3.2.1. Inclusion Criteria

Studies were selected if they (1) focused on

radiotherapy dose calculation or treatment planning,

(2) applied AI techniques such as ML, DL, RL, Bayesian,

fuzzy, or evolutionary algorithms, (3) discussed clinical

applications, challenges, or future directions, and (4)

were published in peer-reviewed journals or reliable

scientific repositories.

3.2.2. Exclusion Criteria

Articles were excluded if they (1) were not in English,

(2) lacked methodological detail, (3) focused solely on

non-radiotherapy AI applications, or (4) were opinion

pieces without any underlying data.

3.3. Data Extraction and Analysis

After removing duplicates, titles and abstracts were

screened for relevance. Full-text reviews were conducted

to assess alignment with the review’s objectives.

Extracted data included algorithm types, dosimetric

performance, clinical integration, and reported

limitations. Studies were categorized into six AI

domains: The ML, DL, RL, Bayesian, fuzzy logic, and

evolutionary algorithms.

3.4. Synthesis Strategy

Findings were synthesized into thematic sections:
Traditional dose calculation methods, AI roles,

algorithmic techniques, challenges, clinical

applications, and future directions. Emphasis was

placed on comparative performance, interpretability,

and clinical feasibility. Citations were retained to ensure

traceability and academic integrity.

3.5. Scope and Coverage

A total of 160 references were included, spanning

experimental studies, technical reports, and systematic
reviews. The selected literature reflects diverse cancer
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types, imaging modalities, and TPS, offering a

panoramic view of AI’s evolving role in radiotherapy.

4. Results

4.1. Comparative Analysis of Artificial Intelligence Models

The AI models for radiotherapy dose calculation span

six major algorithmic families, each offering distinct

advantages in terms of dosimetric accuracy,

computational efficiency, and clinical feasibility. Below

is a comparative synthesis of these approaches and

Table 1 summarizes this section. In Table 1, performance

metrics are synthesized from studies (18-23), (24-28) and

reflect general trends across cancer types and imaging

modalities. Table 2 also shows a summary of key studies

on the applications of AI in radiotherapy dose

calculation and treatment planning.

4.1.1. Machine Learning Models

The ML techniques such as Random Forest (RF),

Support Vector Machines (SVM), Logistic Regression

(LREG), and K-Nearest Neighbors (KNN) have been

widely applied to dose prediction and plan classification

tasks. The RF and SVM models demonstrated robust

performance in identifying organ-at-risk (OAR) dose

thresholds and predicting toxicity outcomes (35-37).

However, their reliance on handcrafted features and

limited scalability to 3D dose maps restrict broader

clinical adoption (18, 19).

4.1.2. Deep Learning Architectures

The CNNs, U-Net variants, and transformer-based

models have shown superior performance in voxel-level

dose prediction. The CNNs trained on computed

tomography (CT) and magnetic resonance imaging

(MRI) datasets achieved high spatial fidelity in head and

neck, prostate, and lung cancer cases. Transformer

models further improved contextual learning and

generalization across institutions. Despite their

accuracy, DL models often lack interpretability and

require large annotated datasets for training (20-23).

4.1.3. Reinforcement Learning Applications

The RL algorithms, particularly Deep Q-Networks

(DQN), have been explored for adaptive planning and

beam angle optimization. These models dynamically

learn optimal dose delivery strategies based on reward

functions tied to tumor coverage and OAR sparing.

While promising, RL approaches remain

computationally intensive and are rarely integrated into

commercial TPS (24).

4.1.4. Bayesian and Fuzzy Logic Systems

Bayesian networks [e.g., Bayesian ensemble naive

bayes (BENB), expert knowledge-naive Bayesian network

(EK-NBN)] and fuzzy logic models offer enhanced

transparency and uncertainty quantification. These

systems are particularly useful in scenarios with

incomplete data or ambiguous clinical inputs.

Situational awareness Bayesian networks (SA-BN) have

been applied to decision support in dose escalation

protocols. Although interpretable, these models often

underperform in high-dimensional imaging contexts

(25, 26).

4.1.5. Evolutionary Algorithms

Genetic algorithms (GA), particle swarm

optimization (PSO), and novel genetic algorithms (NGA)

have been employed for multi-objective dose

optimization. These methods excel in exploring large

solution spaces and balancing trade-offs between tumor

coverage and normal tissue sparing. However, they

require extensive computational resources and are

sensitive to parameter tuning (27, 28).

5. Discussion

5.1. Challenges and Strategic Considerations

While AI has demonstrated remarkable potential in

radiotherapy dose calculation, its clinical integration

remains constrained by several technical, ethical, and

operational challenges. This section synthesizes key

limitations and proposes strategic considerations for

future implementation. A summary of key studies on AI

applications in radiotherapy dose calculation and

treatment planning is shown in Table 3.

