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Abstract

Background: Congenital disorders of glycosylation (CDG) encompass a broad spectrum of rare inborn errors of metabolism

(IEMs), resulting in defective glycosylation of various proteins and/or lipids. PMM2-CDG is the most prevalent subtype of CDG,

characterized by gene mutations leading to deficiency of the phosphomannomutase 2 (PMM2) enzyme. This research identified

two Iranian patients from a consanguineous family with multiple organ dysfunctions, diagnosed with PMM2-CDG due to a

pathogenic variant in the PMM2 gene. The study underscores the importance of identifying specific variants in different ethnic

groups for effective genetic counseling for this disorder.

Methods: The study utilized exome sequencing (ES) to identify pathogenic variants. Verification of the potential variant in

affected siblings, along with segregation analysis involving the parents, affected individuals, and healthy siblings of the family,

was performed using Sanger sequencing. Interpretation of the variant was informed by multiple in silico analysis tools, as well

as by adhering to the guidelines set forth by the American College of Medical Genetics and Genomics (ACMG) and the

Association for Molecular Pathology (AMP).

Results:   In the genomic investigations of the two brothers with intellectual disability (ID) and progressive movement

disability, the NM_000303.3:c.647A > T (NP_000294.1:p.Asn216Ile) homozygous variant in the PMM2 gene was identified. The

variant was confirmed in the affected and other family members by segregation analysis. Multiple in silico tools supported the

pathogenic classification of the identified variant.

Conclusions: The findings provide broader insight into variants within the PMM2 gene and offer a thorough characterization

of the phenotype related to this specific variant. The data have important applications for genetic diagnosis and counseling in

relevant clinical contexts, as well as for identifying common gene variants associated with various ethnic groups. Additionally,

this information could serve as a valuable resource in guiding therapeutic interventions.
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1. Background

Congenital disorders of glycosylation (CDG) are a

large class of rare inborn errors of metabolism (IEMs) in
which glycosylation of a variety of tissue proteins

and/or lipids is deficient. They are also recognized as

carbohydrate-deficient glycoprotein syndromes (CDG
syndromes). CDG can cause often severe and sometimes

fatal dysfunctions of several different organ systems,

particularly the nervous system, muscles, and intestines
in affected infants (1). Jaeken et al. first described CDG in

1980 (2). These disorders are classified according to the
incorrect glycosylation of biomolecules, including

proteins, lipids, or glycosylphosphatidylinositol.

Therefore, subdivisions of CDG are as follows: (A)
Disorders related to protein N-glycosylation (type I and
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II), (B) Disorders associated with protein O-

glycosylation, (C) Disorders pertaining to

glycosphingolipid and GPI-anchor glycosylation, and (D)
Disorders affecting multiple glycosylation and other

pathways.

Protein glycosylation occurs in two main ways: N-

glycosylation involves the assembly of glycans in the

endoplasmic reticulum membrane and their

subsequent attachment to the nitrogen (N-) group of

asparagine residues, while O-glycosylation involves the

attachment of sugars to the hydroxyl (O-) groups of

serine or threonine. Disorders of N-glycosylation are

widely recognized as the most prevalent types of CDG.

These can be categorized into two subtypes: (A) defects

of oligosaccharide assembly and transfer, and (B)

defects in oligosaccharide trimming and processing

that occur after they are bound to proteins (3). Over 160

various types of CDG have been discovered so far (1).

Recently, Jaeken et al. developed a classification

pattern for naming types of CDG. This pattern involves

using the official abbreviation of the abnormal gene
followed by a dash and CDG to name each type of CDG

(4, 5), such as PMM2-CDG, which is formally known as

CDG-Ia, the most common subtype of CDG, in which the

PMM2 gene defect causes loss of phosphomannomutase

2 (PMM2) enzyme that is responsible for the conversion
of mannose-6-phosphate into mannose-1-phosphate (6).

The majority of CDG exhibit autosomal recessive

inheritance patterns and are known for their wide-

ranging multisystem impact. This can include

developmental disabilities, hypotonia with involvement
of multiple organ systems, as well as symptoms such as

hypoglycemia and protein-losing enteropathy (7, 8).

