Logo

Improvement of the Performance of Microbial Fuel Cells by Using a Graphite Plate Electrode Modified with Nickel for the Removal of Organic Matter from Wastewater and Simultaneous Bioelectricity Generation

Author(s):
Fatemeh MahmoodzadehFatemeh Mahmoodzadeh1, Nahid NavidjouyNahid NavidjouyNahid Navidjouy ORCID2, 3,*, Saber AlizadehSaber Alizadeh4, Mostafa RahimnejadMostafa RahimnejadMostafa Rahimnejad ORCID5
1Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran MSc in Environmental Health Engineering, Department of Environmental Health Engineering, School of Public Health, Urmia University of Medical Sciences, Urmia, Iran
2Social Determinants of Health Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, Iran
3Assistant Professor, Department of Environmental Health Engineering, School of Public Health, Urmia University of Medical Sciences, Urmia, Iran
4PhD in Analytical Chemistry, Faculty of Chemistry, Bu-Ali-Sina University, Hamedan, Iran
5Professor, Biofuel and Renewable Energy Research Center, Department of Chemical Engineering, Babol Noshirvani University of Technology, Babol, Iran

Koomesh:Vol. 27, issue 3; e154751
Published online:Jul 02, 2025
Article type:Research Article
How to Cite:Mahmoodzadeh F, Navidjouy N, Alizadeh S, Rahimnejad M. Improvement of the Performance of Microbial Fuel Cells by Using a Graphite Plate Electrode Modified with Nickel for the Removal of Organic Matter from Wastewater and Simultaneous Bioelectricity Generation.koomesh.2025;27(3):e154751.https://doi.org/10.69107/koomesh-154751.