5.1.1. Data Quality and Generalizability

The AI models require large, diverse, and high-quality

datasets for training and validation. However,

radiotherapy datasets often suffer from institutional

bias, limited sample sizes, and inconsistent annotation

standards (39-41). These limitations hinder model

generalizability across patient populations, tumor

types, and imaging modalities. Multi-institutional data

sharing frameworks and federated learning approaches

may help mitigate these issues while preserving patient

privacy.
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Table 1. Performance Comparison of Machine Learning, Deep Learning, and Other Artificial Intelligence Models in Clinical Dose Prediction

Algorithm Types Accuracy Interpretability Clinical Integration Computational Cost

ML (RF, SVM) Moderate Moderate Moderate Low

DL (CNN, transformer) High Low Emerging High

RL (DQN) High Low Limited Very high

Bayesian/fuzzy Moderate High Moderate Moderate

Evolutionary High Moderate Experimental High

Abbreviations: ML, machine learning; RF, Random Forest; SVM, Support Vector Machines; DL, deep learning; CNN, convolutional neural network; RL, reinforcement learning;
DQN, Deep Q-Networks.

Table 2. Summary of Key Studies on Artificial Intelligence Applications in Radiotherapy Dose Calculation and Treatment Planning

Author(s), y Countries Sample Disease Algorithm Evaluation
Method

Result

Abdollahi, et al.
( 29), 2019

Iran 33 prostate
cancer patients

Prostate cancer LSVM, LREG, BENB, SGD,
KNN, DT, RF, ADBO, GANB

Tenfold cross-
validation

Post-T2 models predictive (AUC: 0.632); GS
prediction higher with T2 (AUC: 0.739) vs. ADC

(AUC: 0.70).

Bai, et al. ( 6), 2021 USA 199 prostate
patients

Prostate cancer Lightweight CNN Time Denoiser runs in 39 ms vs. 454 ms, 11.6x faster;
completes MC dose in ~0.15 s.

Jalalimanesh, et al.
( 30), 2017

Iran - Vascular tumor Distributed Q-learning Simulation Robust solutions for treatment plans under
varying conditions.

Kalendralis, et al.
( 31), 2021 Netherlands 5238 patients - Bayesian network AUC

AUC: 67.8% overall; 90.4% for table angle errors,
54.5% for PTV errors.

Leszczynski, et al.
( 32), 1999 Canada

328 breast
images Breast cancer Fuzzy k-NN Correlation High agreement with expert (correlation 0.89).

Li, et al. ( 33), 2004 China 3 phantom cases Prostate cancer GA, CG Time Optimal angles found in < 5 min (cases A, B), 13 -
36 min (case C, spine, prostate).

Li and Lei ( 34), 2010 China
Simulated and

chest tumor
Oropharyngeal

tumor GA Iterations
DNA-GA optimized in 20 iterations vs. 45 for GA;

improved OAR sparing.

Luo, et al. ( 25), 2021 USA
118 lung cancer

patients Lung cancer SA-BN, EK-NBN AU-FROC
SA-BN improved prediction (AU-FROC: 0.83) vs.

EK-NBN (0.70).

Patnaikuni, et al.
( 35), 2022

India - Prostate cancer Two-level fuzzy logic Qualitative
assessment

Acceptable rectal risk estimation without
compromising tumor coverage.

Sher, et al. ( 17), 2021 USA 50 patients
Head and neck

cancer Decision tree Dose reduction
Hybrid directive reduced OAR doses by 4.3-16 Gy

vs. physician directive.

Torshabi ( 26), 2022 Iran
Real patient

data - Fuzzy logic, NN
Setup error
reduction

Setup error reduced from 1.47 mm to 0.4432
mm.

Valdes, et al. ( 36),
2017

USA 17 patients Lung and head-
neck

Statistical similarity Efficiency Enabled efficient identification of achievable
prior plans.

Wu C, et al. ( 37),
2021

USA 290 patients Multiple sites DL Gamma passing
rate

Gamma passing rate (1 mm/1%) improved to 89.7
- 99.6% across sites.

Wu and Zhu ( 28),
2001 USA 3 cases

Brain and
abdominal GA

Dose
conformity

NGA reduced max dose (102.6 - 104.6%) vs.
manual (105.4 - 106.3%).

Xing, et al. ( 38),
2020

USA 120 lung cancer
patients

Lung cancer Hierarchically dense U-Net Gamma passing
rate

Boosted AAA dose improved gamma passing
rate to 97.6% vs. 87.8%.

Abbreviations: LREG, Logistic Regression; KNN, K-Nearest Neighbors; RF, Random Forest; CNN, convolutional neural network; MC, Monte Carlo; GA, genetic algorithms; OAT,
organ-at-risk; SA-BN, situational awareness Bayesian networks; DL, deep learning; NGA, novel genetic algorithms; AAA, analytical anisotropic algorithm; ADBO, AdaBoost; ADC,
apparent diffusion coefficient; AU-FROC, area under free-response ROC curve; BENB, Bayesian ensemble naive bayes; CG, conjugate gradient; DT, decision tree; EK-NBN, expert
knowledge-naive Bayesian network; GANB, gaussian naive bayes; GS, Gleason score; LSVM, linear support vector machine; NN, neural network; PTV, planning target volume; SGD,
stochastic gradient descent.