CDG are attributed to a deficiency or absence of

specific enzymes or proteins crucial for synthesizing

glycans, as well as their interactions with other proteins

or lipids during glycosylation. The process of
glycosylation is extensive and intricate, involving the

modification of numerous proteins. This process

engages hundreds of distinct genes and specific

enzymes (3). Typical symptoms may indicate

recognition of a CDG, a comprehensive patient history,
and a thorough clinical assessment. Several specialized

tests may be required to confirm a CDG diagnosis and
identify the specific subtype. Due to the wide-ranging

clinical manifestations observed in CDG patients, it is

advised to thoroughly explore and eliminate any
unexplained syndromes that involve multiple bodily

systems (9). Exome sequencing (ES) is rapidly becoming
an early test of an individual’s DNA when physicians

suspect a genetic abnormality (3).

In the current study, two patients with multiple

organ dysfunctions belonging to an Iranian

consanguineous family were identified as PMM2-CDG.
The study identified a pathogenic variant in the Sistan

and Balouchestan province of Iran (Balouch ethnicity).
It is essential to recognize pathogenic variants across

various ethnicities to ensure effective genetic

counseling for affected families.

2. Methods

2.1. Family Recruitment and DNA Extraction

The study was approved by the Ethics Committee of

Isfahan University of Medical Sciences, Isfahan, Iran

(IR.MUI.MED.REC.1400.042). Two siblings exhibiting

severe intellectual disabilities were identified from a

consanguineous family residing in the Sistan and

Balouchestan province of Iran, belonging to the Balouch

ethnic group. Genetic counseling was provided, and

family pedigrees were constructed utilizing the Progeny

Software. A detailed medical history was acquired, and

informed written consent was obtained from the legal

guardian prior to the collection of peripheral blood

samples. DNA extraction was performed using the DNSol

Miniprep Kit from ROJETECHNOLOGIES, Tehran, Iran.

2.2. Molecular Investigations

Exome sequencing was conducted utilizing the

NovaSeq 6000 platform (Illumina, San Diego, CA, USA)

by the 3billion Inc. research team in Seoul, South Korea.

This advanced sequencing technology facilitated the

generation of high-quality sequence data, which were

subsequently aligned to the Genome Reference

Consortium Human Build 37 (GRCh37) and the revised

Cambridge Reference Sequence (rCRS) of the

mitochondrial genome. The alignment process ensured

that the sequenced bases were accurately mapped to the

reference genomes, thereby allowing for a

comprehensive analysis of genetic variants present in

the exome. All variants were analyzed using the

EVIDENCE software for interpretation (10) and

prioritization. This analysis followed the guidelines

established by the American College of Medical Genetics

and Genomics (ACMG) and the Association for Molecular

Pathology (AMP), ensuring a standardized and rigorous

approach to the interpretation of genetic variants (11).

During the process of genetic counseling, relevant

family history and prior clinical assessments were

thoroughly reviewed, and clinically significant variants

pertinent to the patient's primary clinical conditions

were duly considered.
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Table 1. The Primers Used to Confirm the Pathogenic Variant by Sanger Sequencing and Co-Segregation Analysis.

Primer Name Sequence (5’→3’) Product Size

F-PMM2 TCCAGGGTCACATCAGCAAT
470 bp

R-PMM2 GCCAAAACTACATGATTGCACG

The suspected genetic variant was confirmed by

Sanger sequencing, and co-segregation analysis was

conducted on both affected and unaffected family

members. Specific primers for the variant were designed

with the Primer3 online tool (Primer3web, version 4.1.0)

and validated through additional online tools,

including Primer-BLAST (12) and MFEprimer3.1 (13). The

primer sequences used in this study are provided in

Table 1.

2.3. In Silico Analysis

We utilized the Phyre2 Web Server to model the three-

dimensional (3D) structure of the proteins and selected

the highest quality model for subsequent analysis.

Visualization, mutagenesis, and structural analysis were

performed using PyMOL software (Version 2.2.3,

Schrodinger, LLC.). Population allele frequency analysis

was conducted using the Genome Aggregation Database

(gnomAD v2.1.1). The variants' potential pathogenicity

was evaluated by utilizing the following prediction

tools: FATHMM and FATHMM-MKL (Functional Analysis

through Hidden Markov Models, v2.3), LIST-S2, M-CAP

(Mendelian Clinically Applicable Pathogenicity),

Mutation Assessor, MutPred, PROVEAN (PROVEAN scores,

v1.1), SIFT (Scale-Invariant Feature Transform) and SIFT4G,

EIGEN and EIGENPC, BayesDel (addAF and noAF), MetaLR

(e!Ensembl), MetaRNN, REVEL (Rare Exome Variant

Ensemble Learner, e! Ensembl), DEOGEN2, and

MetaSVM_score (the support vector machine (SVM)

based on ensemble prediction score).