Abstract

References

  • 1.
    1. Tsai H-Y, Hsu W-H, Huang Y-C, Kim JH. Characterization of Carbon Nanotube/Graphene on Carbon Cloth as an Electrode for Air‐Cathode Microbial Fuel Cells. J Nanomaterials. 2015;2015(1). https://doi.org/10.1155/2015/686891.
  • 2.
    2. Du Z, Li H, Gu T. A state of the art review on microbial fuel cells: A promising technology for wastewater treatment and bioenergy. Biotechnol Adv. 2007;25(5):464-82. [PubMed ID:17582720]. https://doi.org/10.1016/j.biotechadv.2007.05.004.
  • 3.
    3. Wang X, Feng YJ, Lee H. Electricity production from beer brewery wastewater using single chamber microbial fuel cell. Water Sci Technol. 2008;57(7):1117-21. [PubMed ID:18441441]. https://doi.org/10.2166/wst.2008.064.
  • 4.
    4. Kelly PT, He Z. Understanding the application niche of microbial fuel cells in a cheese wastewater treatment process. Bioresour Technol. 2014;157:154-60. [PubMed ID:24549237]. https://doi.org/10.1016/j.biortech.2014.01.085.
  • 5.
    5. Gupta S, Mittal Y, Tamta P, Srivastava P, Yadav AK. 4 - Textile wastewater treatment using microbial fuel cell and coupled technology: a green approach for detoxification and bioelectricity generation. In: Abbassi R, Yadav AK, Khan F, Garaniya V, editors. Integrated Microbial Fuel Cells for Wastewater Treatment. Oxford, England: Butterworth-Heinemann; 2020. p. 73-92.
  • 6.
    6. Thapa BS, Pandit S, Patwardhan SB, Tripathi S, Mathuriya AS, Gupta PK, et al. Application of Microbial Fuel Cell (MFC) for Pharmaceutical Wastewater Treatment: An Overview and Future Perspectives. Sustainability. 2022;14(14). https://doi.org/10.3390/su14148379.
  • 7.
    7. Molognoni D, Chiarolla S, Cecconet D, Callegari A, Capodaglio AG. Industrial wastewater treatment with a bioelectrochemical process: assessment of depuration efficiency and energy production. Water Sci Technol. 2018;77(1-2):134-44. [PubMed ID:29339612]. https://doi.org/10.2166/wst.2017.532.
  • 8.
    8. Brunschweiger S, Hofmann T, Glas K. Industrial wastewater treatment with simultaneous energy recovery using microbial fuel cells–a review. Brewing Sci. 2020;73.
  • 9.
    9. Navidjouy N, Soltani F, Rahimnejad M. Chapter 12 - Application of biological fuel cell in wastewater treatment. In: Rahimnejad M, editor. Biological Fuel Cells: Elsevier; 2023. p. 301-20.
  • 10.
    10. Navidjouy N, Soltani F, Rahimnejad M. Application of biological fuel cell in wastewater treatment. In: Rahimnejad M, editor. Biological Fuel Cells: Fundamental to Applications. Amsterdam, Netherlands: Elsevier Science; 2023. p. 301-20.
  • 11.
    11. Soltani F, Navidjouy N, Khorsandi H, Alizadeh S, Rahimnejad M. [Tetracycline Removal from Wastewater and Electricity Generation in Microbial Electro-Fenton System in Different Electrical Circuit Conditions]. J Mazandaran Univ Med Sci. 2022;32(208):123-34. Persian.
  • 12.
    12. Dehghani S, Moghiseh Z, Mohebrad B. [Performance of bioelectrochemical process using steel wool and carbon cloth electrodes to remove phenol in the aquatic environment]. Koomesh. 2016;18(3):380-7. Persian.
  • 13.
    13. Zhong D, Liao X, Liu Y, Zhong N, Xu Y. Enhanced electricity generation performance and dye wastewater degradation of microbial fuel cell by using a petaline NiO@ polyaniline-carbon felt anode. Bioresour Technol. 2018;258:125-34. [PubMed ID:29524687]. https://doi.org/10.1016/j.biortech.2018.01.117.
  • 14.
    14. Hindatu Y, Annuar MSM, Gumel AM. Mini-review: Anode modification for improved performance of microbial fuel cell. Renewable Sustainable Energy Rev. 2017;73:236-48. https://doi.org/10.1016/j.rser.2017.01.138.
  • 15.
    15. Yu F, Wang C, Ma J. Applications of Graphene-Modified Electrodes in Microbial Fuel Cells. Materials (Basel). 2016;9(10). [PubMed ID:28773929]. [PubMed Central ID:PMC5456629]. https://doi.org/10.3390/ma9100807.
  • 16.
    16. Choi Y-J, Mohamed HO, Park S-G, Al Mayyahi RB, Al-Dhaifallah M, Rezk H, et al. Electrophoretically fabricated nickel/nickel oxides as cost effective nanocatalysts for the oxygen reduction reaction in air-cathode microbial fuel cell. Int J Hydrogen Energy. 2020;45(10):5960-70. https://doi.org/10.1016/j.ijhydene.2019.05.091.
  • 17.