5.1.2. Interpretability and Trust

The DL models, particularly convolutional and

transformer-based architectures, are often criticized for

their “black-box” nature (42-44). Clinicians may hesitate

to adopt AI-driven dose recommendations without clear

explanations of algorithmic reasoning. Incorporating

explainable artificial intelligence (XAI) techniques —

such as attention maps, feature attribution, and

uncertainty quantification — can enhance transparency

and foster clinical trust.

5.1.3. Regulatory and Ethical Barriers
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Table 3. Key Challenges and Strategic Responses for Artificial Intelligence Integration in Radiotherapy Dose Calculation

Challenges Strategic Response

Limited data diversity Federated learning, multi-center data sharing

Lack of interpretability Explainable AI, uncertainty modeling

Regulatory ambiguity Joint guidelines from clinical and regulatory bodies

Poor clinical validation Prospective trials, hybrid human-AI workflows

Algorithmic bias Bias detection, fairness-aware training

Workflow disruption Modular integration with existing TPS

Human-machine collaboration Clinician training, collaborative interface design

Abbreviations: AI, artificial intelligence; TPS, treatment planning systems.

The regulatory landscape for AI in medicine is still
evolving. Most jurisdictions lack standardized protocols

for validating and approving AI-based dose calculation

tools (45, 46). Ethical concerns also arise regarding data
ownership, informed consent, and accountability for

treatment outcomes. Collaborative efforts between
developers, clinicians, and regulatory bodies are

essential to establish robust guidelines and ethical

safeguards.

5.1.4. Clinical Validation and Workflow Integration

Despite promising results in silico, few AI models

have undergone rigorous clinical validation or

prospective trials (7, 47). Integration into existing TPS
requires seamless interoperability, user-friendly

interfaces, and minimal disruption to clinical
workflows. Hybrid models that combine AI predictions

with human oversight may offer a pragmatic pathway

toward adoption.

5.1.5. Algorithmic Bias and Robustness

The AI models trained on imbalanced datasets may

inadvertently propagate biases related to age, gender,

ethnicity, or tumor subtype (47-49). Such biases can lead
to inequitable treatment recommendations and

compromise patient safety. Strategies such as bias

auditing, fairness metrics, and inclusive dataset

curation are critical to ensure equitable AI deployment.

5.1.6. Human-Machine Collaboration

The AI should augment — not replace — clinical

expertise. Effective human-machine interaction requires

training clinicians to interpret algorithmic outputs,

recognize limitations, and make informed decisions (7,

50, 51). Decision support systems must be designed to

facilitate collaboration, not automation, preserving the

clinician’s role as the final arbiter of care.

By addressing these challenges through
interdisciplinary collaboration, transparent

development, and rigorous validation, AI technologies

can be safely and effectively integrated into
radiotherapy dose calculation. The path forward lies not

only in algorithmic innovation but in thoughtful
system design that respects clinical realities and ethical

imperatives.

5.1.7. Conclusions

The AI has emerged as a transformative force in
radiotherapy dose calculation, offering unprecedented

capabilities in precision, adaptability, and

computational efficiency. By leveraging diverse
algorithmic families — including ML, DL, RL, Bayesian

models, fuzzy logic, and evolutionary techniques — AI
enables personalized treatment planning, real-time

dose optimization, and enhanced clinical decision

support.

This review synthesized findings from over 160 peer-

reviewed studies, highlighting the comparative

performance of AI models across cancer types and

treatment modalities. The DL architectures

demonstrated superior spatial accuracy, while Bayesian

and fuzzy systems offered interpretability and

uncertainty modeling. The RL and evolutionary

algorithms showed promise in adaptive and multi-

objective planning, albeit with significant

computational demands.

Despite these advancements, several limitations

persist. Most AI models are trained on institution-

specific datasets, limiting their generalizability. The lack

of external validation and standardized benchmarking

impedes clinical trust and regulatory approval.

Furthermore, the “black-box” nature of many

algorithms raises concerns about transparency and

accountability in high-stakes clinical environments.

Ethical challenges — including data privacy, algorithmic
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bias, and human-machine interaction — must also be

addressed to ensure equitable and safe deployment.

To bridge the gap between innovation and

implementation, future research should prioritize:

- Multi-institutional data sharing and federated

learning frameworks.

- Development of XAI tools for clinical

interpretability.

- Prospective clinical trials and real-world validation

studies.

- Integration of AI into existing TPS with modular

design.

- Training programs for clinicians to foster effective

human-AI collaboration.

In conclusion, AI-driven dose calculation represents a

paradigm shift in radiation oncology. While the path to

clinical integration is complex, the potential benefits —

improved accuracy, efficiency, and personalization — are

substantial. By addressing current limitations through

interdisciplinary collaboration and ethical innovation,

AI can redefine the future of radiotherapy and

contribute meaningfully to precision cancer care.
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