3. Results

3.1. Clinical Findings

The proband (Figure 1) is an 18-year-old boy with

severe intellectual disability (ID) and progressive

movement disability. He experienced developmental

delay (DD) and speech problems. He presents with a

progressive movement disability and ataxia and cannot

stand without assistance. He has facial features

reminiscent of fragile X syndrome, including a long,

thin face, prominent ears, prominent lips, and a broad

nasal tip. He was previously molecularly tested for

fragile X syndrome using Southern blot analysis, which

resulted in a normal number (“28”) of CGG trinucleotide

repeats in the FMR1 gene. His cytogenetic karyotyping

showed a normal set of chromosomes, as 46, XY,

consistent with an apparently normal male.

Brain magnetic resonance imaging (MRI) revealed

normal size of cerebral ventricles and sulci, normal

signal intensity of the cortex and white matter, no
abnormality in the basal ganglia, internal capsule,

corpus callosum, and thalamus, average signal intensity
of brainstem and cerebellum, normal sella and

pituitary, normal cerebellopontine angle area on each

side, standard width of the internal acoustic meatus,
normal development and pneumatization in paranasal

sinuses and mastoid air cells, unremarkable orbital
contents, and parasellar structures.

He has a younger brother, aged nine, with similar

conditions, suffering from ID, DD, progressive

movement disability, ataxia, and inability to stand or

walk. They are the children of consanguineous parents.

There is a family history of ID, movement disorder,

seizure, ataxia, and abortions in the pedigree (Figure 1).

3.2. Molecular and In Silico Findings

Exome sequencing identified a deleterious

homozygous variant in NM_000303.3 (PMM2):c.647A>T

related to CDG disorders. The suspected genetic variant
was confirmed by Sanger sequencing (Figure 2), and co-

segregation analysis was conducted. Table 2 lists the in

silico findings regarding the identified variant. Based on

ACMG and AMP (11) guidelines for variant interpretation,

the identified variant meets the PP5, PM5, PP3, PM1, PM2,
and PP1 criteria and has therefore been classified as a

pathogenic variant.

A structural modeling study showed that the

p.Asn216Ile mutation causes the loss of hydrogen bonds

between asparagine 216 and lysine 189, which may affect

the protein's structure and function (Figure 3).

4. Discussion

Various disorders and symptoms are included in

CDG, and the severity and prognosis vary significantly

based on the specific type of CDG, even among

individuals with the same type or within the same

family. Additionally, most CDG types have only been
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Figure 1. The pedigree of the studied family. An arrow points to the proband, and other affected members are shown with their apparent symptoms. Red: Intellectual Disability
(ID), Blue: Movement Disorder, Green: Seizures, Yellow: Ataxia.

Figure 2. Electropherograms of the involved sequences of the identified variant. Parents were heterozygotes for the identified variant, and two affected siblings showed
homozygosity, confirming the variant in the family.

identified in a small number of individuals, making it
difficult for clinicians to develop a comprehensive

understanding of the related symptoms and long-term
outlook. These conditions generally become apparent

https://brieflands.com/journals/zjrms/articles/167519
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Table 2.  Genomic and Bioinformatic Results of the Identified Pathogenic Gene/Variant

Gene PMM2

Variant genomic position      16-8941588-A-T (GRCh37)

Variant cDNA position NM_000303.3:c.647A>T

Variant protein change NP_000294.1:p.Asn216Ile

Zygosity                    Homozygous

Type of mutation        Missense

Allele frequency in gnomAD exome    Not applicable

Allele frequency in gnomAD genome Not applicable

Bioinformatics tools showing damaging results
MetaLR, MetaRNN, BayesDel addAF, BayesDel noAF, MetaSVM, REVEL, DEOGEN2,
MutPred, EIGEN, FATHMM, LIST-S2, M-CAP, Mutation Assessor, PROVEAN, EIGEN PC,
FATHMM-MKL, LRT, SIFT, SIFT4G

Figure 3. Structure modeling of the identified variant. It shows that p.Asn216Ile causes the loss of hydrogen bonds between asparagine 216 and lysine 189, leading to abnormality
in the protein's structure and function.

during infancy (7).