    17. Satar I, Daud WRW, Kim BH, Somalu MR, Ghasemi M, Bakar MHA, et al. Performance of titanium–nickel (Ti/Ni) and graphite felt-nickel (GF/Ni) electrodeposited by Ni as alternative cathodes for microbial fuel cells. J Taiwan Institute Chem Engin. 2018;89:67-76. https://doi.org/10.1016/j.jtice.2018.04.010.
  • 18.
    18. Pattanayak P, Papiya F, kumar V, Pramanik N, Kundu PP. Deposition of Ni–NiO nanoparticles on the reduced graphene oxide filled polypyrrole: evaluation as cathode catalyst in microbial fuel cells. Sustainable Energy Fuels. 2019;3(7):1808-26. https://doi.org/10.1039/c9se00055k.
  • 19.
    19. Liu J, Vipulanandan C. Effects of Fe, Ni, and Fe/Ni metallic nanoparticles on power production and biosurfactant production from used vegetable oil in the anode chamber of a microbial fuel cell. Waste Manag. 2017;66:169-77. [PubMed ID:28404510]. https://doi.org/10.1016/j.wasman.2017.04.004.
  • 20.
    20. Tahir K, Miran W, Jang J, Maile N, Shahzad A, Moztahida M, et al. Nickel ferrite/MXene-coated carbon felt anodes for enhanced microbial fuel cell performance. Chemosphere. 2021;268:128784. [PubMed ID:33131741]. https://doi.org/10.1016/j.chemosphere.2020.128784.
  • 21.
    21. Rahmani AR, Navidjouy N, Rahimnejad M, Nematollahi D, Leili M, Samarghandi MR, et al. Application of the eco-friendly bio-anode for ammonium removal and power generation from wastewater in bio-electrochemical systems. J Cleaner Prod. 2020;243. https://doi.org/10.1016/j.jclepro.2019.118589.
  • 22.
    22. Yavari Z, Tashauoei H, Naddafi K, Izanloo H, Khazae M, Mahmoodian M. [Electricity Generation from Synthetic Wastewater Treatment in Microbial Fuel Cell]. Qom Univ Med Sci J. 2013;6(4). Persian.
  • 23.
    23. Soltani F, Navidjouy N, Khorsandi H, Rahimnejad M, Alizadeh S. A novel bio-electro-Fenton system with dual application for the catalytic degradation of tetracycline antibiotic in wastewater and bioelectricity generation. RSC Adv. 2021;11(44):27160-73. [PubMed ID:35480664]. [PubMed Central ID:PMC9037666]. https://doi.org/10.1039/d1ra04584a.
  • 24.
    24. Rashadi F, Navidjouy N, Aghapour AA, Rahimnejad M. [Application of dual chamber microbial fuel cell with aeration cathode for bioelectricity generation and simultaneous industrial wastewater treatment]. Iran J Health Environ. 2021;14(3):473-86. Persian.
  • 25.
    25. Li N, Liu L, Yang F. Power generation enhanced by a polyaniline–phytic acid modified filter electrode integrating microbial fuel cell with membrane bioreactor. Separation Purification Technol. 2014;132:213-7. https://doi.org/10.1016/j.seppur.2014.05.028.
  • 26.
    26. Ghasemi M, Daud WRW, Rahimnejad M, Rezayi M, Fatemi A, Jafari Y, et al. Copper-phthalocyanine and nickel nanoparticles as novel cathode catalysts in microbial fuel cells. Int Jo Hydrogen Energy. 2013;38(22):9533-40. https://doi.org/https://doi.org/10.1016/j.ijhydene.2013.01.177.
  • 27.
    27. Ouis M, Kameche M, Innocent C, Charef M, Kebaili H. Electro-polymerization of pyrrole on graphite electrode: enhancement of electron transfer in bioanode of microbial fuel cell. Polymer Bulletin. 2017;75(2):669-84. https://doi.org/10.1007/s00289-017-2048-5.
  • 28.
    28. Jeremiasse AW, Hamelers HVM, Saakes M, Buisman CJN. Ni foam cathode enables high volumetric H2 production in a microbial electrolysis cell. Int J Hydrogen Energy. 2010;35(23):12716-23. https://doi.org/10.1016/j.ijhydene.2010.08.131.
  • 29.
    29. Wang Y, Wen Q, Chen Y, Zheng H, Wang S. Enhanced performance of microbial fuel cell with polyaniline/sodium alginate/carbon brush hydrogel bioanode and removal of COD. Energy. 2020;202. https://doi.org/10.1016/j.energy.2020.117780.

Crossmark
Crossmark
Checking
Share on
Cited by
Metrics

Purchasing Reprints

  • Copyright Clearance Center (CCC) handles bulk orders for article reprints for Brieflands. To place an order for reprints, please click here (   https://www.copyright.com/landing/reprintsinquiryform/ ). Clicking this link will bring you to a CCC request form where you can provide the details of your order. Once complete, please click the ‘Submit Request’ button and CCC’s Reprints Services team will generate a quote for your review.
Search Relations

Author(s):

Related Articles