This study identified a causative variant in the PMM2

gene related to PMM2-CDG in two siblings from a

consanguineous family. The PMM2 gene encodes an

enzyme called PMM2, which is involved in glycosylation

and attaches groups of oligosaccharides to proteins. The

process of glycosylation enhances the functional

diversity of proteins. Mutations in the PMM2 gene lead

to the production of an aberrant PMM2 enzyme with

decreased activity, causing the generation of improper

oligosaccharides that are attached to proteins. PMM2-

CDG manifests a wide array of signs and symptoms,
including but not limited to developmental delays,

seizures, failure to thrive, and various organ

dysfunctions. This diverse clinical presentation is

believed to be attributable to the abnormal

glycosylation of proteins, affecting multiple organs and
tissues throughout the body (6).

Over 100 pathogenic gene variants have been

documented to be associated with PMM2-CDG

worldwide. About 80% of these variants are missense

mutations, according to the Human Gene Mutation

https://brieflands.com/journals/zjrms/articles/167519
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Database (HGMD). The R141H variant is noteworthy due

to its high prevalence among PMM2-CDG patients

globally. In contrast, other mutations, such as D65Y, are

restricted to specific ethnic or geographical

populations, being found exclusively in individuals of

Iberian ancestry (14), and 26G>A (five alleles) and

548T>C (seven alleles) variants, which were found only

in Scandinavian families (15). As in other Caucasian

populations, p.R141H was the most frequent mutation

(16). The identified variant (NM_000303.3:c.647A>T

(NP_000294.1:p.Asn216Ile)) is located on exon 8 of 8 (the

longest exon) of the PMM2 gene in the homozygous

state (17). It was previously reported in 1997 by Matthijs

et al. (18) as a compound heterozygous variant leading

to CDG. Bjursell et al. also reported another pathogenic

alternative variant in the same codon, causing different

amino acid residues related to CDG (15).

PMM2-CDG, the most prevalent type of congenital

disorder of glycosylation, has over 1000 cases reported

worldwide (19). Patients diagnosed with this condition

exhibit a diverse constellation of clinical symptoms,

which can vary significantly in presentation and

severity. These symptoms often encompass a range of

physiological and developmental challenges, reflecting

the complex nature of the disorder. Mutations in the

PMM2 gene can give rise to a spectrum of phenotypes

that range from mild to severe. In some cases, these

mutations may lead to critical complications that result

in neonatal death (20). In almost all patients, the

nervous system is impacted (21), with symptoms

ranging from an inability to walk to a lack of speech,

poor comprehension, autistic features, and mild ID (22).

PMM2-CDG is associated with a range of clinical

manifestations, including failure to thrive,

gastrointestinal symptoms, hypotonia, developmental

delay, cerebellar atrophy, epilepsy, strabismus, and other

movement disorders. Patients may also experience liver

disease and coagulopathy, pericardial effusion,

endocrinological manifestations such as

hypothyroidism and hypogonadotropic hypogonadism,

as well as complications such as osteopenia and

lipodystrophy (22). Severe forms of PMM2-CDG can be

fatal in the first years of life, with a global mortality rate

of up to 20% during this period (22).

In 2003, Neumann et al. (23) reported the first case of

homozygosity for the 647A>T (N216I) variant of the

PMM2 gene with CDG who developed postnatal

macrosomia with an increase in weight, length, and

occipitofrontal circumference (OFC) above the 95th

percentile within his first year of life. In contrast to

other CDG patients, the child did not have abnormal fat

pads or inverted nipples, but unusual eyebrows were

present (23). The currently studied patients, who are

products of consanguineous marriage, exhibit severe ID

with progressive movement disability, developmental

delay, speech problems, ataxia, and strabismus. These

symptoms are consistent with previous studies (24-27);

they did not have a history of macrosomia, but some

facial features, including a long thin face, prominent

ears, prominent lips, and a broad nasal tip, which were

not noted previously, have been presented.

4.1. Conclusions

The findings provide broader insight into variants

within the PMM2 gene and offer a thorough

characterization of the phenotype related to this

specific variant. The data have important applications

for genetic diagnosis and counseling in relevant clinical

contexts, as well as for identifying common gene

variants associated with various ethnic groups.

Additionally, this information could serve as a valuable

resource in guiding therapeutic interventions.
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